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Abstract. Driving molecular dynamics simulations with data-guided collective variables

offer a promising strategy to recover thermodynamic information from structure-centric

experiments. Here, the 3-dimensional electron density of a protein, as it would be deter-

mined by cryo-EM or X-ray crystallography, is used to achieve simultaneously free-energy

costs of conformational transitions and refined atomic structures. Unlike previous density-

driven molecular dynamics methodologies that determine only the best map-model fits,

our work uses the recently developed Multi-Map methodology to monitor concerted move-

ments within equilibrium, non-equilibrium, and enhanced sampling simulations. Construc-

tion of all-atom ensembles along chosen values of the Multi-Map variable enables simul-

taneous estimation of average properties, as well as real-space refinement of the structures

contributing to such averages. Using three proteins of increasing size, we demonstrate

that biased simulation along reaction coordinates derived from electron densities can serve

to induce conformational transitions between known intermediates. The simulated path-

ways appear reversible, with minimal hysteresis and require only low-resolution density

information to guide the transition. The induced transitions also produce estimates for free

energy differences that can be directly compared to experimental observables and popu-

lation distributions. The refined model quality is superior compared to those found in the

Protein DataBank. We find that the best quantitative agreement with experimental free-

energy differences is obtained using medium resolution (∼5 Å) density information cou-

pled to comparatively large structural transitions. Practical considerations for generating

transitions with multiple intermediate atomic density distributions are also discussed.
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I. INTRODUCTION

Single-particle cryo-electron microscopy (cryo-EM) has evolved into one of the most effective

structure determination tools in modern-day structural biology. Following advances in electron

detector technology,1 cold field-emission electron gun sources and energy filters,2 cryo-EM has

achieved resolutions rivaling those of X-ray crystallography or NMR spectroscopy,3 often pro-

viding novel structures or conformations.4–6 However, static X-ray or cryo-EM structures alone

offer limited information on the function of biomolecules. The determination of conformational

trajectories remains a key stumbling block towards associating structure and function. These tra-

jectories are expected to deliver substantial information beyond static structures, revealing, for

example, the propagation of allosteric signals in complex biological molecules,7 and important

clues to the conformational diversity of sites associated with diseases.8,9

Traditionally, molecular trajectories are derived using molecular dynamics (MD) simulations

imposing either classical assumptions via all-atom and coarse-grained force fields,10,11 or by in-

troducing ab initio methodologies coupled with the classical particles via extended Lagrangian

schemes.12–14 However, it is now well established that biologically relevant conformational transi-

tions and timescales remain inaccessible to brute force MD. This drawback of traditional MD has

motivated the inception and application of a range of alchemical15,16 and geometric methods17–23

for enhanced sampling of molecular movements.

Experimental methods have also moved beyond calorimetric measures to capture the thermo-

dynamic manifestations of structural ensembles and molecular trajectories. Single-molecule mea-

surements routinely derive free energy profiles and rates as a function of simple distance or angular

metrics,24,25 though their spatial resolution is limited. Highly-resolved molecular ensembles are

determined from NMR, and EPR experiments,26,27 but such data is limited in size compared to

MD and typically misses fast kinetic information. Addressing the need to construct free energy

surfaces directly from experiments while simultaneously recovering the conformational changes,

geometric machine learning methodologies are employed to hierarchically cluster millions of 2-

dimensional single-particle images onto a low-dimensional manifold using diffusion maps.28 The

population of points on this manifold is correlated to free energy changes between 10 to 100 molec-

ular conformations by a Boltzmann factor.29 Such examination of the conformational trajectories

(the so-called “molecular movies”) from the cryo-EM data offers arguably the first experimentally-

verifiable and structurally-resolved view of an entire free energy landscape, including both the
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intermediates and rare conformations. Therefore, going beyond the visualization of realistic sta-

tionary structures, incorporating these energy-ranked cryo-EM ensembles in MD can accelerate

the potential of mean force (PMF) estimation from simulations.

Integration of cryo-EM data, and more generally, experimental data with MD, has followed

from the development of two families of methods, namely flexible fitting,30,31 and Bayesian

inferencing.32 While the former serves as a real space refinement tool available in almost all the

structure determination software,33,34 the latter has been successful in either folding small proteins

(< 115 residues)32 or seeking small-scale structural changes of subdomains (< 5 Å of root mean

square deviation (RMSD)) and free energy changes within larger cryo-EM density segments.35

The combination of flexible fitting and Bayesian inferencing36 overcomes this system-size re-

striction on protein folding and captures extremely large-scale conformational transitions from

cryo-EM data of heterogeneous complexes. Nevertheless, extracting the free energy from these

integrative simulations is non-trivial. A reduced representation based on collective variables would

lend itself to the computation of PMFs to be compared with experiments.

As a step towards facilitating data-guided free energy estimations, we propose here to use

directly the 3D electron density fields to define plausible reaction coordinates. To this end, we

employ the recently introduced Multi-Map method,37 which uses volumetric maps to measure

and simulate changes in shape for molecular aggregates. This is achieved by quantifying the

similarity between the instantaneous molecular configuration and each of the target volumetric

maps. The Multi-Map method has so far been successful at computing the thermodynamic cost

of wetting/dewetting in hydrophobic cavities,37 as well as membrane deformations that are either

spontaneous37 and protein-induced.38 It is thus tempting to use this method to simulate changes in

the internal structure of biological macromolecules.

Here, we demonstrate that the use of volumetric maps representing cryo-EM densities resolved

between 1-9 Å, allows modeling of large-scale transformations in protein structure. Biased sam-

pling along Multi-Map variables constructed from this density induces the protein to alter its shape

reversibly in the manner prescribed by the series of electron densities, and the corresponding PMF

is derived from the simulated trajectory. Typically, high-quality atomistic structures for each of the

relevant states are required to simulate a molecule’s transformation and extract the associated PMF.

However, formulating the free energy problem in terms of the density itself enables the attainment

of structural ensembles by biasing any starting model to a given state defined by a density map.

