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Abstract 27 

As the COVID-19 pandemic progresses, fatality and cases of new infections are also 28 

increasing at an alarming rate. SARS-CoV-2 follows a highly variable course and it is 29 

becoming more evident that individual’s immune system has a decisive influence on the 30 

progression of the disease. However, the detailed underlying molecular mechanisms of the 31 

SARS-CoV-2 mediate disease pathogenesis are largely unknown. Only a few host 32 

transcriptional responses in COVID-19 have been reported so far from the Western world, 33 

but no such data has been generated from the South-Asian region yet to correlate the 34 

conjectured lower fatality around this part of the globe. In this context, we aimed to perform 35 

the transcriptomic profiling of the COVID-19 patients from Bangladesh along with the 36 

reporting of the SARS-CoV-2 isolates from these patients. Moreover, we performed a 37 

comparative analysis to demonstrate how differently the various SARS-CoV-2 infection 38 

systems are responding to the viral pathogen. We detected a unique missense mutation at 39 

10329 position of ORF1ab gene, annotated to 3C like proteinase, which is found in 75% of 40 

our analyzed isolates; but is very rare globally. Upon the functional enrichment analyses of 41 

differentially modulated genes, we detected a similar host induced response reported earlier; 42 

this response was mainly mediated by the innate immune system, interferon stimulation, and 43 

upregulated cytokine expression etc. in the Bangladeshi patients. Surprisingly, we did not 44 

perceive the induction of apoptotic signaling, phagosome formation, antigen presentation and 45 

production, hypoxia response within these nasopharyngeal samples. Furthermore, while 46 

comparing with the other SARS-CoV-2 infection systems, we spotted that lung cells trigger 47 

the more versatile immune and cytokine signaling which was several folds higher compared 48 

to our reported nasopharyngeal samples. We also observed that lung cells did not express 49 

ACE2 in a very high amount as suspected, however, the nasopharyngeal cells are found 50 

overexpressing ACE2. But the amount of DPP4 expression within the nasal samples was 51 

significantly lower compared to the other cell types. Surprisingly, we observed that lung cells 52 

express a very high amount of integrins compared to the nasopharyngeal samples, which 53 

might suggest the putative reasons for an increased amount of viral infections in the lungs. 54 

From the network analysis, we got clues on the probable viral modulation for the 55 

overexpression of these integrins. Our data will provide valuable insights in developing 56 

potential studies to elucidate the roles of ethnicity effect on the viral pathogenesis, and 57 

incorporation of further data will enrich the search of an effective therapeutics. 58 
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Introduction 59 

Since the declaration of COVID-19 pandemic on 11 March, this Severe Acute Respiratory 60 

Syndrome Coronavirus 2 (SARS-CoV-2) mediated infection has spread ~213 countries and 61 

territories [1]. Approximately, 15 million individuals across the globe have fallen victim to 62 

this virus and the number is constantly increasing at an alarming rate, as of the writing of this 63 

manuscript [1]. Though the initial fatality percentage was as low as 3.5%, currently this value 64 

lies around ~6.66% [1] and it might be increased because of the withdrawal of earlier 65 

preventing measures taken throughout the world. Coronaviruses are not new to human 66 

civilization, as these viruses caused several earlier outbreaks during the past two decades. 67 

However, none of the earlier outbreaks spread as widely as the current ongoing pandemic. As 68 

the pandemic progresses, more researches on the molecular pathobiology of the COVID-19 69 

are being rapidly carried out to search for effective therapeutic intervention. 70 

Coronaviruses possess single-stranded RNA (positive sense) genomes lengthening 71 

approximately 30Kb [2]. Amongst the coronaviruses, SARS-CoV-2 is a member of the 72 

betacoronaviruses having a ~29.9Kb genome which contains 11 functional genes [3]. Though 73 

SARS-CoV-2 shows similar clinical characteristics as Severe Acute Respiratory Syndrome 74 

Coronavirus (SARS-CoV) and Middle East Respiratory Syndrome-related Coronavirus 75 

(MERS-CoV) viruses, it has only ~79% and ~50% genome sequence similarities with these 76 

viruses, respectively; whereas, the genome sequence of SARS-CoV-2 is ~90% identical to 77 

that of bat derived SARS-like coronavirus [4]. Moreover, several key genomic variances 78 

between SARS-CoV-2 and SARS-CoV such as- 380 different amino acid substitutions, 79 

ORF8a deletion, ORF8b elongation, and ORF3b truncation were also reported [2]. 80 

The clinical characteristics of the COVID-19 range from mild fever to severe lung injury [5]. 81 

Some of the commonly observed mild COVID-19 symptoms are- fever, cough, and fatigue; 82 

however, complications such as- myalgia, shortness of breath, headache, diarrhea, and sore 83 

throat were also reported [6]. Furthermore, severely affected patients had exhibited 84 

respiratory complications like- moderate to severe pneumonia, acute respiratory distress 85 

syndrome (ARDS), sepsis, acute lung injury (ALI), and multiple organ dysfunction (MOD) 86 

[7]. Primarily, the lungs of the COVID-19 patients are affected [8]; however, failures of other 87 

functional systems, namely- cardiovascular system, nervous system etc. were also reported 88 

[9, 10]. 89 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2020. ; https://doi.org/10.1101/2020.07.23.218198doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.23.218198
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

Several features of the SARS-CoV-2 infection made it more complicated for effective clinical 90 

management. From the earlier studies, the incubation period of SARS-CoV-2 was reported to 91 

be around 4-5 days, however, some recent studies suggested a prolonged incubation period of 92 

8-27 days [11]. Additionally, several cases of viral latency within the host [12], and the 93 

recurrent presence of SARS-CoV-2 in clinically recovered patients were also recorded [13, 94 

14]. However, the detailed molecular mechanism behind these phenomena is still elusive. 95 

In COVID-19, an increased level infection associated pro-inflammatory cytokines were 96 

recorded [15], which thereby supports the term “Cytokine storm”, that was frequently used to 97 

describe the SARS-CoV and MERS-CoV disease pathobiology [16]. This phenomenon 98 

causes the hyperactivation and recruitment of the inflammatory cells within the lungs and 99 

results in the acute lung injury of the infected patients [17]. However, this illustrates one 100 

putative molecular mechanism of COVID-19, there are many other immune regulators and 101 

host genetic/epigenetic factors which can also play significant contribution towards the 102 

disease manifestation [18, 19]. This multifaceted regulation was also reported previously for 103 

other different coronavirus infections [20]. Host-pathogen interactions in different 104 

coronavirus infections can function as a double-edged sword, as these could be beneficial not 105 

only to the hosts but also the viruses [20]. Similar host-virus tug-of-war can also occur in 106 

COVID-19 which might be contributing towards the overcomplicated disease outcomes [21]. 107 

Collectively, more than 1.7 million (almost 9% of the total infections around the globe) 108 

people have been diagnosed with COVID-19 in the South-Asian region and the number is 109 

still increasing devastatingly [1]. Recently, it has been speculated that South-Asian people 110 

might be possessing a genomic region acting as the risk factor for COVID-19 [22]. Moreover, 111 

another study suggested some genomic variations in several Indian SARS-CoV-2 isolates that 112 

might be involved in the COVID-19 pathogenesis in Indian patients [23]. However, any data 113 

suggesting the COVID-19 patients’ transcriptomic responses from this part of the globe are 114 

yet to be reported. 115 

Several previously conducted studies reported the host transcriptional responses in SARS-116 

