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ABSTRACT 14 

The morphologically and functionally distinct cell types of a multicellular organism are maintained by 15 

epigenomes and gene expression programs. Phase III of the ENCODE Project profiled 66 mouse 16 

epigenomes across twelve tissues at daily intervals from embryonic day 10.5 to birth. Applying the 17 

ChromHMM algorithm to these epigenomes, we annotated eighteen chromatin states with 18 

characteristics of promoters, enhancers, transcribed regions, repressed regions, and quiescent 19 

regions throughout the developmental time course. Our integrative analyses delineate the tissue 20 

specificity and developmental trajectory of the loci in these chromatin states. Approximately 0.3% of 21 

each epigenome is assigned to a bivalent chromatin state, which harbors both active marks and the 22 

repressive mark H3K27me3. Highly evolutionarily conserved, these loci are enriched in silencers 23 

bound by Polycomb Repressive Complex proteins and the transcription start sites of their silenced 24 

target genes. This collection of chromatin state assignments provides a useful resource for studying 25 

mammalian development. 26 

 27 

INTRODUCTION 28 

Multicellular organisms maintain a myriad of cell types along separate lineages to carry out the 29 

cellular programs required for development and survival. These cell types all have the same genome 30 

but different epigenomes, characterized by chromatin accessibility, histone modifications, and DNA 31 

methylation, which cooperate with trans-factors to regulate gene expression and downstream 32 

activities. Thus, systematic annotation of epigenomes is essential for understanding genome 33 

functions. Experimental techniques such as chromatin immunoprecipitation followed by sequencing 34 
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(ChIP-seq)1–3, transposase accessible chromatin with sequencing (ATAC-seq)4, and whole-genome 35 

bisulfite sequencing (WGBS)5 enable genome-wide profiling of histone marks, chromatin accessibility, 36 

and DNA methylation, respectively. When several of these epigenetic marks have been profiled for a 37 

given cell type, the results can be integrated using computational algorithms such as ChromHMM6, 38 

Segway7, and IDEAS8 to classify genomic loci into a small number of chromatin states, such that the 39 

chromatin state of a locus is predictive of its function in the given cell type. 40 

 41 

Coordinated efforts by the ENCODE and Roadmap Epigenomics Consortia provided tremendous 42 

insights into gene regulation in a diverse array of human cell and tissue types9,10. The 43 

mouseENCODE project furthered our understanding of multiple adult mouse cell types11. Phase III of 44 

the ENCODE Consortium generated 66 complete mouse epigenomes across 12 fetal tissues at four 45 

to seven developmental time-points with a daily interval, each investigated with ten assays12: ATAC-46 

seq13, WGBS14, and ChIP-seq of eight histone marks13. The histone marks included histone 3 lysine 4 47 

trimethylation (H3K4me3) and histone 3 lysine 9 acetylation (H3K9ac), enriched at promoters and 48 

present at enhancers1,15–17; H3K27ac, H3K4me1, and H3K4me2, enriched at enhancers1,15,17,18; 49 

H3K36me3, enriched within the bodies of actively transcribed genes19; H3K27me3, catalyzed by and 50 

guiding the Polycomb Repressive Complexes (PRC) of proteins to repress gene expression20; and 51 

H3K9me3, enriched in heterochromatin to silence repeats and gene clusters19. All these 66 52 

epigenomes were accompanied by transcriptome sequencing (RNA-seq) data21, and 20 of the 53 

biosamples were assayed by DNase-seq, another technique for measuring chromatin accessibility22 54 

(Fig. 1a and Supplementary Table 1). This body of data was generated by four ENCODE labs, with 55 

the same type of data generated by the same lab, representing the most complete epigenetic data on 56 

fetal mouse tissues, ideal for characterizing the epigenomic landscape during mammalian 57 

development. 58 

 59 

We applied ChromHMM6 to these 66 mouse epigenomes and defined 18 chromatin states (Fig. 1b). 60 

Most of these mouse chromatin states recapitulated the 15 human chromatin states defined by the 61 

Roadmap Epigenomics Consortium using a subset of five histone marks in human biosamples10, and 62 

our novel states corresponded to a refinement of previously defined enhancer, bivalent, and quiescent 63 

states. We observed a substantially larger variation of chromatin state assignments among the mouse 64 

tissue types at a given developmental time-point than we did across all developmental time-points for 65 

a single tissue. We further investigated one chromatin state in detail—TssBiv, a bivalent state 66 

enriched in the transcription start sites (TSS) which harbors both active marks (H3K4me3, H3K4me2, 67 