By varying the maps’ resolution between the atomic and molecular scale, we allow simultaneous
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real-space refinement of the data and biased sampling of the conformations. Thus, starting with

only one high-quality atomistic structure defining one end state in a series of maps, low-resolution

EM maps corresponding to the adjacent states can be sampled producing refined atomistic models

for all the states. Due to such built-in refinement capability, free energy surfaces can be obtained

even from Multi-Map variables based on low-resolution maps, with accuracy consistent with those

from high-resolution structures and maps.

In what follows, the conformational dynamics of three protein molecules are investigated: apo

and AP5A-bound adenylate kinase (ADK), carbon monoxide dehydrogenase (CODH) and Fran-

cisella lipoprotein3 (FLPP3). To allow comparisons between the three, synthetic density maps

of equal resolutions were generated, and used to construct a Multi-Map collective variable for

each protein (Sect. II.B). The proteins are then simulated with equilibrium MD (Sect. III.A), non-

equilibrium MD (Sect. III.C) and enhanced sampling simulations (Sect. III.D).

An analysis of the non-equilibrium work associated with these conformations offers a theoreti-

cal framework to determine the “resolvability” of a map.39 Employing two maps for each protein,

we demonstrate that a two-state Multi-Map variable is able to monitor open and closed protein

conformations in equilibrium and during slow conformational transitions, and how the accuracy of

the free energy estimates changes with the density map resolution. Finally, the effect of solvation

environments on the PMF is discussed, and limitations in capturing nominal structural changes,

such as single sidechain rearrangements, are brought to light.

II. METHODS

To allow quantitative comparison between the three proteins studied and explore the role of

density map resolution, we generated synthetic maps from atomic models with multiple states

deposited in the Protein Data Bank (PDB). These maps were then used to construct a Multi-

Map variable37 for enhanced sampling. The conformational dynamics of A→B and the reverse

B→A transition were monitored using the Multi-Map variable itself, the Euclidean distance be-

tween states as measured by root mean square deviation (RMSD), sidechain contacts and cross-

correlation (CC) to the target densities. In addition to varying the system-sizes and environmental

conditions, we compared the results obtained from maps generated at five different resolutions (1,

3, 5, 7, and 9 Å).
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A. Molecular Dynamics Simulations

Modeling and system setup utilized VMD,40 leveraging the solvate and autoionize plugins to

add a 20 Å water layer and a neutralizing concentration of NaCl. All simulations described below

share standard simulation parameters consistent with the CHARMM36m and TIP3P force fields

used to describe the protein, ions and water.41,42

Explicit solvent simulations were run with 2 fs timesteps enabled by restraining bond lengths to

hydrogen atoms via the SETTLE algorithm,43 and a 12 Å cutoff, which is switched at 10 Å. Tem-

perature for all simulations was maintained by a Langevin thermostat set to 300 K, and pressure

was maintained by a Langevin barostat set to 1 atm.44,45 Long-range electrostatics were calculated

using particle mesh Ewald with a 1 Å grid spacing.46 The parameters for vacuum, Generalized

Born Implicit Solvent (GBIS), and explicit solvent simulations are outlined in Table S1. Equilib-

rium MD simulation parameters for these systems were carried out with the molecular dynamics

engine NAMD 2.14b1.47

B. Construction of the Multi-Map Collective Variable

The recently developed Multi-Map variable37 is briefly summarized here. Given the Cartesian

coordinates of N atoms of interest, indicated as R = r1,r2, ...,rN with r = (x,y,z), and φk (k =

1 . . .K) a set of volumetric maps, the general form of a Multi-Map variable ζ is:

ζ (R) =
K

∑ξk

N

∑
i=1

wiφk(ri) =
K

∑ξkΦk(R), (1)

where wi is the statistical weight assigned to the ith atom, and ξk represents the contribution of the

atomic configuration R to the state Φk along a K points-long pathway.37 The physical nature of

this pathway is thus determined, aside from the assigned statistical weights, by the choice of the

maps themselves.

In the following, we assume each map φk(r) to represent the electron density of a protein, as

it would be determined from a cryo-EM or crystallography experiment. For each 3D electron

density, the value of the corresponding map φk(r) varies between a maximum value φmax and a

threshold value φthr, as done in the traditional implementation of the MDFF method.48 The use of

φthr is dictated by the use of an experimentally measured map, and the choice of its value is sim-

plified by the analysis of the cryo-EM density histogram with the MDFF plugin in VMD.40,49,50
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Generally, cryo-EM maps will display a large density peak corresponding to the solvent; a thresh-

old value at or above the solvent peak should be chosen to yield a flat potential in the solvent

regions (see Wells et al. for a detailed discussion).51

To confine sampling to the transition between two states defined by cryo-EM maps, we start

with two maps (φA and φB), and we choose the coefficients ξA = −1 and ξB = +1. With this

choice, the Multi-Map colvar in Eq. 1 is a two-state variable:

ζAB(R) = ΦB(R)−ΦA(R), (2)

where Φ(R) = ∑i wiφ(ri) measures the fitness of the atomic configuration R against the three-

dimensional map φ(r). The two-state colvar ζAB lies on a range between a minimum negative

and maximum positive value, which correspond to perfect fits to maps A and B, respectively. The

range of ζAB be estimated a priori using the formulation described in Appendix A. Since this

range can vary depending on the specifics of the system and the map resolution, during analysis

we frequently re-normalize this range into a reaction progress coordinate (changing between -1

and +1) from states A→B.

Fig. 1 illustrates how the Multi-Map variable ζ is constructed to link density maps of multi-

ple protein states to conformational transitions, with the specific setup provided in Appendix B.

The use of a two-state variable ζAB thus defined also draws upon the formalism of other two-state

paradigms, such as two-state RMSDs and anisotropic networks,54,55 where the two endpoints are

known, and the transition between them is simultaneously monitored from both the pathway ter-

mini. In analogy, when ζAB is at its minimum, R is fitted to cryo-EM map A; while when ζAB is

at its maximum the structure, R, is fitted to cryo-EM map B (Fig. 1). ζAB values near 0 represent

protein configurations neither in state A or in state B. The conformational space near 0 is vast,

necessitating a thorough sampling of the associated cartesian space to determine any statistical av-

erage. However, the advantage of the two-state ζAB sampling protocol is that its gradient is steepest

along the most direct path between state A and B. The number of these reactive conformations is

much smaller than those needed to be monitored in a protocol using as variable either ΦA-only or

ΦB-only, where a productive exit from A does not guarantee entry in B, and therefore the system

would need to sample an intractably larger phase space to obtain a free energy estimate.