CoV-2 infections using patient samples, animal models, and cell lines to explain the 117 

pathobiology of COVID-19 [24-26]. However, a detailed comparison of the host 118 

transcriptional responses between these different infection models as well as the different 119 

sites of the respiratory system is still lacking; but it might provide valuable insights on the 120 

COVID-19 pathogenesis and disease severity. In this present study, we sought to discuss the 121 
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host transcriptional responses observed in COVID-19 patients in Bangladesh. Additionally, 122 

we reported the genome variations observed in the four SARS-CoV-2 isolates obtained from 123 

these patients. Finally, we illuminated the differences in host transcriptional responses in 124 

different COVID-19 infection models and further pursued to discover the putative effects of 125 

these altered responses. 126 

Materials and Methods 127 

Sample collection and virus detection by Real-time reverse transcription-128 

quantitative PCR (RT-qPCR) 129 

The nasopharyngeal swab samples were collected from patients suspicious of COVID-19 and 130 

placed in sample collection vial containing normal saline. Collected samples were preserved 131 

at -20°C until further use for RNA extraction and RT-qPCR assay. The RT-qPCR was 132 

performed for ORF1ab and N genes of SARS-CoV-2 using Novel Coronavirus (2019-nCoV) 133 

Nucleic Acid Diagnostic Kit (PCR-Fluorescence Probing) of Sansure Biotech Inc. according 134 

to the manufacturer’s instructions. RNA was extracted from a 20 µL swab sample through 135 

lysis with sample release reagent provided by the kit and then directly used for RT-qPCR. 136 

Thermal cycling was performed at 50�°C for 30 min for reverse transcription, followed by 137 

95�°C for 1 min and then 45 cycles of 95�°C for 15 s, 60�°C for 30 s on an Analytik-Jena 138 

qTOWER instrument (Analytik Jena, Germany).    139 

RNA sequencing 140 

Total RNA was extracted from nasopharyngeal swab samples (labeled as S2, S3, S4, S9) 141 

collected from SARS-COV-2 infected COVID-19 patients using TRIzol (Invitrogen) reagent 142 

following the manufacturer’s protocol. RNA-seq libraries were prepared from total RNA 143 

using TruSeq Stranded Total RNA Library Prep kit (Illumina) according to the 144 

manufacturer’s instructions where the first-strand cDNA was synthesized using SuperScript 145 

II Reverse Transcriptase (Thermo Fisher) and random primers. Paired-end (150 bp reads) 146 

sequencing of the RNA library was performed on the Illumina NextSeq 500 platform.  147 

Data processing and identification of the viral agent 148 

Firstly, the sequencing reads were adapter and quality trimmed using the Trimmomatic 149 

program [27]. The remaining reads were mapped against the SARS-CoV-2 reference 150 
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sequence (NC_045512.2) using Bowtie 2 [28]. Then the mapped reads were assembled de 151 

novo using Megahit (v.1.1.3) [29]. 152 

Mapping of the RNA-seq reads onto SARS-CoV-2 reference genome 153 

We mapped the normalized (by count per million mapped reads-CPM) RNA-seq reads onto 154 

the SARS-CoV-2 genome track of the UCSC genome browser [30] using the “bamCoverage” 155 

feature of deepTools2 suite [31]. 156 

Identification of SARS-CoV-2 genome variations and variation annotation 157 

We identified the variations within our sequenced SARS-CoV-2 genome using the “Variation 158 

Identification” (https://bigd.big.ac.cn/ncov/online/tool/variation) tool of “2019 Novel 159 

Coronavirus Resource (2019nCoVR)” portal of China National Center for Bioinformation 160 

[32]. We then annotated the variations of the isolated SARS-CoV-2 isolates using the 161 

“Variation Annotation” (https://bigd.big.ac.cn/ncov/online/tool/annotation) tool from the 162 

same portal [32]. We also gathered the global frequency of every identified variation using 163 

this same information portal [32]. Different representations showing the information 164 

regarding the variations were produced using the Microsoft Excel program [33]. The impacts 165 

of the variations were further characterized utilizing the Ensembl Variant Effect Predictor 166 

(VEP) tool [34]. 167 

Analysis of RNA-seq expression data 168 

We analyzed both our RNA-seq and some publicly available RNA-seq data for COVID-19 169 

host transcriptional profile analysis. Publicly available Illumina sequenced RNA-seq raw 170 

FastQ reads were extracted from the GEO database (accessions of the data used can be found 171 

in supplementary file 1) [35]. We have checked the raw sequence quality using FastQC 172 

program (v0.11.9) [36] and found that the "Per base sequence quality", and "Per sequence 173 

quality scores" were high over the threshold for all sequences (Supplementary file 2). The 174 

mapping of reads was done with TopHat (tophat v2.1.1 with Bowtie v2.4.1) [37]. Short reads 175 

were uniquely aligned allowing at best two mismatches to the human reference genome from 176 

(GRCh38) as downloaded from the UCSC database [38]. Sequence matched exactly more 177 

than one place with equally quality were discarded to avoid bias [39]. The reads that were not 178 

mapped to the genome were utilized to map against the transcriptome (junctions mapping). 179 

Ensembl gene model [40] (version 99, as extracted from UCSC) was used for this process. 180 

After mapping, we used the SubRead package featureCount (v2.21) [41] to calculate absolute 181 
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read abundance (read count, rc) for each transcript/gene associated to the Ensembl genes. For 182 

differential expression (DE) analysis we used DESeq2 (v1.26.0) with R (v3.6.2;  2019-07-05) 183 

[42] that uses a model based on the negative binomial distribution. To avoid false positive, 184 

we considered only those transcripts where at least 10 reads are annotated in at least one of 185 

the samples used in this study and also applied a minimum Log2 fold change of 0.5 for to be 186 

differentially apart from adjusted p-value cut-off of ≤ 0.05 by FDR. To assess the fidelity of 187 

the RNA-seq data used in this study and normalization method applied here, we checked the 188 

normalized Log2 expression data quality using R/Bioconductor package 189 

“arrayQualityMetrics (v3.44.0)” [43]. From these analyses, no outlier was detected in our 190 

data by “Distance between arrays”, “Boxplots”, and “MA plots” methods and replicate 191 

samples are clustered together (data not shown). We also performed a multifactorial 192 

differential gene expression analysis using the edgeR tool [44] following the experimental 193 

design- (Sample A/control for sample A)/(Sample B/control for sample B). 194 

Construction of phylogenetic tree 195 

We constructed a Neighbour-Joining phylogenetic tree with all available 145 SARS-CoV-2 196 

genomes of Bangladeshi isolates (retrieved on 6th May from GISAID [45]). Firstly, the 197 

genome sequences were aligned using MAFFT [46] tool using the auto-configuration. Then 198 

we used MEGA X [47] for constructing the phylogenetic tree utilizing 500 bootstrapping 199 

with substitution model/method: maximum composite likelihood, uniform rates of variation 200 

among sites, the partial deletion of gaps/missing data and site coverage cutoff 95%. 201 

Functional enrichment analysis 202 

We utilized Gitools (v1.8.4) for enrichment analysis and heatmap generation [48]. We have 203 

utilized the Gene Ontology Biological Processes (GOBP) [49], Bioplanet pathways [50], 204 

KEGG pathway [51], and Reactome pathway [52] modules for the overrepresentation 205 

analysis. Resulting p-values were adjusted for multiple testing using the Benjamin and 206 

