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Abstract: 

Background: Glucocorticoids produced by the adrenal cortex are essential for the 

maintenance of metabolic homeostasis. Glucocorticoid activation is catalyzed by 11β-

hydroxysteroid dehydrogenase 1 (11β-HSD1) and signalling is achieved through the 

glucocorticoid receptor (GR), a ligand-dependent transcription factor. Excess glucocorticoids 

are associated with insulin resistance and hyperglycaemia. A small number of studies have 

investigated the effects of bariatric surgery, a gastrointestinal procedure known to improve 

insulin sensitivity, on glucocorticoid metabolism, but the hypothesised mechanism is assumed 

to be via weight loss. Aim: To investigate the effect of bariatric surgery on glucocorticoid 

metabolism in lean and obese mice. Methods: Lean mice and HFD mice underwent Vertical 

Sleeve Gastrectomy (VSG) or sham surgery. Glucose and insulin tolerance tests were 

performed at four and ten weeks post operatively and circulating corticosterone was 

measured. Liver and adipose tissues were harvested from fed mice and 11β-HSD1 and GR 

levels were measured by quantitative RT-PCR or Western (immuno-) blotting, respectively. 

Results: VSG did not cause excess weight loss in lean mice when compared to sham 

operated mice. However, both lean and HFD VSG mice displayed significantly improved 

glucose clearance and insulin sensitivity.  Remarkably, VSG restores physiological 

corticosterone production in HFD mice and reduces11β-HSD1 levels at four and ten weeks 

post-surgery. Additionally, lean mice displayed significantly lowered mRNA levels of 11β-

HSD1 in subcutaneous adipose tissue and GR in liver. Conclusions: Bariatric surgery 

improves insulin sensitivity and reduces glucocorticoid activation at tissular level, under 

physiological and pathophysiological (obesity) conditions, irrespective of weight loss. The 

reduction of glucocorticoid exposure may represent an additional contribution to the health 

benefits of bariatric surgery. These findings point towards a physiologically relevant gut-

adrenal axis. 
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Introduction: 

Type 2 Diabetes (T2D) is associated with impaired insulin sensitivity in peripheral tissues and 

pancreatic β-cell dysfunction, which can lead to reduced insulin secretion (1). Despite an 

abundance of pharmacological, nutritional, exercise and behavioural interventions, T2D focus 

remains on disease management, rather than remission (2-5). Bariatric surgery, originally 

conceived as weight loss-aiding gastrointestinal surgery (6, 7), has been shown to cause long-

term remission of T2D in many patients (8-10). These effects go beyond reductions in adipose 

tissue mass and weight loss, and numerous studies (11-13) have attempted to determine the 

exact pathways involved in order to replicate the bariatric effect in a less invasive way. These 

changes include substantial improvements in insulin sensitivity and hepatic gluconeogenesis 

alongside improvements in liver, cardiovascular, pancreatic islet and kidney function (14-17), 

pointing to a potential trans-organ communication axis. Importantly, the potential mechanisms 

investigated include possible changes in the secretion or action of multiple hormones  (18, 

19). One possibility that remains largely unexplored, however, is a ‘gut-adrenal’ axis, and 

specifically an altered role for glucocorticoids in regulating metabolism after bariatric surgery.  

Glucocorticoids are produced by the adrenal cortex primarily under control of the 

hypothalamic-pituitary-adrenal (HPA) axis, However, it has recently became apparent that the 

fine-tuning and regulation of the adrenal system is also controlled by adrenocorticotropin-

releasing hormone (ACTH)-independent mechanisms (20) including changes in growth 

factors, neuropeptides, cytokines and adipokines (20, 21). These include glucose regulating 

hormones such as insulin (22), glucagon (23, 24) and glucagon-like peptide 1 (GLP-1) (25, 

26). Glucocorticoids are activated at tissue level by 11β-hydroxysteroid dehydrogenase 1 

(11β-HSD11), which is present in most tissues (with the exception of pancreatic beta cells 

where this gene is “disallowed”) (27) and acts predominantly as an NADPH-dependent 

reductase to regenerate the active glucocorticoid receptor (GR) ligand cortisol (or 

corticosterone, in rodents) from inactive cortisone (28).  