Generalization of the two-state colvar for incorporating more than two cryo-EM maps could

benefit from existing computational methodologies to analyze density maps. If the sequence of

events captured by the K maps is predetermined e.g., by machine learning,56 the overall confor-
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Figure 1. Illustation of three possible choices of Multi-Map reaction coordinates capturing the closed to

open transition of ADK. Where ΦA and ΦB describes a structures similarity to cryo-EM maps state A and

B, respectively (K = [A] and ξA = 1 in Eq. 1 for state A and K = [B] and ξB = 1 for state B). The variable

ζAB (Eq. 2) has a negative value for structures similar to state A and a positive value for those like state B.

The bottom of the plot shows snapshots of ADK transitioning from state A to B color-coded by the value

of the ζAB collective variable. The arrow indicates the direction of motion the LID domain of ADK takes

during the transition. Surface representations for cryo-EM maps corresponding to states A and B of ADK

(PDB IDs 1AKE52 and 4AKE,53 respectively).

mational transition can be captured simply by concatenating the 2-state transformations along the

pathway.57 If the sequence of events is unknown, then combinations of these two state transitions

will have to be repeated following different orders of the events until the lowest energy or work

pathway is determined for subsequent refinement.58
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C. System Preparation

Synthetic density maps were constructed for the demonstration of the Multi-Map colvar. The

structures representing states A and B for each system are shown in Fig. 2, and were the density

targets used to drive transitions between states. First, molecular systems were chosen based on

having multiple conformational states for a single structure in the Protein Data Bank.59 The pro-

teins used in this study and their corresponding PDBIDs are shown in Fig. 2. These systems were

translated into simulatable models through psfgen, using the CHARMM36m protein force field41

and the compatible TIP3P water model.42 Second, a map corresponding to a specific state, was

generated using the mdff sim command, which is part of the MDFF Plugin within VMD.40 Five

maps in total were generated for each state at varying resolutions from 1 Å to 9 Å increasing by

2 Å. These density-maps can be used directly without inversion to a grid potential; unlike MDFF,

where density-maps need to be converted to grid-potentials to be incorporated as an energy term.48

The atoms selected to be coupled to the cryo-EM map depends on the map resolution. As a rule

of thumb, based on ab initio electron density map refinements,60,61 data with resolutions between

4-8 Å are fitted to backbone atoms while resolutions higher than 4 Å are fitted to all protein atoms

except hydrogen.

Analogous to MDFF, biasing with the Multi-Map colvars requires secondary structure con-

straints utilizing the extraBonds feature in NAMD.47 These constraints, which retain secondary

structure folds, prevent overfitting of the models to the maps. Additionally, positional and orien-

tational constraints are used to confine the sampling in regions between adjacent cryo-EM maps,

as discussed in the next subsection.

D. Steered Molecular Dynamics (SMD)

The formulation above lays the groundwork for using the Multi-Map colvar to define a struc-

ture’s similarity to states defined by cryo-EM maps. Besides monitoring the configurational state

of a protein, the Multi-Map colvar can be used to steer a protein configuration to a target map, φ .

By employing a moving harmonic restraint, we can derive an initial pathway between states using

atomic forces derived from the following equation.

Ubias(R) =
1
2

λ (ζ (R)−ζ0)
2 (3)
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Adenylate kinase

 ADK FLPP3

Francisella 
Lipoprotein

Carbon monoxide 
dehydrogenase

CODH

RMSD: 7.19 Å RMSD: 7.12 Å RMSD: 3.72 Å

State A
State B

Figure 2. The graphical overlay of states A and B for three two-state protein systems used to study the

Multi-Map collective variable. Adenylate kinase (ADK) states are defined by the open (A), PDBID 4AKE53

and closed (B), PDBID 1AKE52 states. The carbon monoxide dehydrogenase (CODH) A and B states are

taken from chains D and C of the PDBID 1OAO62 structure. The FLPP3 A and B states are drawn from

the crystal structure PDBID 6PNY63 and the NMR structure PDBID 2MU4,64 respectively. The flipped

tyrosine residue, Tyr83, is highlighted within the FLPP3 structure.

Here λ is the force constant, and ζ0 is the Multi-Map colvar target value, which changes uniformly

over the course of the simulation. The force constant is chosen according to the range of colvar

values required for describing a transition (Table S2). Expanding the harmonic and calculating the

atomistic forces derived from Ubias, one sees the force coming from the first term is proportional

to dφ/dri. Similar to MDFF,48 this term localizes atoms onto the density surface. The second

term, proportional to d(φ(R)φ0(R0))/dri, is akin to taking the derivative of a correlation and acts

to drive R→ R0, effectively steering the atomic structures towards the target density φ0.

The quantity and quality of cryo-EM data are typically insufficient to refine atomic models with

a high degree of accuracy using ζAB-steered molecular dynamics. Therefore, we supplement the

energy function Ubias with additional constraints, notably U f f , the CHARMM all-atom additive

potential as well as additional constraining terms to confine sampling. The following equation
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thus governs the simulation dynamics

Utotal(R) =U f f (R)+Ubias(R)+Upos -ori(R)+USS(R). (4)

Here USS is secondary structure restraints defined using the extraBonds feature of NAMD,47

and Upos -ori include center-of-mass and orientational restraints provided by the Colvars module.37

USS maintains the set of secondary structure folds the systems starts with, and are typical for MDFF

structure refinement.49 The USS constraint could be omitted when folding from a random coil based

on cryo-EM map data;65 however, the protein folding problem remains intractable in MD. Thus we

start with a model that has commensurate folds to the target states. The term Upos -ori ensures that

the system does not translate or rotate relative to the cryo-EM maps when biasing ζAB near 0. Such

treatment reduces the orthogonal degrees of freedom that do not contribute meaningfully to the

transition pathway and is commonly seen in free energy perturbation simulations.66 The positional

and orientational constraints ensure that structures derived along the pathway are relevant to the

states defined by the cryo-EM maps.