Hochberg's method of False Discovery Rate (FDR) [53]. 207 

Retrieval of the host proteins that interact with SARS-CoV-2 208 

We have obtained the list of human proteins that form high confidence interactions with 209 

SARS-CoV-2 proteins from conducted previously study [21]  and processed their provided 210 

protein names into the associated HGNC official gene symbols. 211 
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Construction of biological networks 212 

Construction, visualization, and analysis of biological networks with differentially expressed 213 

genes, their associated transcription factors, and interacting viral proteins were executed in 214 

the Cytoscape software (v3.8.0) [54]. We used the STRING [55] database to extract the 215 

highest confidences (0.9) edges only for the protein-protein interactions to reduce any false 216 

positive connection. 217 

Results 218 

Our sequenced SARS-CoV-2 isolates showed a divergent variation pattern 219 

compared to the other Bangladeshi isolates 220 

We sought to find out the genome variations within the four SARS-CoV-2 isolates we 221 

sequenced and pursued the deviation of these genomes compared to the other isolates in 222 

Bangladesh. To accomplish these goals, we first identified and annotated the genome 223 

variations observed within our sequenced isolates. Then we produced informative statistics 224 

from these observed variations and compared the prevalence of those with the other isolates 225 

of Bangladesh and the rest of the world. 226 

We mapped the RNA-seq reads of each of the samples and checked their distribution athwart 227 

the entire reference genome of SARS-CoV-2 (Figure 1A). High coverages and read evidence 228 

were observed for all the isolates across the whole genome of the SARS-CoV-2 (Figure 1A). 229 

This suggests that the sequenced genomes of these isolates are of high coverage and no such 230 

region is observed without the mapped reads. 231 

We detected sixty different types of variations within these four analyzed SARS-CoV-2 232 

isolates (Table 1). All the four different types of sequence variations were spotted in these 233 

isolates, however, single nucleotide polymorphisms (SNPs) were most prominent (Figure 234 

1B). Among these variations, twelve variations were found in more than one isolate, whereas 235 

rest forty-eight variation occurred in only one isolate (Table 1, Figure 1C). Among the 236 

isolates, isolate S3 contained the lowest number of variations, whereas isolate S4 has the 237 

highest number of variations (Figure 1D). Most of these variations are intergenic variants that 238 

occurred either in the 5’-UTR or 3’-UTR regions (Figure 1C-D); whereas, globally most 239 

variations have occurred in the ORF1ab gene. Surprisingly, out of all these variations, we 240 

found only one downstream gene variation on the 3’-UTRs of all the four isolates; this 241 
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variation can potentially impact the regulation of the ORF10 gene (Figure 1D). Most of the 242 

nucleic acid mutations were located on the 3’-UTR of the isolates, whereas the ORF1ab gene 243 

contained most of the amino acid mutations (Figure 1E). 244 

No highly severe mutation was identified amongst these variations, but we found nine 245 

moderately impacting, seven low impacting, and forty-seven modifier variations within these 246 

isolates (Figure 1F, Supplementary file 3). As of 8th July, thirty-eight out of the sixty 247 

variations within our sequenced isolates were completely absent in all other Bangladeshi 248 

SARS-CoV-2 isolates (Table 1). Strikingly, we observed that variation 10329: A>G is 249 

present within three of our sequenced isolates, only one other Bangladeshi and one other 250 

USA isolate contain this variation (Figure 1G). This variation is located within the 3C-like 251 

protease of SARS-CoV-2. Previously, the potential implication of the mutations of this 252 

protein was reported to alter its overall structure and functionality [56-58] in SARS-CoV. 253 

Also, few of our reported variations like 25505: A>T and 29392: G>T are not highly 254 

prevalent globally (Figure 1G). 255 

Exploring the Nextstrain portal [59], we noticed that our analyzed SARS-CoV-2 sequences 256 

are closely placed to the Saudi-Arabian isolates (Supplementary Figure 1); although, most of 257 

the other Bangladeshi isolates were placed in the major European clusters (data not shown). 258 

Furthermore, these isolates analyzed in this study is distinctly placed in our constructed 259 

Neighbor-Joining phylogenetic tree (Figure 2), this also supports the differences between 260 

these isolates and other Bangladeshi SARS-CoV-2 isolates which might have been originated 261 

from the European nations. 262 

Stimulated antiviral immune responses are detected in the nasopharyngeal 263 

samples of Bangladeshi COVID-19 patients 264 

Though initial researches suggested the potential implication of viral variations on the 265 

COVID-19 disease severity, one recent study indicated otherwise; Several host factors such 266 

as- abnormal immune responses, cytokine signaling etc. might be influencing the overall 267 

disease outcomes more prominently compared to the viral mutations [60]. Moreover, several 268 

data surmised that ethnicity might be a pivotal risk factor of being susceptible to COVID-19 269 

[61].  270 

In this context, we explored the transcriptome data obtained from the nasopharyngeal 271 

samples from Bangladeshi COVID-19 patients to find out how these patients were 272 
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responding against the invading SARS-CoV-2. We compared the RNA-seq data of these 273 

patients with some random normal individuals’ nasopharyngeal RNA-seq data to find out the 274 

differentially expressed genes within our analyzed samples. We observed a roughly constant 275 

standard deviation for the normalized reads suggesting a lesser amount of variation occurred 276 

during the normalization (Figure 3A). Furthermore, we performed sample clustering to assess 277 

the quality of our generated normalized RNA-seq data. No anomalies were observed in the 278 

sample to sample distance matrix (Figure 3B) and principal component analysis (PCA) 279 

(Figure 3C) while comparing our samples with the used healthy individuals’ data. Moreover, 280 

the larger differences observed in the PCA plot (Figure 3C) and clustered heatmap of the 281 

count matrix with the top 50 significant genes (Figure 3D) suggest a significant 282 

transcriptomic response difference between our infected patients’ data and the normal 283 

individuals’ data. Likewise, the sample to sample distance plot suggested the similarities of 284 

samples of similar nature; the infected and healthy samples were clustered into two distinct 285 

groups (Figure 3B). 286 

Sungnak et al. described the significance of several viral entry associated host proteins in 287 

SARS-CoV-2 pathogenesis, namely- ACE2, TMPRSS2, BSG, CTSL, DPP4 [62]. We also 288 

investigated the expression of the associated transcripts of these proteins within our patients’ 289 

samples. We spotted that both the healthy and infected samples have expressed these genes 290 

except the DPP4 gene (Figure 3E). 291 

We identified 1,614 differentially expressed genes within our reported four SARS-CoV-2 292 

infected nasopharyngeal samples; among these differentially expressed genes, 558 genes 293 

were upregulated, and 1056 genes were downregulated (Supplementary file 4). Then we 294 

sought to discover in which biological functions/pathways these deregulated genes might be 295 

involved. To achieve this, we performed functional enrichment analyses with the observed 296 

deregulated genes using different ontology and pathway modules. 297 

Several GOBP terms related to antiviral immune responses such as- viral process, defense 298 

response to virus, innate immune response, inflammatory response, negative regulation of 299 

viral transcription, negative regulation of viral genome replication etc. were observed 300 

enriched for the upregulated genes (Figure 3F, Supplementary Figure 2). Surprisingly, several 301 

other important antiviral defense related functions such as- apoptosis, antigen processing, and 302 

presentation etc. were found enriched for downregulated genes (Figure 3F). Similarly, this 303 

pattern was also observed for the functional enrichment using KEGG and Bioplanet pathways 304 
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modules. Upregulated genes are observed involved in signaling pathways such as- innate 305 

immune system, antiviral mechanism by interferon-stimulated genes, interleukin-2 signaling, 306 

interferon-gamma signaling, interferon alpha-beta signaling, antiviral mechanism by 307 

interferon stimulated genes, IL-17 signaling pathway, Toll-like receptor signaling pathway, 308 