Although glucocorticoids are important for the maintenance of lipid homeostasis, excess 

glucocorticoids can result in an increase in the circulating free fatty acids and lipid 

accumulation in skeletal muscle and liver, both of which are associated with insulin resistance 

(29-31). Glucocorticoid metabolism is dysregulated in human obesity, where unbalanced 

cortisol levels and 11β-HSD11 activity are observed (32-34). Both GR and 11β-HSD11 

overexpression in the liver and the adipose tissue have been linked to insulin resistance, 

dyslipidaemia and hypertension in rodents (35). Cortisol activation relies heavily on 11β-HSD1 

and it has been suggested that the inhibition of this enzyme may be a key target for T2D and 

obesity treatments, especially to improve insulin sensitivity (36, 37).  
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Several observations have linked bariatric surgery to glucocorticoid metabolism, particularly 

in the context of tissular regulation of cortisol in obesity and post-operative weight loss (38, 

39). Nonetheless, one study (40)   showed that patients with obesity at one year post bariatric 

surgery displayed a significant reduction in  adipose tissue 11β-HSD1 activity, when compared 

to lean non-operated controls. This observation points to an effect that may be caused by 

weight loss-independent mechanisms and may include the gastrointestinal tract manipulation 

itself as part of a gut-adrenal axis. One potential mechanism could be the effect of the widely 

reported post-operatively increased GLP-1 on glucocorticoid regulation (41-43). In the present 

study we aim to investigate the effect of Vertical Sleeve Gastrectomy (VSG), a commonly 

performed bariatric surgery procedure (44), on adrenal function under normal and 

pathophysiological and disease conditions, by using lean and HFD mice, respectively.  
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Results: 

 

Vertical Sleeve Gastrectomy improves glucose tolerance and restores insulin sensitivity 

Lean VSG-treated mice experienced no significant weight loss four weeks post-surgery, when 

compared to sham operated mice (26.9 ± 2 vs. 28 ± 0.9 g) (Fig. 1A), yet they displayed 

improved insulin sensitivity and glucose tolerance (Fig. 1B, C). Specifically, VSG significantly 

enhanced glucose clearance following an intraperitoneal glucose injection (3g/kg) (p<0.01 at 

15, 30, 60 and 90 min.) with an observed peak at 15 min. and glucose levels dropping to 

almost baseline concentration within 60 min (Fig. 1C). In contrast, in sham-operated mice, 

glucose peaked at 30 min. and did not fully recover within the first 90min of measurement. 

Although all lean mice were metabolically healthy at baseline, VSG-treated mice showed 

enhanced insulin sensitivity, as measured by circulating glucose concentration in response to 

an intraperitoneal insulin injection (Fig. 1B). The effects of VSG on glucose and insulin 

tolerance in hyperglycaemic HFD mice are described in (16). In brief, by post-operative week 

ten, diet-induced hyperglycaemic VSG-treated mice exhibited mild, non-significant weight loss 

when compared to sham mice (39.5 ± 1.6 vs. 47.1 ± 5.3 g) yet their glucose tolerance curve 

followed the same pattern described in the lean mice. Of note, the insulin sensitivity curves 

were also highly similar between VSG-treated lean and HFD mice as they both presented a 

continuous drop of glucose concentration up until 60 min.  

