




















 
Figure 4. Dielectrophoretic separation of protein particles. (a) Numerical simulation by finite element method shows 

the magnitude distribution of the electrical potential (surface color) and direction of DEP force around the circular traps 

(arrows). Once the particle enters the circular trap, DEP force will pull and push the particle toward the center of the 

trap. (b) Velocity and size of the trapped protein particles when AC 1 MHz 10 Vpp was applied to the electrodes. (c and 

d) Captured images of the trapped ~2- and ~4-µm-diameter protein particles at two different flow rates of 25 µm/s and 

70 µm/s, respectively. The enlarged images are displayed on the right side. Scale bar = 50 µm. 
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We subsequently performed morphological analyses on the ~2-µm and ~4-µm protein-particle 

samples collected by DEP separation in Figure 4c and d. The characterization conditions were 

the same as those used in Figure 3. The sizes of the separated protein particles are shown in 

Figure 5a and c. The average diameters of the trapped protein particles were 2.28 with a PDI of 

0.19 and 3.79 µm with a PDI of 0.088, respectively. As the PDI values are close to 0, the trapped 
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protein particles are monomodally dispersed with respect to size (Figure 5a). Moreover, the 

circularities of the trapped particles are shown in Figure 5b and d, and the average circularity 

indexes were 0.87 ± 0.1, and 0.81 ± 0.19, respectively. As the circularity index value is closer to 

1, the protein particles conform to a spherical shape. This means the DEP trapping system can 

selectively capture spherical particles and exclude non-spherical particles. This can be explained 

by the effect of the folding factor, where the effect of the DEP force acting on the particle increases 

when the shape of the particle is closer to a sphere [44, 45]. Although the dimensions of the non-

spherical protein particles are similar to the spherical ones, the reduced DEP forces on the non-

spherical particles prevent trapping, and thus only the sphere-like protein particles are trapped. 

Our experimental results suggest that reduced DEP forces are applied to non-spherical particles 

regardless of whether the particles are larger or smaller (See supporting Video M1 and M2). 

Consequently, the sum of the relative frequencies from 0.8 to 1.0 in the circularity test for raw 

protein particle samples and the trapped ~2-µm and ~4-µm particles was increased from 28.64% 

of mixture to 80.53% and 74.02%, respectively.  
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Figure 5. Morphological characterization of the trapped ~2-µm (a, b) and ~4-µm (c, d) protein particles.  (a, c) 

The size distribution measurement of the trapped protein particles. (b, d) The circularity distribution of the trapped 

protein particles. 

 
Secondary structure analysis was performed on spherical protein particles collected from DEP 

separation by Fourier-transform infrared spectroscopy (FTIR). Figure 6 clearly shows that 

insoluble particles separated by DEP are protein particles. Two strong Amide bands, Amide I 

(1600 – 1700 cm-1) and Amide II (1510 – 1580 cm-1) (Figure 6a) were detected. The peak-center 

position of the Amide I band for these samples occurs at 1530 cm-1, suggesting that β-sheet 

structures are dominant. By deconvolution of the Amide I band as shown in Figure 6b, quantitative 

analysis of secondary-structure percentage (Table 1) indicated that 58% of secondary structure 

in the captured protein particles are β-sheet, consistent with the prior results for these proteins 

[6].  

 

 
Figure 6. Fourier-transform infrared spectroscopic (FTIR) characterization of spherical-shaped protein 

particles trapped by DEP chips. (a) full spectrum, and (b) deconvolution of the Amide I band. 

 
Table 1. Secondary-structure percentage of the spherical-shaped protein particles separated by DEP, as calculated 
by total portion of area under the fitted curves. 

Secondary 
structure 

β-sheet Random coil Turns α-helix 
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Percentage (%) 58 22 17 3 
 

Hydration characteristics were tested for spherical protein particles separated by DEP by 

thermogravimetric analysis (TGA). Interestingly, TGA plots of protein saturated with urea solutions 

(Figure 7 red and blue curves) have two stages of mass loss near 110°C and 140°C. Water and 

urea evaporation occurred at 110°C and 140°C, respectively, due to the boiling point of water 

(100°C) and melting point of urea (135°C). TGA traces of mass loss for three different 

concentrations of aqueous solutions are shown in Table 2. Total hydration rate of the materials 

(Figure 7 and Table 2) was about 74% (72.96%, 73.59% and 75.28%, respectively, in three 

different solvent conditions). Calculations of urea concentration in solvents carried by protein 

particles are shown in Table 2. Urea concentrations carried by protein particles matched with 

those of original urea loading solvents. This clearly shows that protein particles can carry solutes.  

 

 
Figure 7. Hydration characteristics of separated protein particles. TGA curves with three different show carrying 
capacity of captured protein particles. The concentrations of solutes carried by protein materials were similar to those 
of the loading solutions.   
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Table 2 Percentage mass loss of protein particles with three different solutions 

 
Mass ratio 

of water (%) 
Mass ratio 
of urea (%) 

Mass ratio 
of protein (%) 

Urea portion (%) 
Original urea 
concentration 

(%) 
Water only, 
black curve 

72.96 0 27.04 0 0 

Urea (26.5%), 
red curve 

26.41 47.18 26.41 
19.17

73.59
= 26.05 26.5 

Urea (39.8%), 
blue curve 

31.55 43.73 24.72 
31.55

75.28
= 41.91 39.8 

 

4. Conclusion 

In this study we produced protein particles and selectively collected spherical 2 and 4-µm particles 

from a mixture with diverse sizes and shapes using a DEP trapping system. In addition, we 

validated the capability of these size- and shape-separated protein particles to store and release 

a solute in aqueous solution. The results show the capability of rapid one-step separation of 

protein particles by DEP.  

The high swelling ratio of the size- and shape-selected protein particles suggests that they may 

be able to deliver large amount of aqueous solutions. The ability to rapidly separate protein 

particles with desired sizes and shapes will enhance the rapid development and assessment of 

future protein-based drug carriers.  
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