RIG-I like receptor signaling pathway, and MAPK signaling pathway, etc. (Figure 3G-H, 309 

Supplementary Figure 2). Strikingly, several important antiviral signaling pathways such as- 310 

antigen processing and presentation, apoptosis, HIF-1 signaling pathway, Natural killer cell 311 

mediated cytotoxicity, phagosome, PI3K-Akt signaling pathway, Interleukin-6 regulation of 312 

target genes, and Interleukin-10 inflammatory signaling pathway were enriched for the 313 

downregulated genes (Figure 3G-H). This unusual observation made us curious to search for 314 

a similar pattern of deregulated host responses in several other COVID-19 disease models. 315 

Host responses observed in nasopharyngeal samples are significantly 316 

different compared to the other SARS-CoV-2 infections models 317 

We sought to compare the host responses of our analyzed samples with several other different 318 

SARS-CoV-2 infection models (two different lung biopsy samples from COVID-19 patients 319 

and two different cell lines). We performed functional enrichment analyses using 320 

differentially expressed genes from four other SARS-CoV-2 infection systems and compared 321 

the enriched terms of our samples with these four other samples. Moreover, how the host 322 

responds differently in different tissue types were also evaluated. To achieve these goals, we 323 

identified the differentially expressed genes across these different samples and systematically 324 

compared the enrichment results of those deregulated genes. 325 

Using the similar parameterization of the differential gene expression analyses, we identified 326 

6714 genes in lung cells (GSE147507), 232 genes in lung cells (GSE150316), 143 genes in 327 

NHBE cells (GSE147507), and 5637 genes in Calu-3 cells (GSE148729) as differentially 328 

expressed compared to their respective healthy controls (Supplementary file 5). Significant 329 

proportions of the deregulated genes detected in our nasopharyngeal samples are also found 330 

deregulated in lung (GSE147507) and Calu-3 cells (GSE148729) samples (Figure 4A), while 331 

a small number of our samples’ deregulated genes were also observed deregulated in rest of 332 

the two samples used (Figure 4A). 333 

Enrichment analysis using these deregulated genes suggested the host response differences 334 

among the different infection systems used (Figure 4B-D). Upon the analysis, only a few 335 

GOBP terms were found enriched for both our samples, lung (GSE147507), and Calu-3 cells 336 
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(GSE148729) samples, such as- viral process, immune response, innate immune response, 337 

defense response to virus, interferon signaling etc. (Figure 4B). However, genes in many 338 

important antiviral immune response related functions were not significantly enriched for our 339 

samples but were enriched for the lung (GSE147507), and Calu-3 cells (GSE148729) 340 

samples; these processes are- autophagy, apoptotic signaling pathway, interleukin-6 mediated 341 

signaling pathway, interleukin-12 mediated signaling pathway, cytokine-mediated signaling 342 

pathway, inflammatory response etc. (Figure 4B). Moreover, processes like- response to 343 

hypoxia, response to vitamin-D, and lung development were also not enriched for the 344 

deregulated genes of our nasal samples (Figure 4B). 345 

We noticed several commonly enriched important immune signaling pathways for most of 346 

the samples used for the comparison (Figure 4C-D), such as adaptive immune system, innate 347 

immune system, interferon signaling, apoptosis, Toll-like receptor signaling pathway 348 

regulation, antigen processing and presentation, integrin signaling pathway, RIG-I like 349 

receptor signaling pathway, phagosomes etc. (Figure 4C-D, Supplementary Figure 3); 350 

however, pathways like JAK-STAT signaling pathway, Natural killer cell mediated 351 

cytotoxicity, NF-κB signaling pathway, asthma, PI3K-Akt pathway, cellular response to 352 

hypoxia, inflammasomes, and inflammatory response pathway etc. (Figure 4C-D, 353 

Supplementary Figure 3) were not enriched for the deregulated genes of our nasopharyngeal 354 

samples. These results suggest that host responses observed in nasopharyngeal samples have 355 

a different host response compared to the other infection systems. Therefore, to unveil the 356 

mystery behind this observation, we further analyzed these data to compare the gene 357 

expression patterns in different specific functionalities. 358 

Significant gene expression differences were spotted between the 359 

nasopharyngeal samples and lung biopsy samples 360 

We compared the normalized read counts of each sample without integrating the respective 361 

controls to shed insights on the differences in gene expression patterns between the individual 362 

samples and tissues. A constant standard deviation was observed for the normalized read 363 

counts of the infected samples (Figure 5A) indicating the acceptability of the normalized 364 

reads for analysis. From the sample to sample distance clustering, principal component 365 

analysis, and clustered heatmap of the count matrix with top 50 genes, we observed that gene 366 

expression profiles of our nasopharyngeal samples are more relevant to that of lung samples; 367 

whereas, high level of variance was observed between the gene expression counts of the cell 368 
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lines and primary nasopharyngeal samples (Figure 5B-D). Furthermore, we had a similar 369 

observation from the clustered normalized read counts of the samples based on Pearson’s 370 

correlation distance with all genes that vary across samples (Figure 5E). We then narrowed 371 

down our searches to the sample level gene expression profiles of several COVID-19 related 372 

important biological functions within these samples (Figure 6), to understand the gene 373 

expression similarities and dissimilarities among these infections systems, specially 374 

comparing nasal and lung tissues. 375 

Genes related to integrins and integrin signaling pathway are highly 376 

expressed in lung samples compared to the nasopharyngeal samples 377 

Several previous reports suggested an important aspect of integrins in SARS-CoV-2 378 

pathogenesis, therefore, we sought to find out the expression profiles of integrin related genes 379 

in different COVID-19 infection models at sample level [63, 64]. RGD motif of the spike 380 

protein of SARS-CoV-2 can bind the integrins and this motif is placed near to the ACE2-381 

receptor binding motif [63]. Moreover, evidence of integrin domain binding was also 382 

reported for SARS-CoV [65]. Therefore, we sought to discover the expression profiles of the 383 

integrin related genes in different SARS-CoV-2 infection models. To accomplish this, we 384 

filtered out the integrin and integrin signaling related genes (Supplementary file 6) within the 385 

terms of the GOBP, KEGG pathway, and Bioplanet pathway modules that we used for 386 

enrichment analysis. Intriguingly, we observed that the genes related to integrins and integrin 387 

signaling were highly expressed in analyzed lung samples, and the lowest number of these 388 

genes were expressed in the nasopharyngeal samples (Figure 6A-B, Supplementary Figure 389 

4A). Based on these observations, we can assume that overexpression of integrins and 390 

integrin signaling related genes in the lungs might provide the virus a competitive edge in 391 

invading the lung cells more efficiently compared to the cells of the nasopharynx and 392 

respiratory tracts. 393 

Cytokine and inflammatory signaling genes are overexpressed in lung 394 

samples 395 

Aberrant cytokine stimulation and inflammatory responses are thought to be the major 396 

contributor to pathogenic lung damages in severely affected COVID-19 patients [66, 67]. We 397 

wanted to find out whether the genes related to cytokine signaling and inflammation have 398 

differential expression profiles in lung cells compared to the other infection systems. We 399 
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extracted and compared the gene expression values of the genes related to these two terms 400 