 

Vertical Sleeve Gastrectomy restores physiological corticosterone production in HFD mice 

In order to assess the effect of VSG on glucocorticoid secretion, we measured corticosterone 

in blood collected from both lean and HFD mice that underwent VSG or sham surgery, at 0800 

and 1900 within the same day. As expected in rodents, lean mice displayed low corticosterone 

levels during the morning (AM) and higher levels in the evening (PM), while no significant 

differences were observed between sham and VSG-treated mice.  Interestingly, in HFD sham 

mice, corticosterone concentration remained at low levels both AM and PM, suggesting that 

the circadian rhythm of adrenal  corticosterone is dysregulated by HFD. In contrast, in VSG-

treated mice, PM corticosterone levels were restored to physiological levels observed in lean 

mice (Fig. 2A, B).  
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11β-HSD11 is downregulated in liver and adipose tissue following Vertical Sleeve 

Gastrectomy 

The metabolism of glucocorticoids on target tissues such as liver and adipose tissue are 

dependent on the enzyme 11β-HSD11. We therefore attempted to measure the expression of 

11β-HSD11 in the liver and subcutaneous adipose tissue using biopsies from lean mice 4 

weeks post-operatively, and HFD mice 10 weeks post-operatively. In both, lean and HFD 

mice, 11β-HSD11 mRNA levels were significantly reduced in the liver (Fig 3A, C). However, 

at the protein level, significant differences were only observed in lean mice (Fig 3B, G) and 

not HFD, although a tendency towards reduced protein levels could also be observed in HFD 

mice (Fig 3D, H).Moreover, 11β-HSD11 gene expression was significantly reduced in the 

adipose tissue of lean, but not in HFD mice (Fig 3E, F).  

 

Lowered 11β-HSD11 expression reduction is not observed after incretin treatment  

We next explored whether GLP-1 (the expression of which is reported to increase post 

bariatric surgery) (45) and/or lowered glycaemia, could play a role regulating the expression 

of 11β-HSD11. To this end, we injected the GLP-1 receptor agonist (GLP-1RA) Semaglutide 

subcutaneously at 5nmol/ kg in lean mice daily, for seven days. Although the body weight of 

the Semaglutide-treated mice did not change when compared to mice receiving saline (23.2 

± 1.7 vs. 23 ± 1.4 g) (Fig. 4A), fed glycemia was significantly lower on day seven (6.9 ± 0.5 vs. 

12.5 ± 0.9 mmol/L) in the incretin vs saline-injected mice (Fig. 4B). However, the expression 

of 11β-HSD11 in liver and subcutaneous adipose tissue biopsies, obtained on the last day of 

treatment, showed no difference between Semaglutide and saline-treated groups, indicating 

that low glycemia or higher circulating GLP-1 does not replicate the effect observed following 

VSG (Fig. 4C, D).  

 

Glucocorticoid receptor is downregulated in the liver of lean mice following Vertical Sleeve 

Gastrectomy 

Glucocorticoids act through the glucocorticoid receptor to regulate glucose metabolism in the 

liver, muscle, pancreas and adipose tissue, by controlling the expression of key enzymes. In 

light of our findings on 11β-HSD11 expression, we measured and compared GR gene 

expression in the liver of lean and HFD VSG-treated and Semaglutide-treated mice. GR 

receptor expression was significantly reduced in lean mice following VSG when compared to 

lean sham animals (Fig. 5A), although we did not observe any significant differences in the 

HFD (Fig. 5B). Importantly, lean mice treated with Semaglutide did not show any reduction in 
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GR in the liver despite lower glycemia, corresponding to our previous findings on 11β-HSD11 

expression (Fig. 3C).  

 

Discussion:  

  

In this study we explored, for the first time, the possibility of a gut-adrenal axis in physiology 

and pathophysiology. We utilised a gastrointestinal procedure that excludes most of the 

stomach and investigated the effects this would have on both circulating cortisol secretion and 

tissue-specific cortisol metabolism, while removing the confounding effects of weight loss. 

Furthermore, we attempted to identify the potential mediator of this axis by replicating the post-

operative low glycemia pharmacologically by using Semaglutide. 