E. Bias Exchange Umbrella Sampling

Enhanced sampling methods are used to calculate the free energy change between two states

in molecular simulations. Some of the well-established methods are umbrella sampling (US),67

adaptive biasing force method (ABF),68 metadynamics.69 We use an exchanging US algorithm to

reconstruct the PMF along the reaction coordinate path sampled using SMD. Here, we briefly de-

scribe the method and application to the recently introduced system-specific reaction coordinate,

cryo-EM map density collective variable, ζ (R). For biomolecular systems with large degrees of

freedom, the sampling efficiency of US is significantly improved when combined with a replica-

exchange scheme, hence the term bias-exchange (or replica-exchange) umbrella sampling.70,71

In replica-exchange MD or bias exchange umbrella sampling (BEUS), each replica (or window)

is assigned a different value of a given property for the system. Periodic attempts are made to

exchange between replicas using a rule defined by the Metropolis criteria. The exchange rule is

set based on biasing potentials, attempting a swap every 500 steps (or 0.5 ps) over a range of

126 windows. The mixing of replicas in BEUS, ensures continuous sampling for protein confor-

mations between each replica, generating a more reliable free energy profile for the process. To

remove any unphysical bias towards a particular state, 50% of the windows i.e., 63 of them were
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initialized with models picked from the A→B SMD, evenly interspersed with initial models for

the other 63 windows chosen from steering along the B→A direction. Further details on BEUS

and applications to different biomolecular systems are discussed elsewhere.58,70,72

F. Calculating Potentials of Mean Force

There are various methods of assessing the potential of mean force. For the steered molecular

dynamics trajectories, the non-equilibrium work is computed internally by the Colvars module.73

The non-equilibrium work permits an initial free energy estimate based on the second law of

thermodynamics, which has as a consequence that the work for a non-equilibrium process W is

bounded from below by the overall free energy difference, W ≥ ∆F ,74 although the short sim-

ulations typically substantially overestimate the difference. From the bias exchange umbrella

sampling simulations, we estimate the free energy profiles and their uncertainties along the de-

fined reaction coordinate using a modified version of BayesWHAM.75 The implementation has

been accelerated by using Habeck’s Gibbs sampling method76 rather than Metropolis-Hastings

sampling as originally implemented.75 As an additional check, multistate Bennett’s acceptance ra-

tio calculations,77 as implemented in pyMBAR, are used to verify our methodology. Uncertainty

estimates are obtained by trajectory subsampling to compute the variation in the computed free

energies, which is used to assess convergence.

III. RESULTS AND DISCUSSION

The changes in the Multi-Map colvar were monitored and assessed during equilibrium, non-

equilibrium, and free energy simulations. We focus on how these colvars track global and local

conformational rearrangements. The results bring to light the pros and cons of applying this re-

duced representation over traditional geometric collective variables emerging from a linear com-

bination of atomic coordinates.

A. Multi-Map colvars describe large scale structural transitions at > 5 Å density resolution

First, we seek to determine whether the colvar can distinguish between states A and B based

exclusively on the ζAB value computed from Eq. 2. Fig. 3A shows histograms of the ζAB colvar
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Figure 3. (A) Histograms of scaled ζAB values from equilibrium simulations of ADK, CODH, and FLPP3

starting in either state A or B (red and black, respectively). The 10 ns following a 10 ns initialization period

was used to construct the histograms (see Fig. S1 for the full equilibrium trajectories). The ζAB values

were normalized between -1 and 1 by dividing each value by half of the range seen during the equilibrium

simulation. The double-sided arrow seen in the CODH 9 Å map plot shows a visual interpretation of peak

separation. (B) Histogram maximum probability peak separation as a function of the map resolution used to

derive the ζAB colvar. The peak separation values are based on the scaled ζAB profile, where the maximum

separation that can be obtained is 2.

distribution during an equilibrium simulation. At resolutions of 3-9 Å, we find that the conforma-

tions initiated in state A retain the negative values they start with, and similarly, configurations

that start in state B sample around the positive values for the ζAB coordinate. The initial values

of the ζAB colvar for simulations starting in either state A or B reflect a perfect fit to the data by

construction and are near unity in the scaled ζAB space. These are the minimum and maximum
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values the ζAB colvar can assume. For the colvars derived from high-resolution density maps, the

equilibrium conformations rapidly drift away from these limiting ζAB values (Fig. S1). The ζAB

relaxes to distributions with a near-zero mean, implying minimal separation between the states,

and is shown clearly through map correlation coefficient becoming equivalent (Figs. S4–S6). This

trend of ζAB approaching 0 observed with all high-resolution maps also suggests the need for

sampling an intractably high number of conformations for estimating averages, irrespective of the

system-size. In contrast, the degeneracy in conformations underlying a chosen ζAB value is higher

for the colvars derived at a lower resolution. This is reflected in the broader distribution of low-

resolution ζAB values, peaked about non-zero means (Fig. 3). The low-resolution ζAB distributions

clearly distinguish between states A and B, as indicated by the peak separation in Fig. 3B; even

in cases where RMSD comparisons cannot distinguish between states because they are equally far

from either starting configuration (Fig. S2).

At any given resolution, the range of ζAB values visited is the highest for CODH, followed

by ADK and then FLPP3. This follows a trend guided by the number of atoms in these systems,

where the range increases with increasing system size (Table S2). The separation between ζAB(RA)

and ζAB(RB) is, therefore, most prominent in CODH and least in FLPP3. Conversely, for any

system size, the range of ζAB values decreases and finally plateaus with decreasing map resolution

(Fig. 3B). Fuzzier density features for the maps of lower resolution have reduced values of φ

for any ri, resulting in lower values of the ζAB summation in Eq. 2. Despite this lower range of

ζAB, the separation of states improves dramatically at lower resolutions. For the 1 and 3 Å maps,

ζAB(RA) ∼ζAB(RB) ∼ 0. This effect is seen in Fig. S1, where the initial ζAB colvar value moves

quickly towards zero within the first 10 ns, and map correlations decay the fastest (Figs. S4–S6).