(Supplementary file 6). We are not surprised to observe that the genes of these two major 401 

contributing events of COVID-19 lung pathobiology are significantly overexpressed in lung 402 

samples compared to the rest of the SARS-CoV-2 infected cell types (Figure 6C-F, 403 

Supplementary Figure 4B-C). Particularly, the analyzed nasopharyngeal samples have very 404 

low expression values for the cytokine and inflammatory signaling genes (Figure 6C-F). 405 

Therefore, these observations are fueling the preexisting supposition of the roles of enhanced 406 

cytokine, and inflammatory signaling for worsening the disease condition in patients with 407 

SARS-CoV-2 infected lungs. 408 

A differential gene expression profile was detected for the SARS-CoV-2 409 

entry receptors/associated proteins in different infection models 410 

Expression of receptor protein ACE2 and entry associated proteins such as- TMPRSS2, BSG, 411 

CTSL, DPP4 on the cell surface of the host is essential for the invasion of SARS-CoV-2 [62]. 412 

Moreover, ACE2 overexpression is thought to increase the infection potentiality of SARS-413 

CoV-2 [68]. Furthermore, Kuba et al. demonstrated the potential role of ACE2 in SARS-CoV 414 

induced lung injury [69]. So, we ventured to check the gene expression levels of ACE2 and 415 

the other entry associated proteins in the different SARS-CoV-2 infected cells. Surprisingly, 416 

we observed that the ACE2 gene is not expressed in high levels in lung samples as speculated 417 

(Figure 6G). However, gene expression levels of the other entry associated proteins were 418 

higher in lung samples (Figure 6G). Nonetheless, in few of the lung samples, the TMPRSS2 419 

gene was not expressed in higher amounts (Figure 6G). Interestingly, we have not detected 420 

any expression of DPP4 gene within the Bangladeshi nasopharyngeal samples (Figure 6G). 421 

Inflammatory immune responses were several folds higher in lungs than 422 

the nasopharynx of COVID-19 patients 423 

From our previous observations, it was evident that COVID-19 patient’s lung responds to the 424 

viral infection differently compared to the epithelial cells of nasopharynx. We then sought to 425 

figure out the specific genes and biological functions/signaling pathways which have this 426 

differential pattern. We achieved this by designing a multifactorial differential gene 427 

expression analysis using a generalized linear model (GLM) [44]; in which we compared the 428 

fold changes of every differentially expressed gene in nasopharyngeal and lung (GSE150316) 429 
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samples, to discover how many folds lung is alternatively expressing the genes than 430 

nasopharynx in COVID-19.  431 

Firstly, we analyzed the suitability of the data for this design and observed no irregularities 432 

between the data used (Figure 7A-D). Moreover, upon this multifactorial differential gene 433 

expression analysis, we observed an acceptable common biological coefficient of variation; 434 

this variation decreases significantly as the expression values increases (Figure 7E). From the 435 

MA plot, we observed a very high amount of the significantly (p-value < 0.05) several fold 436 

upregulated and downregulated genes in lungs compared to nasopharyngeal samples (Figure 437 

7F).  We detected 807 upregulated and 298 downregulated genes in lungs compared to the 438 

nasopharyngeal samples (Supplementary file 7). Interestingly, we noticed the highly 439 

upregulated integrin and integrin signaling genes in lungs compared to the nasal samples 440 

(Figure 7G) which are consistent with our previous observations. Modulatory roles of 441 

integrins are well established in acute lung damages [70]. Similarly, aberrant expression of 442 

genes involved in integrin signaling can also provoke acute lung injuries, namely- ADAM15 443 

[71], SDC1 [72], CD14 [73], CD47 [74], CD9 [75], HMGB1 [76], ITA6 [77], and ITAV [78] 444 

etc. Therefore, SARS-CoV-2 infection induced deregulation of these genes might be 445 

contributing towards the worsening of the normal pathobiology and functionality of lungs in 446 

COVID-19. 447 

We then performed functional enrichment analysis to hunt down the signaling pathways 448 

which are differentially expressed in lungs compared to the nasopharyngeal cells. These 449 

enrichment analyses revealed that biological functions such as viral process, antigen 450 

processing, and presentation etc. are highly upregulated, function such as- regulation of gene 451 

silencing by miRNA is found downregulated in lungs compared to the nasopharyngeal cells 452 

(Figure 8A). Furthermore, pathways that provide antiviral immunity such as apoptosis, 453 

phagosome, antigen processing and presentation, adaptive immune system, innate immune 454 

system, interferon signaling, different interleukin signaling, cytokine signaling in immune 455 

system etc. were highly upregulated in lungs compared to the nasopharyngeal samples 456 

(Figure 8B-D). Despite having the antiviral protective roles, hyperactivity from these 457 

pathways can significantly worsen the COVID-19 patient’s overall lung functionality which 458 

can be further complicated with progressive and permanent lung damage. 459 

Previously, it was reported that transcription factors can contribute to many inflammatory 460 

lung diseases [79, 80] which have similar lung characteristics observed in COVID-19. In this 461 
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context, we identified the highly expressed transcription factors in lungs by comparing their 462 

respective expression values in nasopharyngeal samples (Figure 8E). Among these, 463 

transcription factors such as- CBP [79], CEBP [81], NFAT [79], ATF3 [82], GATA6 [83], 464 

HDAC2 [84], TCF12 [85] etc. have significant roles in lung’s overall functionality, acute 465 

lung injury and antiviral response mechanism in lungs. 466 

SARS-CoV-2 integrates its proteins in regulating the host antiviral immune 467 

responses 468 

As we have observed the differential host responses in COVID-19 nasopharyngeal samples, 469 

then we sought to interconnect the virus-host interplay in those host responses. We first 470 

analyzed how many of the virus interacting host proteins’ genes reported by Gordon et al. 471 

[21] are differentially expressed in our reported nasopharyngeal samples. Only 51 genes of 472 

those proteins are found deregulated in our nasopharyngeal samples (Figure 9A). We then 473 

constructed a network interlinking the virus-host protein-protein interaction data from 474 

Gordon et al. [21] along with the deregulated genes from the nasopharyngeal samples (Figure 475 

9B). Strikingly, we observed that most of the immune signaling related downregulated genes 476 

are directly or indirectly connected to the viral proteins (Figure 9B); this suggests the 477 

probable roles of the virus in the differential host responses in the COVID-19 affected 478 

patients. 479 

Furthermore, we sought to establish the links between the viral proteins with integrin 480 

signaling associated genes by constructing a functional network with the viral-host protein-481 

protein interaction data with the highly upregulated genes observed in lungs (from the 482 

comparison analysis between the lung and nasopharyngeal samples) (Figure 9C). From this 483 

constructed network, we observed that viral proteins such as ORF10, N, ORF9b, NSP7, 484 

NSP15, NSP5, M, NSP13, NSP2, NSP9, ORF8, ORF9c, NSP12, and NSP1 can directly or 485 

indirectly interact with the differentially expressed genes in lungs (Figure 9C), suggesting the 486 

putative mechanism behind the deregulated integrin signaling to promote the viral invasion in 487 

lungs. 488 

Discussion 489 

For a better understanding of the host-virus interaction in the SARS-CoV-2 pathogenesis, 490 

transcriptional responses of hosts play an enormous role. Moreover, population-specific 491 

disease induced host transcriptome might also correlate the susceptibility from COVID-19 492 
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with an individual’s ethnicity [86]. In this context, we aimed to discover the representative 493 

host transcriptome response upon SARS-CoV-2 infection by performing and analyzing total 494 