The two most widely used types of bariatric surgery are currently VSG and Roux-n-Y-Gastric-

Bypass  (46). Despite the similar metabolic outcomes between the two procedures, VSG is 

reported to have lower mortality in mice (47, 48), but also allows for gradual weight regain, 

which is why it was chosen for this study (11, 49). Both lean and HFD-induced hyperglycemic 

models were deployed in order to compare glucocorticoid responses to bariatric surgery in 

models of health and disease. In the lean model, no weight loss was observed at four weeks 

post-operatively (Fig. 1A), yet glucose clearance increased significantly (Fig. 1C). In the HFD 

model, mild weight loss was observed at week ten post-operatively, yet glucose clearance 

rate increased significantly, as we have previously reported (16). These findings validate the 

metabolic phenotype of the VSG mouse model as reported in multiple studies (47, 50). Of 

note, insulin sensitivity curves between lean and HFD mice were almost identical (Fig. 1B) 

(16) demonstrating potentially similar mechanisms of improvement.  

As an initial assessment of the glucocorticoid regulation following VSG, we measured 

circulating corticosterone in the early morning and late afternoon in all mice. This was done in 

four (lean mice) and ten (HFD mice) weeks after surgery to avoid measuring increased post-

operative stress-related corticosterone levels. In healthy mice, physiological corticosterone 

levels are low in the morning and elevated in the evening (51), and both VSG and sham-

treated lean mice demonstrated this pattern. Interestingly, HFD sham-treated mice showed no 

increase in corticosterone during the day, indicating impaired regulation of adrenal secretion. 

However, VSG appeared to restore normal corticosterone levels in HFD mice, matching the 

concentration found in lean mice, with a physiological increase in circulating glucocorticoid 

concentration apparent in the evening (Fig 2B). This is of importance as glucocorticoids, within 

the normal physiological range, are vital for metabolic, inflammatory and cardiovascular 
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processes and an evening increase (equivalent of a morning increase in humans) could be 

associated with an overall improvement in lipid metabolism, immune response and vascular 

health (52). Moreover, the increase in corticosterone may contribute to improving functional 

enterocyte morphology and proliferation, and therefore gastrointestinal metabolic health in the 

long term, as cortisol is an important factor in the modulation of intestinal physiological 

functions. (53).  

Despite the reported link between glucocorticoids and obesity (33), it is still unclear how 

circulating glucocorticoid levels are modulated following weight loss, and the cause of weight 

loss seems to be a confounder (54). Several studies have reported dysregulated cortisol levels 

in obesity, that remain unchanged, decreased, or increased following diet-induced weight loss, 

probably as a result of the stress associated with dieting, or the type of nutrients included in a 

diet (55-57). Several studies have attempted to study the regulation of cortisol levels following 

bariatric surgery in clinical settings (58-60). However, differences in the methodology and 

patient inclusion criteria  (type of surgery, post-operative time, body mass index (BMI) or 

presence of T2D and/or eating disorders), have resulted in conflicting results.  Our findings 

are supported by those of Valentine et al. who found a 54% rise in morning saliva cortisol 

levels at six and twelve months after VSG in women with obesity, but no differences in night-

time samples, which corresponds with our findings (61). 

Although the concentration of circulating glucocorticoids is important for their action, the 

effects of glucocorticoids on target tissues such as liver and adipose tissue are dependent on 

11β-HSD1 activity (28). In the liver, glucocorticoids have been shown to stimulate 

gluconeogenesis by activating PEPCK and glucose-6-phosphatase (G6Pase) through the GR 

(62), while in the adipose tissue they stimulate lipolysis, resulting in the generation of glycerol 

to be utilized in gluconeogenesis and free fatty acids to be oxidised and used as energy source 

(63). Previous studies have shown that mice overexpressing 11β-HSD1 in adipose tissue 

develop visceral obesity, insulin resistance, dyslipidaemia, and hypertension (35), while liver-

specific 11β-HSD1 overexpression results in insulin resistance and hypertension, but not 

obesity (64). In our study we found that 11β-HSD1 is significantly inhibited in the liver in both 

lean and HFD VSG-treated mice when compared to sham groups, pointing at reduced hepatic 

glucocorticoid activity (Fig 3. A, B, C, D) which can potentially be a contributing factor to the 

significant increase in insulin sensitivity observed on Fig 1B and E. Of note, 11β-HSD1 in the 

adipose tissue was only inhibited in the lean mice (Fig 3, E, F).  