For resolutions 5 Å or lower, the colvar tracks distinct large scale conformational changes, clearly

representing the open and close states in ADK and CODH (Fig. 3A). At these resolutions, the

separation between states on the ζAB profile is roughly equivalent or higher to the corresponding

RMSDAB scaled peak separation (Figs. 3B and S3 and Sect. S1) This finding suggests that the

path length in ζ space is longer than or equivalent to the path created in the space of geometric

collective variables composed of a linear combination of atom coordinates. The path through the

extended space accessible to ζ promises exhaustive conformational sampling and the discovery of

conformations hidden to the geometric collective variables. A more important benefit of ζ over

the traditional geometric collective variables is that the knowledge of the endpoint structures is not

required. Unlike RMSD-like variables where atomic models or structures need to be fit to each
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of the K maps to define a pathway, following Appendix A, ζ requires only the knowledge of one

endpoint; obviating the need for a priori real space refinements, although the resolution needs to

be accounted for (Sect. S2).

Molecular rearrangements for both ADK and CODH require large domain movements and

have significantly larger RMSDs when compared to FLPP3 (Fig. 2). The FLPP3 conformational

transition involves breaking an interior hydrogen bond made by Tyr83 and the tyrosine residue’s

movement to an outward-facing conformation. The subtle rearrangements involved in the Tyr83

flip are only distinguishable with high-resolution maps (i.e., 1 and 3 Å). The lower resolution maps,

and therefore the ζAB colvar, cannot distinguish between FLPP3 configurations in state A or B. At

low-resolution the cryo-EM maps for FLPP3 states A and B are highly similar with a correlation

coefficient of 0.85, 0.92 and 0.95 for map resolutions 5, 7 and 9 Å, respectively (Figs. S1 S6).

The ζAB colvar has two requirements to be able to discern protein configurations into individual

states. First, the transition between states needs to be large enough to distinguish between cryo-EM

maps at nominal resolutions. Second, the cryo-EM map needs to be at a low enough resolution to

incorporate an ensemble of structures undergoing thermal motion into a single state defined by the

map. This first requirement is system dependent. The second requirement can be met by low-pass

filtering of high-resolution cryo-EM maps using VMD’s voltools plugin if required.31 The blurring

adds Gaussian halfwidths σ to the maps and enables the maps to incorporate more structures in

their state definitions and thus a colvar which is better able to distinguish between the structural

ensembles from states A and B.

B. Steering MD along low-resolution Multi-Map variables produces complete transitions

Trial pathways for probing large scale conformational transitions are often generated using ex-

ternal forces via steered MD (SMD) simulations.78,79 Starting from states A or B for each of the

three proteins, SMD was used to drive the transition to the other endpoint using the Multi-Map

colvar defined at density map resolutions between 1 to 9 Å. The transitions were monitored by

RMSD to both initial and final states (Figs. S8 and S9), the ζAB components themselves (Fig. S10),

and the density map correlations coefficients to both the initial and final states (Figs. 4 and S11).

Regardless of the preferred metric, the steered trajectories consistently demonstrate that our en-

forced biases allow the initial state to approach the final state. At resolutions 5 Å or lower, the

colvar traces for the forward and reverse paths derived from two independent simulations, strongly
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Å

m
ap

−2500 0 2500
0.50

0.75

−10000 0 10000−1000 0 1000

5
Å
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Figure 4. Traces of steered molecular dynamics trajectories highlight the relationship between ζAB as

defined in Eq. 2, and the correlation coefficient to the respective maps. Each subplot simultaneously shows

results for the A→B (black and red lines) and B→A (gray and fuchsia lines) transition. Colored lines

highlight motion towards the target, as measured through the cross-correlation to the target density, while

the black and gray lines represent the falling out of the density.
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overlap. This result offers preliminary evidence of minimal hysteresis in the SMD protocol we

used with ζAB to induce A→B and B→A transitions.

At high-resolution (1 & 3 Å), ADK and FLPP3 are driven through transitions that appear to be

complete along the correlation coefficient dimension but struggle to reach the extreme ζAB values

that are expected for states A or B. Incomplete transitions are due in large part to the well-defined

local density features. At high-resolution, 1 & 3 Å, the density features are quite narrow and in-

clude sidechain conformations. Thermal motion prevents simulated systems from perfectly fitting

to the maps, similar to the fast correlation decay observed in equilibrium simulation (Figs. S4–S5).

Thus, for the high-resolution maps, the collective variable cannot find configurations that perfectly

fit the maps and complete the transition in ζAB space, even though more coarse-grained geometric

collective variable metrics such as RMSD (Fig. S8) or density correlation coefficient (Fig. S11)

indicate the transition has completed.

Low-resolution maps are also not without their issues within a steered simulation context. As

visualized in Fig. 2 and noted in discussions of prior simulations,63 the transition in FLPP3 de-

pends on the rotation of Tyr83 from packing in the interior to becoming solvent-exposed. This rel-

atively subtle shift is difficult to capture in the context of low-resolution electron densities, unlike

the much larger conformational changes for ADK and CODH (Fig. 2). For low-resolution maps,

similar states have largely overlapping electron densities, resulting in comparatively few density

differences the Multi-Map collective variable can exploit to drive conformational change. This

is particularly clear in the variation of x-axis ranges in Fig. 4, where ζAB varies less for FLPP3

along the transition than it does for the other systems tested. In summary, the small structural

change for FLPP3 complicates transitions driven by low-resolution structural data, while the nar-

row densities for high-resolution data complicate the search process for poses that do not already

fit the imposed density well. Nonetheless, with density data at ≈ 5 Å or lower resolution, large

scale conformational transitions on the order of 7 Å change in RMSD are captured with minimal

hysteresis between the forward and reverse pathways.