H3K4me1, and H3K9ac) and the repressive mark H3K27me3. We found that genomic loci in TssBiv 68 

were substantially more evolutionarily conserved than loci in any of the other 17 Chromatin states. 69 

Genes with bivalent TSSs were first identified in embryonic stem cells and thought to be poised for 70 
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activation or repression in response to developmental or environmental cues23. Subsequently, such 71 

bivalent domains were reported in differentiated cell types24–27, but they have not been studied during 72 

fetal development. Each fetal tissue harbors approximately 3000 bivalent genes and they are 73 

repressed in expression in that specific tissue. These bivalent genes are highly enriched in 74 

transcription factors (TFs) differentially expressed among the fetal tissues. Comparison with recently 75 

defined silencers bound by the Polycomb Repressive Complex 2 (PRC2) proteins28 revealed that both 76 

the PRC2-bound silencers and the TSSs of their silenced genes are highly enriched in the bivalent 77 

regions. Thus, the bivalent regions support an evolutionarily conserved silencing mechanism for 78 

lineage-specific genes, in particular the master TFs controlling tissue development. Our 79 

comprehensive annotation of chromatin states provides a resource for studying mammalian 80 

development. 81 

 82 

 83 

RESULTS 84 

Chromatin states were defined using ATAC-seq, WGBS, and the ChIP-seq data of eight histone 85 

marks 86 

The 66 mouse fetal epigenomes, all complete with ten chromatin marks, represent a comprehensive 87 

collection for chromatin state assignment (Fig. 1a). We used ChromHMM to learn 18 states jointly 88 

from this dataset (Fig. 1b, c). ChromHMM chunks the genome into non-overlapping 200 base-pair 89 

(bp) bins and assigns each of these genomic bins to one of the 18 chromatin states in each 90 

biosample. We named our chromatin states in a way to be consistent with earlier ChromHMM 91 

publications6,10,29. Two of our learned states are proximal to active TSSs (Tss and TssFlnk, 92 

approximately 1.5% of the mouse genome); two states associate with actively transcribed genes (Tx 93 

and TxWk, 8.5%); five states are enhancer-related (Enh, EnhLo, EnhPois, EnhPr, and EnhG; 4.5%); 94 

one bivalent state often falls near inactive TSSs (TssBiv, 0.3%); three states are repressive (ReprPC 95 

and ReprPCWk enriched in H3K27me3, 5.5%; and Het in H3K9me3, 2.5%); and five states are 96 

quiescent (QuiesG, Quies, Quies2, Quies3, and Quies4; 75%). The remaining 2% or so of the 97 

genome could not be confidently assigned to any one state.  98 

 99 

The assignments of the 18 states are supported by comparison with gene expression and epigenomic 100 

data available for a subset of biosamples (Supplementary Table 1). Although both the active-TSS 101 

(Tss) and the bivalent-TSS states (TssBiv) are highly enriched in CpG islands, Tss (along with the 102 

TSS-flanking state TssFlnk) is only enriched in the TSSs of expressed genes (determined using RNA-103 

seq data in the corresponding biosample) while TssBiv is only enriched in the TSSs of the repressed 104 

genes (Fig. 1c). The transcription-related states (Tx and TxWk) are enriched in the exons and introns 105 

of expressed genes but not those of the repressed genes (Fig. 1c). Enh (high-signal enhancer) is the 106 
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state most enriched in the ChIP-signal of EP300, a histone acetyltransferase that preferentially binds 107 

active enhancers30,31 (Fig. 1c). The relative enrichment of the 18 states for the ATAC signal are highly 108 

consistent with their enrichments in DNase hypersensitive sites (DHS), determined using DNase-seq 109 

data in the corresponding biosample (Fig. 1c). 110 

 111 

Contributions of the chromatin marks to the assignments of chromatin states 112 

To assess the contribution made by each of the eight histone marks, ATAC, and DNA methylation, we 113 

asked how accurately the ten-mark model would be able to annotate a new epigenome missing data 114 

for one of the marks. We addressed this question by removing the data for each mark individually 115 

from the midbrain E13.5 epigenome and computing the Jaccard similarity index between the 116 

chromatin state assignments of all genomic bins (each 200 bp long, which is the resolution of 117 

ChromHMM) with the data for the remaining nine marks. If a genomic bin has a posterior probability 118 

less than 0.5, then it is classified as unassigned. In general, when a mark is removed, the states most 119 

severely affected were among those states most enriched in this mark in the ten-mark model 120 