In an effort to elucidate the mechanism(s) that links VSG, a gastric procedure, to adrenal 

function, we explored the role of GLP-1, a post-prandially released hormone that enhances 

insulin secretion and lowers glucose concentration (65). This incretin hormone has also been 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 24, 2020. ; https://doi.org/10.1101/2020.07.23.218404doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.23.218404
http://creativecommons.org/licenses/by/4.0/


9 
 

shown to increase significantly following VSG, and to regulate glucocorticoid secretion (25, 

26). We chronically injected a low dose of the GLP-1RA Semaglutide, to avoid significant body 

weight loss while achieving significantly lower glycemia, in lean mice as previously reported 

(17). Interestingly, 11β-HSD1 expression was not affected in either the liver or in the adipose 

tissue (Fig 4C, D) of Semaglutide-treated mice, suggesting that the observed effects are not 

driven by the reduction in blood glucose or a direct action of GLP-1.  

Another key glucocorticoid function mediator is the GR, a nuclear receptor that, once bound 

to a glucocorticoid, translocates into the nucleus and regulates the expression of target genes 

(66). In the liver, GR has been shown to upregulate gluconeogenic enzymes (62) and its 

inactivation ameliorates hyperglycemia in diabetic mice (67). However, the GR role in the 

adipose tissue remains unclear as it has been found to play an important role in lipolysis and 

insulin resistance caused by exogenous glucocorticoids, but not insulin resistance caused by 

high fat feeding (68). Our study demonstrated that GR is downregulated in the liver in lean 

mice following VSG, but not following Semaglutide treatment or in HFD mice (Fig 5A, C). The 

GR expression in the adipose tissue was not altered in any of the mouse groups.  

Although evidence suggest that bariatric surgery can affect the HPA axis (58, 69), there is 

more controversy around the direction of this regulation. The long-term effects of bariatric 

surgery on cortisol levels are also unclear. In clinical settings, hepatic 11β-HSD1 activity is 

primarily measured by calculating serum cortisol/cortisone ratio, but direct tissular expression 

requires biopsies which are usually not available for the liver. In patients with severe obesity 

following RYGB, 11β-HSD1 activity was increased in the liver but expression was decreased 

in the subcutaneous adipose tissue (38, 39, 70) highlighting that regulation of cortisol 

metabolism in obesity and after weight loss is highly tissue specific. In our study, we have 

demonstrated that, although VSG improves insulin sensitivity and inhibits 11β-HSD1 

expression in the liver in both lean and HFD mice, the regulation of glucocorticoid metabolism 

in adipose tissue is different in both physiological and pathophysiological conditions.  

Limitations of the study. As with clinical studies, chronic cortisol measurements are required 

to further validate our findings. Moreover, studies on the exact transcription factors affected 

by the downregulation of 11β-HSD1 and GR are required to understand the pathway that links 

glucocorticoid metabolism to post-bariatric T2D remission. Similar to the Semaglutide study, 

more factors must be explored to pin a potential hormonal mediator between the gut and the 

adrenal secretion regulation. Finally, our results must extend to the clinical settings, especially 

in patients with cortisol oversecreting Cushing’s disease following bariatric surgery.  