RNA-seq from the nasopharyngeal samples of four COVID-19 positive Bangladeshi 495 

individuals. Also, we analyzed the genomic variations of the SARS-CoV-2 isolates from 496 

these patients to gain more insights into their probable origin. Moreover, we compared the 497 

transcriptome from different SARS-CoV-2 infection models, particularly, we compared the 498 

differential gene expression of the lung biopsy samples with the nasopharyngeal samples of 499 

ours to illustrate the possible molecular mechanisms behind the lung damages in severe 500 

COVID-19 patients. 501 

Analyzing the variations within the sequenced isolates, we observed a very low frequency of 502 

missense amino acid variations within the proteins of SARS-CoV-2, particularly in the spike 503 

and ORF3a gene regions. Many concepts are there correlating the probable roles of variations 504 

with the COVID-19 disease severity [87, 88]. We did not observe any such variations within 505 

the spike region of our reported isolates; however, we recorded an unusual amount of 3’-UTR 506 

and 5’-UTR variations within these four isolates. Surprisingly, we spotted a very rare A>G 507 

mutation at position 10329 of ORF1ab gene in three of our four isolates; we also got another 508 

rare A>T variation at position 25505 of ORF3a gene in one of our isolates. Both of these 509 

variations are extremely rare amongst the other worldwide isolates (Table 1). 510 

Phylogenetic analyses from Nextstrain portal suggested that our reported isolates are closely 511 

related to the Middle East Asian SARS-CoV-2 isolates; which is also very evident from our 512 

constructed neighbor-joining phylogenetic tree of 145 Bangladeshi isolates as our reported 513 

isolates are distinctly placed within the tree. This supports the idea of probable source of 514 

origin of these isolates from Middle-East Asia, while the rest of the Bangladeshi isolates are 515 

more related to the European isolates. As our isolates were obtained from the Chittagong area 516 

of Bangladesh, from where a large number of people recently immigrated to Middle-East 517 

(particularly Saudi Arabia) for work [89]; those immigrant people returning from the Middle-518 

East during this pandemic might have brought these isolates into Bangladesh. 519 

Previously, host transcriptional responses reported by Blanco-melo et al. [24] and Butler et al. 520 

[25] suggested a potential increase in the host antiviral immune responses such as- interferon 521 

signaling, interferon stimulated gene signaling, chemokine signaling, cytokine signaling etc.; 522 

however, Blanco-melo et al [90] also reported the presence of low IFN-I and IFN-III in 523 

COVID-19 patient’s lung cells. We observed similar host immune responses, interferon, and 524 
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cytokine signaling in Bangladeshi COVID-19 patients too. Moreover, we also observed a 525 

stimulated innate immune response in our patients which was also reported for other COVID-526 

19 patients [91].  527 

Astoundingly, important signaling pathways those elicit antiviral immune responses such as- 528 

apoptosis [20], phagosome formation [92], antigen processing and presentation [93], Natural 529 

killer cell mediated cytotoxicity [94], and Toll-like receptor signaling [95] etc. were found 530 

downregulated in Bangladeshi COVID-19 patients. Also, pathways such as- HIF-1 response 531 

[96], PI3K-Akt signaling [97], and IL-17 signaling [98] etc. are also found deregulated which 532 

could assist the COVID-19 patients suffering from hypoxia, lung injury, and inflammation of 533 

the respiratory tract.  534 

While we were comparing the nasopharyngeal cell’s transcriptional responses with other 535 

SARS-CoV-2 infection models, we observed that lung cells elicited the immense cytokine 536 

and inflammatory responses against the invading viral pathogen. These overstimulated 537 

responses sometimes can do irreversible damages to the lungs [99]. This might shed insights 538 

into the COVID-19 disease severity when the viral infection progresses into the lungs.  539 

Though an increased amount of ACE2 will facilitate the invasion of SARS-CoV-2, 540 

nonetheless, we observed a significant downregulation of ACE2 in lung cells. This 541 

phenomenon could backup the concept of ACE2 downregulation by SARS-CoV-2 itself after 542 

using it [100], thus reducing the organ protective roles of ACE2 [101] and resulting in 543 

progressive lung damages. 544 

Integrins were reported important for the entry of SARS-CoV into the host cells [65], so it 545 

was speculated similar phenomenon might also be present in SARS-CoV-2. This idea is 546 

further intensified after the study by Sigrist et al. [63], who suggested the presence of an 547 

integrin-binding RGD motif in the spike of SARS-CoV-2. Surprisingly, upon the gene 548 

expression comparison between the different SARS-CoV-2 infected cells, we observed 549 

several folds upregulated expressions of genes related to the integrin signaling pathway in 550 

lung cells. This observation could support the idea of increased viral infections in lungs might 551 

be happening due to the overexpression of these probable attachment proteins. Also, the 552 

network analysis suggests a probable mechanism of upregulation of these proteins by the 553 

virus itself by the putative interactions through its proteins. Though more targeted studies 554 

should be undertaken for conclusive evidence supporting this phenomenon. 555 
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Conclusion 556 

In this study, we present the very first report of the host transcriptional response data from 557 

COVID-19 patients of the South-Asian region along with the SARS-CoV-2 isolates obtained 558 

from these patients. This data might provide newer insights into the host susceptibility from 559 

the perspective of ethnicity as well as will provide newer aspects of host responses against 560 

the virus in the different parts of the respiratory tract. However, a limited number of patient 561 

data is used here, but subsequent incorporation of more patient data from other parts of the 562 

world will significantly increase the understanding of this complex host-virus response in 563 

COVID-19, which will help in designing therapeutic interventions as well as in current 564 

clinical management of the patients.  565 
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List of Tables 833 

Table 1: Observed variations within the four Bangladeshi SARS-CoV-2 isolates 834 

reported in this study. 835 

Genomic position: 

Variation 
Variation Type 

Associated 

genomic 

region 

Protein

: amino 

acid 

change 

Frequency 

in the four 

isolates 

used in 

this study 

Frequency in 

the other 

Bangladeshi 

isolates 

Frequency 

in the 

isolates 

from rest of 

the world 

1: ATTAAAGGTTTA>- 
Intergenic 

variant 
5'UTR - 1 - - 

1: 

ATTAAAGGTTTATA>- 

Intergenic 

variant 
5'UTR - 1 - - 

2: T>TA 
Intergenic 

variant 
5'UTR - 1 0 0 

2: 

T>TTTCAAAGATCAAG

TCA 

Intergenic 

variant 
5'UTR - 1 0 0 

4: A>T 
Intergenic 

variant 
5'UTR - 1 0 58 

7: G>C 
Intergenic 

variant 
5'UTR - 1 0 16 

9: T>TTTTCGC Intergenic 5'UTR - 1 0 0 
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Genomic position: 