C. Non-equilibrium work analysis reveals resolvability by flexible fitting

Driven transitions at the molecular level are typically non-equilibrium processes, accelerating

slow transitions on the millisecond or longer timescale down to nanosecond timescales. Through

analyzing non-equilibrium work, which tracks the accumulated forces and displacements along
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Figure 5. The non-equilibrium work for the SMD transitions in explicit solvent guided by either the 1,

5, or 9 Å resolution maps. Solid lines indicate the A→B transitions, while dashed lines indicate B→A

transitions. The map resolution is indicated by line color, with bluer colors indicating high-resolution maps,

while redder colors indicate lower resolution maps. Note that due to the considerable variation in non-

equilibrium work values, the plot is linear in the range (-10,10), and is plotted logarithmically outside of

that range. Results for 3 and 7 Å resolutions are reported in Fig. S13.

the SMD trajectory, it is possible to (i) estimate how resolvable a map is or “resolvability” of a

map by flexible fitting,39 and (ii) glean the preferred sequence of events for a given transition.80–82

In Fig. 5, we analyze the non-equilibrium work from our own steered trajectories to evaluate the

preferred directionality for these transitions.

SMD along the Multi-Map colvars indicates that there is an energy cost to flexible fitting.

While the lower resolution maps require less work to fit a broad set of correct models into the

map, higher resolution maps require more work to fit the correct model, as the number of such

models non-linearly decreases with increase in resolution.83 The work needed for the fitting of

higher resolution maps further increases with system-size, from FLPP3 to ADK to CODH. Es-

tablishing a common theoretical underpinning of why real-space refinement becomes more cum-

bersome for high-resolution maps,84 the non-equilibrium work profiles of the Multi-Map colvar

explains several refinement challenges faced by MDFF, ROSETTA-EM or other density-guided

MD protocols when the low-resolution EM refinement tools were originally re-purposed to re-
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solve high-resolution density maps.31,85 A large amount of work is wasted to bring structures in

the proximity of the density features when maps A and B are non-overlapping. This scenario is

prominent with sub-3 Å density maps, showing accumulation of negative work, and implying that

an automated MD refinement starting with arbitrary search models e.g., 3 Å RMSD away from the

target model will waste 10 kcal mol−1 of energy before the flexible fitting to the density begins.

Such physical limitations have proved detrimental in extending straight-forward MD refinements

of maps between 3–5 Å resolution.86 At lower resolution, when the overlap between maps A and

B improves, less work is wasted, and most of the MD is productive in fitting the model to the map.

The refinement of structures is seen in their growth of correlation coefficients during the SMD

(Figs. 4 and S12 and Table S2), and improved Molprobity87 scores for the associated structures

(Table S3).

Leveraging the non-equilibrium work profile in Fig. 5, we can hypothesize the basic outlines

of the free energy landscape for each system. For instance, for ADK without ligand, the B→A

transition requires less non-equilibrium work than the A→B transition, suggesting that the apo

state of ADK would prefer to be in state A (the open state) to accommodate a ligand. Conversely,

when ADK is ligand-bound, the A→B transition requires marginally less work than the B→A

transition, suggesting that the closed state B is slightly more probable than the open state A. The

ligand-dependent energy surface is a well-known feature for ADK, and is qualitatively in agree-

ment with previous findings.88–90 A similar analysis indicates that the A state would be favored in

both CODH and FLPP3. For FLPP3 specifically, where the NMR-derived open state represented

by state B is known to be more prevalent,63 this is further evidence that this reaction coordinate is

not reliable in capturing relatively modest structural rearrangements.

D. Free energy profiles with Multi-Map variables resolve large-scale conformational

transitions

We test how a reaction coordinate defined by the difference between the two maps estimates

the relative free energy differences between the two end states. To this end, we implement the

BEUS protocols to derive free-energy differences along the ζAB profile for the three examples. The

windows are linearly distributed along ζAB pathways of minimal hysteresis derived from Fig. 4.
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Figure 6. Free energy profiles for ADK without (left) and with (right) its AP5A ligand (right) using the

Multi-Map reaction coordinate across tested resolutions. The x-axis coordinates have been scaled so that

the reaction coordinate ranges are commensurate across different resolutions. Error estimates obtained by

the spread of 5 ns trajectory subsamples are represented by the shaded regions around each free energy

estimate. For convergence estimates based on subsamples, see Figs. S15–S24.

1. ADK open-to-close transition

To examine the relationship between free energy differences and map resolution, BEUS was

run with ζAB at five different map resolutions for ADK (see Fig. 6 left). At the highest resolutions

between 1 to 3 Å the endpoints are thermodynamically inaccessible, consistent with the fact that

only a handful of conformations can fit the distinct features of the high-resolution density maps.

Thus, there is a frustration that entropically boosts free energy at extreme ζAB values. These

artificially sharp features on the energy landscape subside at the lower resolutions (≥5 Å, wherein

the states close to the endpoints A and B (indicated by -1 and +1 values along the conformational

coordinate) become more thermally accessible. There is disagreement in free energy differences

between the high and low-resolution maps. While these differences are drastic for the 1 and 3 Å

maps compared to the lower resolution maps, the 5, 7, and 9 Å maps are in agreement with each

other in terms of both endpoint free energy values and their free energy differences between local

minima.

Fig. 6 shows free energy profiles for two ADK systems, apo and holo (AP5A inhibited). Free

energy profiles of both ADK systems have been obtained in previous computational studies with

high-resolution crystal structures.88–90 Notably, apo-ADK’s closed state (state B), is less favorable
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than apo-ADK’s open state (state A). Conversely, holo-ADK’s closed state is more favorable than

the open state based on the literature.88–90 As shown in Fig. 6, the expected trends are retained, but

now through the refinement of much lower resolution density maps rather than specific structures.

Using the density maps of resolution 5 Å or lower, apo-ADK’s free energy difference between

states is approximately 10 kcal mol−1 which is comparable to the free energy differences found in

previous studies.88–90 In contrast, the holo-ADK shifts the population towards the closed state B,

with both the open and closed states having approximately equivalent free energy. Depending on

the map resolution, AP5A binding changes the well depths for both states to be within 1 kcal mol−1

of one another. The free energy trends also follow a reverse trend in vacuum, where the closed

form is more stable than the open conformation by 16 kcal mol−1 (Fig. S14). Thus every time new

interactions close the pocket in apo-ADK, be it through binding interactions with the AP5A ligand

in the holo-state or via enhanced electrostatic interactions in vacuum, the closed conformation

becomes more stable. Otherwise, apo-ADK is primarily open. This distribution of free energy

implies that induced fit (and not conformational selection) is at work to enable AP5A binding to

ADK, a result that matches kinetic assays and NMR results.91,92

2. Sidechain flip in FLPP3

To elucidate the limitation of the Multi-Map colvar, we present the free energy profile for Tyr83

flip and the associated pocket opening in FLPP3 (Fig. 7). We have recently isolated the open,

close and occluded conformations of FLPP3 using serial femtosecond crystallography (SFX) and

NMR spectroscopy.63,64 Umbrella sampling simulations enabled the hierarchization of these con-

formations in terms of distinct Tyr83 orientations,63 whereby the open conformation with solvent-

exposed Tyr83 was found to be significantly more stable. Already depicted in Fig. 4, the Multi-

Map colvar fails to capture the complete transition between the Tyr83-flipped end states of FLPP3.