Conclusions. We show here for the first time that VSG maintains normal corticosterone levels 

but inhibits tissular glucocorticoid metabolism in lean animals, by inhibiting 11β-HSD1 and 
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GR, and that this effect is likely to be weight loss and glycaemia-independent. Moreover, we 

have demonstrated that corticosterone circulation is restored in obese VSG animals, while 

hepatic glucocorticoid metabolism is inhibited, even after weight regain. Insulin sensitivity and 

glucose clearance were enhanced in all groups. These observations demonstrate a potential 

new mechanism of T2DM remission after bariatric surgery.  
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Materials and Methods: 

Animals - All animal procedures undertaken were approved by the British Home Office under 

the UK Animal (Scientific Procedures) Act 1986 (Project License PPL PA03F7F07 to I.L.) with 

approval from the local ethical committee (Animal Welfare and Ethics Review Board, AWERB), 

at the Central Biological Services (CBS) unit at the Hammersmith Campus of Imperial College 

London. Adult male C57BL/6J mice (Envigo, Huntingdon U.K.) were maintained under 

controlled temperature (21-23°C) and light (12:12 hr light-dark schedule, lights on at 0700). 

The animals were fed either PMI Nutrition International Certified Rodent Chow No. 5CR4 

(Research Diet, New Brunswick, NJ) or 58 kcal% Fat and Sucrose diet (D12331, Research 

Diet, New Brunswick, NJ) for twelve weeks and ad libitum. Animals were exposed to liquid diet 

(20% dextrose) three days prior to surgery and remained on this diet for up to four days post 

operatively. Following this, mice were returned to either PMI or high fat/high sucrose diet. All 

mice were divided in two groups, VSG (n=7) and sham (n=6), and were euthanized, and 

tissues harvested, twelve weeks after surgery. Liver, adipose tissue and intestinal biopsies 

were removed from all mice at twelve weeks following sham or VSG surgery in the fed state, 

and were either snap frozen in -80oC, fixed in formalin, or both. 

Vertical Sleeve Gastrectomy - Anaesthesia was induced and maintained with isoflurane (1.5-

2%). A laparotomy incision was made, and the stomach was isolated outside the abdominal 

cavity. A simple continuous pattern of suture extending through the gastric wall and along both 

gastric walls was placed to ensure the main blood vessels were contained. Approximately 

60% of the stomach was removed, leaving a tubular remnant. The edges of the stomach were 

inverted and closed by placing two serosae only sutures, using Lembert pattern (71). The 

initial full thickness suture was subsequently removed. Sham surgeries were performed by 

isolating the stomach and performing a 1 mm gastrotomy on the gastric wall of the fundus. All 

animals received a five-day course of SC antibiotic injections (Ciprofloxacin 0.1mg/kg).  

Glucose Tolerance Tests - Mice were fasted overnight (total 16 h) and given free access to 

water. At 0900, glucose (3 g/kg body weight) was administered via intraperitoneal injection. 

Blood was sampled from the tail vein at 0, 5, 15, 30, 60 and 90 min. after glucose 

administration. Blood glucose was measured with an automatic glucometer (Accuchek; 

Roche, Burgess Hill, UK). 

Insulin Tolerance Tests - Mice were fasted for 8 h and given free access to water. At 1500, 

human insulin (Actrapid, Novo Nordisk) (0.8-1.5U/kg body weight) was administered via 

intraperitoneal injection. Blood was sampled from the tail vein at 0, 15, 30, 60 and 90 min after 

insulin administration. Blood glucose was measured with an automatic glucometer (Accuchek; 

Roche, Burgess Hill, UK). 
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Plasma corticosterone measurement - To quantify circulating corticosterone levels, 50μl of 

blood was collected from the tail vein into heparin-coated tubes (Sarstedt, Beaumont Leys, 

UK) at 0800 and 1900. Plasma was separated by sedimentation at 10,000 g for 10 min. (4°C). 

Plasma corticosterone levels were measured in 10μl aliquots ELISA kits from Crystal Chem 

(USA).  

Western (immuno-) blotting – Liver and adipose tissue were lysed in ice-cold RIPA buffer 

containing a protease inhibitor mixture (Roche) and phosphatase inhibitors (Sigma-Aldrich). 