Variation 
Variation Type 

Associated 

genomic 

region 

Protein

: amino 

acid 

change 

Frequency 

in the four 

isolates 

used in 

this study 

Frequency in 

the other 

Bangladeshi 

isolates 

Frequency 

in the 

isolates 

from rest of 

the world 

variant 

12: A>T 
Intergenic 

variant 
5'UTR - 1 0 22 

13: T>C 
Intergenic 

variant 
5'UTR - 1 0 36 

280: C>T 
Synonymous 

variant 
orf1ab 5V 1 0 5 

601: C>T 
Synonymous 

variant 
orf1ab 112G 1 1 6 

8782: C>T 
Synonymous 

variant 
orf1ab 2839S 4 1 3012 

10323: A>G 
Missense 

variant 
orf1ab 

3353K>

R 
1 5 154 

10329: A>G 
Missense 

variant 
orf1ab 

3355D>

G 
3 1 1 

10870: G>T 
Synonymous 

variant 
orf1ab 3535L 1 0 27 

12119: C>T 
Missense 

variant 
orf1ab 

3952P>

S 
1 0 8 

15324: C>T 
Synonymous 

variant 
orf1ab 5020N 3 5 818 

19414: G>A 
Missense 

variant 
orf1ab 6384V>I 1 0 0 

22468: G>T 
Synonymous 

variant 
S 302T 4 1 99 

23320: C>T 
Synonymous 

variant 
S 586D 1 0 2 

25505: A>T 
Missense 

variant 
ORF3a 38Q>L 1 0 2 

28087: C>T 
Missense 

variant 
ORF8 65A>V 1 0 23 

28144: T>C Missense ORF8 84L>S 4 1 3050 
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Genomic position: 

Variation 
Variation Type 

Associated 

genomic 

region 

Protein

: amino 

acid 

change 

Frequency 

in the four 

isolates 

used in 

this study 

Frequency in 

the other 

Bangladeshi 

isolates 

Frequency 

in the 

isolates 

from rest of 

the world 

variant 

28878: G>A 
Missense 

variant 
N 202S>N 4 1 253 

29392: G>T 
Missense 

variant 
N 373K>N 2 2 6 

29742: G>A 
Downstream 

gene variant 
3'UTR - 4 1 21 

29856: T>A 
Intergenic 

variant 
3'UTR - 1 0 6 

29858: T>A 
Intergenic 

variant 
3'UTR - 1 0 5 

29864: 

GAATGACAAAAAAAA

AAAAAAAAAAAAA>G 

Intergenic 

variant 
3'UTR - 1 0 0 

29864: 

GAATGACAAAAAAAA

AAAAAAAAAAAAAAA

>T 

Intergenic 

variant 
3'UTR - 1 0 0 

29870: 

CAAAAAAAAAAAAAA

AAAAAAAAAAAAA>C 

Intergenic 

variant 
3'UTR - 1 1 - 

29870: C>G 
Intergenic 

variant 
3'UTR - 1 0 3 

29872: A>T 
Intergenic 

variant 
3'UTR - 1 0 12 

29873: A>C 
Intergenic 

variant 
3'UTR - 1 0 3 

29874: A>G 
Intergenic 

variant 
3'UTR - 1 0 12 

29875: A>G 
Intergenic 

variant 
3'UTR - 1 1 5 

29878: A>T Intergenic 3'UTR - 1 0 3 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2020. ; https://doi.org/10.1101/2020.07.23.218198doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.23.218198
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 
 

Genomic position: 

Variation 
Variation Type 

Associated 

genomic 

region 

Protein

: amino 

acid 

change 

Frequency 

in the four 

isolates 

used in 

this study 

Frequency in 

the other 

Bangladeshi 

isolates 

Frequency 

in the 

isolates 

from rest of 

the world 

variant 

29880: A>G 
Intergenic 

variant 
3'UTR - 1 2 5 

29882: A>G 
Intergenic 

variant 
3'UTR - 1 0 13 

29883: A>T 
Intergenic 

variant 
3'UTR - 1 0 8 

29884: A>C 
Intergenic 

variant 
3'UTR - 1 0 10 

29885: A>G 
Intergenic 

variant 
3'UTR - 1 1 11 

29886: A>T 
Intergenic 

variant 
3'UTR - 1 1 5 

29887: A>G 
Intergenic 

variant 
3'UTR - 1 0 11 

29888: A>T 
Intergenic 

variant 
3'UTR - 1 1 4 

29890: A>G 
Intergenic 

variant 
3'UTR - 1 1 6 

29891: A>G 
Intergenic 

variant 
3'UTR - 1 0 15 

29892: A>G 
Intergenic 

variant 
3'UTR - 1 0 13 

29893: A>G 
Intergenic 

variant 
3'UTR - 1 0 15 

29895: A>T 
Intergenic 

variant 
3'UTR - 2 0 6 

29896: A>G 
Intergenic 

variant 
3'UTR - 1 0 7 

29896: A>C 
Intergenic 

variant 
3'UTR - 1 0 3 

29897: A>G Intergenic 3'UTR - 2 0 4 
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Genomic position: 

Variation 
Variation Type 

Associated 

genomic 

region 

Protein

: amino 

acid 

change 

Frequency 

in the four 

isolates 

used in 

this study 

Frequency in 

the other 

Bangladeshi 

isolates 

Frequency 

in the 

isolates 

from rest of 

the world 

variant 

29898: A>G 
Intergenic 

variant 
3'UTR - 2 0 6 

29898: A>T 
Intergenic 

variant 
3'UTR - 1 0 5 

29900: A>G 
Intergenic 

variant 
3'UTR - 1 0 10 

29901: AAA>A 
Intergenic 

variant 
3'UTR - 1 0 - 

29901: A>G 
Intergenic 

variant 
3'UTR - 2 0 5 

29903: A>GCCGTCGT 
Intergenic 

variant 
3'UTR - 1 0 - 

29903: 

A>GCGTCGTGT 

Intergenic 

variant 
3'UTR - 1 0 - 

 836 

Figure Legends 837 

Figure 1: Genomic information of the sequenced SARS-CoV-2 isolates. A. Genome 838 

coverage normalized density map for the four sequenced SARS-CoV-2 isolates. B. Pie-chart 839 

illustrating the different types of variations found within these four isolates. C. Genome 840 

location-wise representation of the mutations and their associated frequency. D. Isolate-wise 841 

variation information. E. Gene-wise amount and type of mutations. F. Annotated impacts of 842 

the different mutations (only those are shown which have frequencies more than 1). G. 843 

Frequencies of selected unique mutations observed in these isolates. 844 

Figure 2: Phylogenetic tree of Bangladeshi SARS-CoV-2 isolates. Neighbor-joining tree 845 

using MEGA tools. Isolates reported in this study are indicated with a red arrow. The 846 

evolutionary history was inferred using the Neighbor-Joining method. The optimal tree with 847 

the sum of branch length = 0.01403419 is shown. The percentage of replicate trees in which 848 

the associated taxa clustered together in the bootstrap test (500 replicates) are shown next to 849 
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the branches. The evolutionary distances were computed using the Maximum Composite 850 

Likelihood method and are in the units of the number of base substitutions per site. This 851 

analysis involved 145 nucleotide sequences. Codon positions included were 852 

1st+2nd+3rd+Noncoding. All positions with less than 95% site coverage were eliminated, 853 

i.e., fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at any 854 

position (partial deletion option). There was a total of 29827 positions in the final dataset. 855 

Values represent bootstrap numbers (%). 856 

Figure 3: A. Variance plot. This plots the standard deviation of the transformed data, across 857 

samples, against the mean, using the variance stabilizing transformation. The vertical axis in 858 

the plots is the square root of the variance over all samples. B. Sample to sample distance 859 

plot. A heatmap of distance matrix providing an overview of similarities and dissimilarities 860 

between samples. Clustering is based on the distances between the rows/columns of the 861 

distance matrix. C. Principal component analysis plot. Samples are in the 2D plane spanned 862 

by their first two principal components. D. Clustered heatmap of the log2 converted 863 

normalized count matrix RNA-seq reads, top 50 genes, of nasopharyngeal samples. E. 864 