Unlike ADK, where the most separated end states were observed 5 Å or lower resolutions, the

most resolved FLPP3 states are seen at 3.0 Å (Fig. 3). Under these conditions, the PMF reveals

almost equally probable open and close states on either side of ζAB equal to 0. At lower reso-

lutions (≥5 Å), the converged statistics favor closed state over the open state. This result is in

stark contrast to NMR that favors the open state to the close state by a population ratio of 2:1.63

The closed structure seen in the SFX data is over stabilized by lattice contacts, and is, therefore,

even rarer. Thus, for this system, the BEUS of the Multi-Map colvar converged to unreliable re-
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Figure 7. Free energy profiles for FLPP3 using the Multi-Map reaction coordinate across tested resolutions.

The x-axis coordinates have been scaled so that the reaction coordinate ranges are commensurate across

different resolutions. Error estimates obtained by the spread of 5 ns trajectory subsamples are represented

by the shaded regions around each free energy estimate. For convergence estimates based on subsamples,

see Figs. S30–S34.

sults. This failure can be rationalized using Fig. 4. Unlike the ADK and CODH, the end states for

FLPP3 are only accessible to the Multi-Map colvar at higher resolutions, albeit with hysteretic ar-

tifacts. Since the sidechain motions contribute minimally to the overall map transformation, both

the solvent-exposed and buried Tyr83 were almost equally likely. Thus, the open and closed states

of FLPP3 were found to be almost equi-energetic. At lower resolutions, the open→close transi-

tion appears more likely during SMD, with the reverse movement progressing only midway along

the conformational coordinate. Occupancy of the buried Tyr83 within the lower resolution map

is unphysically higher than that of the solvent-exposed orientation. Consequently, at resolutions

of 5 Å and beyond, the open to close transition in FLPP3 is found to be exergonic. We expect a

slower SMD to allow more chances for the Tyr83 to flip outward, and therefore address this error,

possibly only at higher resolutions given the small-scale structural transition at hand.

3. Hinge-bending in CODH

The largest system we applied the Multi-Map reaction coordinate to was CODH. Unlike PMFs

for ADK and FLPP3, which were relatively consistent in shape between different input map res-

olutions, CODH demonstrates significant changes in the shape of the free energy profile in a
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Figure 8. Free energy profiles for CODH using the Multi-Map reaction coordinate across tested resolutions.

The x-axis coordinates have been scaled so that the reaction coordinate ranges are commensurate across

different resolutions. Error estimates obtained by the spread of 5 ns trajectory subsamples are represented

by the shaded regions around each free energy estimate. For convergence estimates based on subsamples,

see Figs. S25–S29.

resolution-dependent manner (Fig. 8). For similar entropic considerations mentioned previously,

the PMF minima are near ζAB =0 for 1 and 3 Å maps. The profiles for these high-resolution maps

have sharp edges due to the difficulty of fitting thermalized states into a high-resolution map. The

valley broadens when 5 Å resolution maps are applied to the Multi-Map colvar, offering compara-

ble probability to the open and closed CODH structures, marginally skewed towards state A, while

7 and 9 Å maps are skewed towards state B.

This energy landscape is consistent with the biochemical knowledge available for CODH,

which implies that the protein structure fluctuates to accommodate substrate ingress.93 Indeed,

the existence of both states within a single crystal structure implies that at least in crystallization

conditions,62 the two states are equally probable and thus equal in free energy. This scenario is

akin to classic conformational selection,94 highlighting that both conformations are thermally ac-

cessible in the absence of CODH substrates. Given the observation of substrate access tunnels in

both states, while only state B is thought to be competent for chemistry,62 allosteric regulation for

the CODH structure may be one mechanism for guiding metabolism through this multifunctional

enzyme.95 Taken together, between the ADK and CODH examples the Multi-Map colvars capture

two of the most universal mechanisms of allosteric interactions.
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IV. CONCLUSION

The use of volumetric maps as sources of external potentials in MD simulations has allowed

the development of many enhanced sampling methods such as grid-steered MD,51 MDFF,31,48

and atom resolved Brownian dynamics.96 The most recent addition to these methods is the Multi-

Map variable,37 which is applied here to monitor transitions in protein structure based on electron

density maps from cryo-EM or crystallography. Transformations between two protein states are

successfully sampled for different protein sizes and types of conformational change, suggesting

that the method is generalizable to a series of cryo-EM maps akin to the outcome of the manifold-

based cryo-EM data analysis.29,56 In addition to the simultaneous utility of the Multi-Map colvar

towards non-equilibrium work and free energy estimation, we here demonstrate its usefulness in

the refinement of map-structure correlations coefficients and model-quality without requiring high-

quality search structures. The Multi-Map formulation offers a statistical mechanical description

for the resolvability of a map, addressing a point of concern in cryo-EM modeling.

Previous work demonstrated that the Multi-Map variable can characterize shape changes in

supra-molecular aggregates such as biological membranes or confined-water pockets.37,97 The

results shown here also open the door to its application together with a number of geometric or

alchemical free energy methods focused on protein conformational cycles.98 Furthermore, in the

specific application of structure refinement, data-driven approaches such as MELD65 or meta-

inference99 can readily employ data simulated using the Multi-Map variable as a source of coarse-

grained information for computing the Bayesian priors. From a biophysical standpoint, two of

the most universal allosteric pathways, namely induced fit and conformational selection, were

here successfully investigated. Though the free energy studies were found to be most efficient

using low-resolution maps, the estimates are comparable to those determined from high-resolution

structures.
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Appendix A: Estimating endpoints for the Multi-Map colvar for different resolutions.