Lysates were denatured for 5 min at 95 °C in Laemmli buffer, resolved by 10% SDS-PAGE, 

and transferred to polyvinylidene difluoride membranes before immunoblotting. The following 

antibodies were used: anti-rabbit 11β-HSD1 (abcam, USA) (1:200) and anti-mouse GAPDH 

(Sigma-Aldrich) (1:1000). Intensities were quantified using ImageJ.  

RNA extraction, cDNA synthesis and Quantitative Polymerase Chain Reaction – Tissues were 

harvested and snap-frozen in liquid nitrogen. RNA was purified using PureLink RNA kit 

(Thermo Fisher Scientific, UK). The purified RNA was dissolved in RNase and DNase free 

distilled water (Thermo Fisher Scientific, UK) and was immediately stored at −80°C until further 

analysis. Complementary DNA was synthesized from total RNA with High-Capacity cDNA 

Reverse Transcription Kit (Thermo Fisher Scientific, UK), according to the protocol 

recommended by the manufacturer. Quantitative Reverse Transcription PCR (qRT-PCR) 

analysis was used to quantify the expression level of 11β-HSD11 and NR3C1 (GR) mRNA in 

kidney cortex, and adiponectin in SC adipose tissue. Primers, which crossed a splice junction, 

were designed using Primer Express (Invitrogen, UK; Table 1). The expression levels were 

measured by Q-PCR, using Fast SYBR Green Master Mix (Invitrogen) and a 7500 Fast Real-

Time PCR System (Applied Biosystems, UK). Data from 11β-HSD11 and NR3C1 (GR) were 

normalized against β-actin levels. The analytical method used was 2(−Delta Ct). 

Statistical Analysis - Data were analysed using GraphPad PRISM 7.0 software. Significance 

was tested using unpaired non-parametric Student’s two-tailed t-tests with Bonferroni post-

tests for multiple comparisons, or two-way ANOVA repeated measurements as indicated. 

P<0.05 was considered significant. Data are represented as the mean ± SEM. 
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Table 1:  

Primers Used for the Quantitative Detection of 11β-HSD11 and GR, normalised to β−actin. 

Table 1: 

Analysed 

Transcript 

Sequence of FW primer Sequence of RV primer 

11β-HSD11 TGCCTGGGAGGTTGTAGAAAG CCCTGGAGCATTTCTGGTCTG 

NR3C1 (GR) GCAGTGGAAGGACAGCACAA GAGACTCCTGCAGTGGCTTG 

β -actin CACTGTCGAGTCGCGTCC TCATCCATGGCGAACTGGTG 

 

 

Figure Legends:  

 

Figure 1: 

VSG improves glucose and insulin tolerance in lean and HFD mice. (A) Body weight at four 

weeks following VSG (n=6) or sham surgery (n=6) in lean animals. (B) Insulin tolerance test 

in lean mice. Human insulin (Actrapid, Novo Nordisk)  was administered via intraperitoneal 

injection (0.8 IU/kg) after mice were fasted from 0900 to 1500 and blood glucose levels 

measured at 0, 15, 30 and 60 min. post injection, four weeks after surgery, n = 3- 4 mice/group. 

(C) Glucose tolerance test in lean mice. Glucose was administered via intraperitoneal injection 

(3 g/kg) after mice were fasted overnight and blood glucose levels measured at 0, 15, 30, 60 

and 90 min. post injection, four weeks after surgery, n = 3- 5 mice/group. *P<0.05, ***P<0.001 

VSG vs. Sham, following Student t-test or 2-way ANOVA. Data are expressed as means ± 

SEM. 

 

Figure 2:   

VSG restores physiological corticosterone production in HFD mice (A) Corticosterone 

measurement following blood collection at 0800 and 1900 within the same day in lean mice, 

four weeks post VSG or sham surgery (n=3-4). (B) Corticosterone measurement following 

blood collection at 0800 and 1900 within the same day in HFD mice, ten weeks post VSG or 

sham surgery (n=4). *P<0.05, VSG vs. Sham, following Student t-test. Data are expressed as 

means ± SEM. 