Normalized Log2 read counts of the genes encoding SARS-CoV-2 receptor and entry 865 

associated proteins. Enrichment analysis and comparison between deregulated genes and the 866 

genes of some selected processes in SARS-CoV-2 infected nasopharyngeal samples and 867 

SARS-CoV-2 infected lung biopsy samples using F. GOBP module, G. KEGG pathway, H. 868 

Bioplanet pathway module. Selected significant terms are represented in heatmaps. 869 

Significance of enrichment in terms of the adjusted p-value (< 0.05) is represented in color-870 

coded P-value scale for all heatmaps; Color towards red indicates higher significance and 871 

color towards yellow indicates less significance, while grey means non-significant. 872 

Normalized Log2 converted read counts are considered as the expression values of the genes 873 

and represented in a color-coded scale; Color towards red indicating higher expression, while 874 

color towards green indicating little to no expression. 875 

Figure 4: Comparison of the gene expression patterns in different SARS-CoV-2 infection 876 

models. A. Venn-diagram showing the observed deregulated genes (with their respective 877 

control) in the different cell types. Enrichment analysis and comparison between deregulated 878 

genes in different SARS-CoV-2 infection models using B. GOBP module, C. Bioplanet 879 

pathway module, D. KEGG pathway module. Selected significant terms are represented in 880 

heatmaps. Color scale/schemes are similar to Figure 3. 881 
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Figure 5: A. Variance plot, B. Sample to sample distance plot, C. Principal component 882 

analysis plot, D. Clustered heatmap of the count matrix of the normalized RNA-seq reads of 883 

different SARS-CoV-2 infection samples using to 50 genes. E. Gene expression heatmap 884 

showing global gene expression profiles in the individual infected samples of the various 885 

infection system. Heatmap is clustered based on Pearson’s distance with genes that vary 886 

across the sample, leaving out genes that do not vary significantly. 887 

Figure 6: Heatmaps representing the sample level absolute expression of Integrin related 888 

genes A. across the different SARS-CoV-2 infection models, B. in only nasopharyngeal 889 

samples and lung samples; Cytokine signaling related genes C. across the different SARS-890 

CoV-2 infection models, D. in only nasopharyngeal samples and lung samples; and 891 

Inflammation related genes E. across the different SARS-CoV-2 infection models, F. in only 892 

nasopharyngeal samples and lung samples;  G. Expression profiles of genes encoding SARS-893 

CoV-2 receptor and entry associated proteins. Normalized (DESeq2) Log2 converted read 894 

counts are considered as the expression values of the genes and represented in a color-coded 895 

scale; Color towards red indicating higher expression, while color towards green indicating 896 

little to no expression. 897 

Figure 7: A. Variance plot, B. Sample to sample distance plot, C. Principal component 898 

analysis plot, D. Clustered heatmap of the count matrix of the normalized RNA-seq reads 899 

(top 50 genes) of the SARS-CoV-2 infected nasopharyngeal and lung samples. E. Common 900 

dispersion plot or the biological coefficient of variation plot. Here we are estimating the 901 

dispersion. The square root of the common dispersion gives the coefficient of variation of 902 

biological variation. Here the coefficient of biological variation is around 0.8. F. MA plot.  903 

Plot log-fold change against log-counts per million, with DE genes are highlighted. The blue 904 

lines indicate 2-fold changes. Red and blue points indicate genes with P-value less than 0.05.  905 

G. Expression profiles of genes encoding Integrins. Log2 (fold change) values are considered 906 

as the expression values of the genes and represented in a color-coded scale; Color towards 907 

red indicating higher expression, while color towards green indicating little to no expression. 908 

Figure 8: Enrichment analysis and comparison between deregulated genes and the genes of 909 

some selected processes in SARS-CoV-2 infected nasopharyngeal samples versus SARS-910 

CoV-2 infected lung biopsy samples using A. GOBP module, B. KEGG pathway, C. 911 

Bioplanet pathway module, D. Reactome pathway module. Selected significant terms are 912 

represented in heatmaps. Color schemes are similar to Figure 3. For individual processes, 913 
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blue means presence (significantly differentially expressed gene) while grey means absence 914 

(not significantly differentially expressed genes for this module for this experimental 915 

condition). 916 

Figure 9: A. Venn diagram showing the commonly deregulated genes between deregulated 917 

genes in our nasopharyngeal samples and Gordon et al. reported viral protein-interacting high 918 

confidence host proteins. Network representing the interactions between genes in B. 919 

Deregulated genes in Bangladeshi nasopharyngeal samples along with SARS-CoV-2 proteins 920 

and Gordon et al. described viral interacting host proteins, and C. Differentially expressed 921 

Integrin related genes in lungs compared to the nasal samples along with SARS-CoV-2 922 

proteins and Gordon et al. described viral interacting host proteins. Hexagon, ellipse, rounded 923 

rectangle represents viral proteins, process-related genes, and proteins that interact with viral 924 

proteins, respectively. Expression values of the genes and represented in a color-coded scale. 925 

Color towards red indicating higher expression, while color towards green indicating little to 926 

no expression. 927 

Supplementary Figure Legends 928 

Supplementary Figure 1: Snapshot of Nextstrain data portal showing the phylogenetic 929 

relationship of two SARS-CoV-2 isolates used in this study. Isolates of this study are 930 

indicated using a red arrow. 931 

Supplementary Figure 2: Deregulated genes of selected terms from Figure 3 in different 932 

SARS-CoV-2 infection systems. Genes of selected significant terms are represented here. For 933 

individual processes, blue means presence (differentially expressed gene of the module term) 934 

while grey means absence (not differentially expressed in the experimental condition in that 935 

module term). Processes in the green, blue, red color background represent KEGG, 936 

Bioplanet, GOBP enriched terms, respectively. 937 

Supplementary Figure 3: Deregulated genes of selected terms from Figure 3 in different 938 

SARS-CoV-2 infection systems. For individual processes, blue means presence 939 

(differentially expressed gene of the module term) while grey means absence (not 940 

differentially expressed in the experimental condition in that module term). Processes in the 941 

green, blue, red color background represent KEGG, Bioplanet, GOBP enriched terms, 942 

respectively. 943 

Supplementary Figure 4: Expanded view of the heatmaps A, B, C of Figure 6. 944 
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.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2020. ; https://doi.org/10.1101/2020.07.23.218198doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.23.218198
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2020. ; https://doi.org/10.1101/2020.07.23.218198doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.23.218198
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2020. ; https://doi.org/10.1101/2020.07.23.218198doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.23.218198
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2020. ; https://doi.org/10.1101/2020.07.23.218198doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.23.218198
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2020. ; https://doi.org/10.1101/2020.07.23.218198doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.23.218198
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2020. ; https://doi.org/10.1101/2020.07.23.218198doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.23.218198
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2020. ; https://doi.org/10.1101/2020.07.23.218198doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.23.218198
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2020. ; https://doi.org/10.1101/2020.07.23.218198doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.23.218198
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2020. ; https://doi.org/10.1101/2020.07.23.218198doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.23.218198
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2020. ; https://doi.org/10.1101/2020.07.23.218198doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.23.218198
http://creativecommons.org/licenses/by-nc-nd/4.0/