The Multi-Map collective variable used here is defined in compact form as ζAB (Eq. 2) by

using two 3-dimensional volumetric maps φA(r) and φB(r), which are synthetically generated but

are treated otherwise as experimental data. Based only on the atomic density maps, it is thus

possible to estimate what the colvar range should be. Given an atomic configuration R, a synthetic

map φR(r) may be generated and its cross-correlation with φA(r) defined as:

CC(R,A) =
1

|φR||φA|
∫

r
φR(r)φA(r)dr (A1)

and similarly for CC(R,B). Inserting Eq. A1 into Eq 2, we arrive at

ζAB(R)'Φ(R)−1 [CC(R,B)−CC(R,A)] , (A2)

where the approximation lies in assuming that the density map φR is used in lieu of the precise

atomic coordinates R. Also, Φ(R) = ∑i wiφ(ri) is the term of the Multi-Map variable evaluated at

the coordinates R that best fit the set of local map φ . It is essential at this stage to recognize that

correlation coefficient values fall in the range (0,1) due to non-negative densities. For instance,

if a 0 Å resolution map were to exist, the densities would be delta functions with values equal to

the atomic weight (wi), meaning that Φ(R)−1 = (∑i wi)
−1. For other resolutions, Φ(R)−1 will

similarly be a scaling factor related to the total atomic weight and will be invariant for well-fitted

maps with equivalent resolution. Stated concretely for this special mass-conserving transition

between states A to B,

ζA(RA) = ζB(RB). (A3)
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Assuming that a map is a Gaussian mixture model, the equality holds if both maps have ho-

mogenous and equivalent resolutions. If the resolutions are not equivalent then a scaling factor is

needed to maintain the equality, as outlined below. However a more general boundary condition is

CC(A,A) =CC(B,B) = 1. (A4)

Combining Eqs. A2 and A3:

ζAB(RA) = Φ(RA)
−1 [CC(A,B)−CC(A,A)] (A5)

ζAB(RB) = Φ(RB)
−1 [CC(B,B)−CC(B,A)] (A6)

therefore:

ζAB(RA) =−ζAB(RB) (A7)

because CC(A,B) =CC(B,A). In practice Eq. A7 is limited by discretization errors, because both

maps are interpolated onto a grid. However, by comparing the numerical and theoretical values

ζAB(RA) =Φ
−1
t
[
CC(A,B)−CC(A,A)

]
determined from Eqs. 2 and A2 in Table S2 within Sect. S2

for a range of resolutions, we find that a 1 Å grid spacing has acceptable numerical error.

As a consequence of Eq. A7, the target value for ζAB can be estimated, knowing only one

endpoint from the transition for two maps with equal resolution. Importantly, all other atomic

configurations other than RA or RB will generate ζAB values whose magnitude is less than

|ζAB(RA)| = |ζAB(RB)|, as the correlation coefficients are bounded and the density weight is

conserved (Eq. A3).

If two maps have unequal resolutions with comparable local densities, the range for ζAB will

depend on the ratio between ΦA(RA) and ΦB(RB), like

ζAB(RA) =−
exp(σ

−2
B )

σB

exp(σ
−2
A )

σA

ζAB(RB) (A8)

Where σA and σB are the resolutions of map A and B. The local density is calculated as the sum

of atom weights divided by the map volume, which can be computed in VMD. Thus, even when

the resolutions of the contributing maps are different, but their local densities are similar, we can

still determine ζAB(RB) with knowledge of only one high-quality structure across a series of maps.

However, when the resolution of a map is nonuniform and the local densities do not match between

the states A and B, the assumptions of Eq. A7 and A8 fail. In these cases, structural information
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on both RA and RB are needed apriori to determine the endpoint values of ζAB for subsequent

application in equilibrium and non-equilibrium MD or enhanced sampling simulations.

These considerations are non-trivially generalizable to capture conformational changes across

the entire series of K-maps, which are considered a sum of 2-map transformations. Thus, by know-

ing the structure R at only one endpoint, the Multi-Map colvar allows in principle the construction

of ensembles and simultaneous real-space refinement for each of the K maps contributing to the

colvar. In practice, the variation of the local resolution within a cryo-EM map may prevent the

application simple scaling rules to all the maps. Nonetheless, the nominal resolution of majority

of the maps coming from conformational analysis with EM have highly comparable resolution as

seen in the ribosome,28 RyR1 receptor,29 and recently in spike protein.100

Appendix B: Implementation and Availability of the Multi-Map Collective Variable

The derivation and implementation of the Multi-Map variable are documented in ref.37. The

implementation leverages recent improvements to the GridForces51 and Colvars73 modules, both

of which are freely available in the most recent version of NAMD.47 Up-to-date documentation

and input file fragments for several use cases are available at:

https://colvars.github.io/colvars-refman-namd/colvars-refman-namd.html#sec:

cvc_multimap

A NAMD configuration file fragment for invoking the two-state colvar (i.e. where the coeffi-

cients of the Multi-Map variable are -1 and +1, respectively) is provided below:

# Load the two electron density maps

set GRIDFILE [list stateA.dx stateB.dx]

mgridForce on

for {set i 0} {$i < [llength $GRIDFILE]} {incr i} {

mgridForceFile $i gridpdb.pdb; # Flag coupled atoms

mgridForceCol $i O; #Couple to the map if O != 0

mgridForceChargeCol $i B; #Weight based on value in B

mgridForcePotFile $i [lindex $GRIDFILE $i];

mgridForceScale $i 0 0 0; #Maps do not contribute bias themselves,

#except through the Multi-Map colvar, which is defined below.

}
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# Initialize Zeta_AB colvar

colvars on

cv config "

colvar {

name zeta_AB

mapTotal {

#Maps are 0-indexed, so map 0 is state A.

mapName 0

componentCoeff -1

}

mapTotal {

#Map 1 is state B

mapName 1

componentCoeff 1

}

}

"

## End code ##
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