 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 24, 2020. ; https://doi.org/10.1101/2020.07.23.218404doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.23.218404
http://creativecommons.org/licenses/by/4.0/


15 
 

Figure 3:  

11β-HSD11 levels are decreased in the liver following VSG in mice (A) Quantitative PCR 

levels of 11β-HSD11 gene expression in liver of lean mice four weeks post VSG or sham 

surgery (B) Average intensity measurement from Western Blot immunoblotting quantification 

for 11β-HSD11 in lean mice four weeks post VSG or sham surgery (C) Quantitative PCR levels 

of 11β-HSD11 gene expression in liver of HFD mice ten weeks post VSG or sham surgery (D) 

Average intensity measurement from Western Blot immunoblotting quantification for 11β-

HSD11 in HFD mice ten weeks post VSG or sham surgery. (E) Quantitative PCR levels of 

11β-HSD1 gene expression in subcutaneous adipose tissue of lean mice four weeks post 

VSG or sham surgery (F) Quantitative PCR levels of 11β-HSD1 gene expression in 

subcutaneous adipose tissue of HFD mice ten weeks post VSG or sham surgery. (G) Example 

immunoblotting of lean sham and VSG mice liver using anti-rabbit 11β-HSD11 and anti-mouse 

GAPDH antibody (V1, 2 = VSG, S1, 2 = Sham) (H) Example immunoblotting of HFD sham 

and VSG HFD mice liver using anti-rabbit 11β-HSD11 and anti-mouse GAPDH antibody (V1, 

2 = VSG, S1, 2 = Sham)  *P<0.05, by Student’s t-test; **P<0.01 following Student t-test. Data 

are expressed as mean ± SEM. 

 

Figure 4:   

Semaglutide-induced glycaemia lowering does not decrease 11β-HSD11 levels significantly 

(A) Body weight measurement of lean mice that were treated with subcutaneous injection of 

5nmol/kg semaglutide or saline for 7 days (B) Glucose tolerance test in lean mice following 7 

days of semaglutide or saline injections. Glucose was administered via intraperitoneal 

injection (3 g/kg) after mice were fasted overnight and blood glucose levels measured at 0, 

15, 30, 60 and 90 min. post injection (C) Quantitative PCR levels of 11β-HSD11 gene 

expression in the liver following 7 days of semaglutide or saline treated mice. (D) Quantitative 

PCR levels of 11β-HSD11 gene expression in the subcutaneous following 7 days of 

semaglutide or saline treated mice, n = 5-6 mice/group *P<0.05, ***<P0.001 by Student t-test. 

Data are expressed as means ± SEM. 

 

Figure 5:  

Glucocorticoid receptor levels in lean and HFD VSG or semaglutide-treated mice (A) 

Quantitative PCR levels of GR gene expression in liver of lean mice four weeks post VSG or 

sham surgery (B) Quantitative PCR levels of GR gene expression in liver of HFD mice ten 

weeks post VSG or sham surgery (C) Quantitative PCR levels of GR gene expression in liver 
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of lean mice following 7 days of semaglutide (5nmol/kg) or saline (D)  Quantitative PCR levels 

of GR gene expression in subcutaneous adipose tissue of lean mice four weeks post VSG or 

sham surgery (B) Quantitative PCR levels of GR gene expression in subcutaneous adipose 

tissue of HFD mice ten weeks post VSG or sham surgery (C) Quantitative PCR levels of GR 

gene expression in subcutaneous adipose tissue of lean mice following 7 days of semaglutide 

(5nmol/kg) or saline **P<0.001, by Student t-test. Data are expressed as means ± SEM. 
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Figure 1:  

 

 

Figure 2: 
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Figure 3: 
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Figure 4: 
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