(compare Fig. 1d and the chromatin-mark probabilities in 1c). However, the converse is not 121 

necessarily true, reflecting the redundancy between the marks. For example, the removal of H3K27ac 122 

affects the low-signal enhancer state (EnhLo) although the high-signal enhancer (Enh) state is even 123 

more enriched in H3K27ac than EnhLo (Fig. 1c-d). H3K4me3 and H3K9ac, when removed 124 

individually, did not have a major impact on any of the states although promoter states are enriched in 125 

H3K4me3 and both promoter and enhancer states are enriched in H3K9ac (Fig. 1c-d), indicating that 126 

the information contained by each of these two marks is already accounted for by the other nine 127 

marks. On the other hand, H3K36me3, H3K27me3, and H3K9me3 each brings non-redundant 128 

information to the ten-mark model, as all the states enriched in each of these marks were affected 129 

when the mark was removed (Fig. 1c-d).  130 

 131 

Chromatin states are conserved between human and mouse 132 

The Roadmap Epigenomics Consortium previously defined 15 human chromatin states using five 133 

histone marks in 127 human biosamples10. To investigate the conservation of chromatin state types 134 

between human and mouse, we built a 15 state model using the same set of five histone marks in the 135 

66 mouse fetal biosamples. This five-mark 15-state mouse model recapitulated 13 of the 15 human 136 

states identified by the Roadmap Epigenomics Consortium, with nearly identical emission probabilities 137 

and similar genome coverages. The 13 reproduced states, including the promoter, enhancer, 138 

transcribed, repressed, and bivalent states, were enriched in at least one of the five histone marks. 139 

 140 

The remaining two mouse chromatin states had similar chromatin-mark probabilities to, but different 141 

genome coverages from, the two remaining human states10 (Supplementary Fig. 1a). These human 142 
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states—the weak transcription state TxWk and the weak repressed polycomb state ReprPCWk 143 

(11.6% and 8.3% of the human genome)—had low signals for all five marks, and their assignments 144 

were based on their weak enrichments in expressed and repressed genes, respectively10. We 145 

identified a similar state with low signals for all marks in mouse, but although it was enriched within 146 

gene bodies in general, it was not enriched in either expressed or repressed genes in particular. We 147 

thus denoted it as the quiescent gene state (QuiesG, 25.17% of the mouse genome). We also 148 

identified a minor state (0.13% of the mouse genome) marked by both H3K36me3 and H3K27me3; 149 

we denote this state TxWk because regions in this state were assigned to the transcription state (Tx), 150 

the repressed polycomb state (ReprPC), or the weak repressed polycomb state (ReprPCWk) in our 151 

complete ten-mark, 18-state model. In summary, our results indicate that the chromatin states are 152 

highly conserved between human and mouse, and ChromHMM is able to identify these states reliably.  153 

 154 

Addition of three more histone marks, chromatin accessibility, and DNA methylation further 155 

clarified enhancer, bivalent, and quiescent states 156 

To investigate the impact of incorporating additional data in the annotation of chromatin states, we 157 

constructed a 15-state model using all eight available histone marks (Supplementary Fig. 1a). We 158 

compared this model, and the five-mark 15-state model described above, with our 18-state model that 159 

further incorporated chromatin accessibility and DNA methylation data (ten marks in total, Fig. 1, also 160 

included in Supplementary Fig. 1a to facilitate comparison with the five-mark and eight-mark 161 

models). Comparison of the three ChromHMM models built with increasing numbers of epigenetic 162 

marks (five, eight, and ten marks) revealed that assignments differ predominantly for the enhancer, 163 

bivalent, and quiescent states (Supplementary Fig. 1b-e).  164 

 165 

The five-mark model specified one enhancer state (Enh; 3.7% of the mouse genome) with high 166 

H3K4me1 levels (Supplementary Fig. 1a). Genomic regions in this state were assigned to five 167 

distinct enhancer states in the eight-mark model, which reflected different levels of three additional 168 

enhancer marks (H3K4me2, H3K9ac, and H3K27ac). Among these five states in the eight-mark 169 

model, the high-signal enhancer state Enh, which showed high levels for all these four enhancer 170 

marks, occupied only 0.2% of the genome (Supplementary Fig. 1a, d). The high-signal enhancer 171 

state Enh defined by the ten-mark model further showed high chromatin accessibility (ATAC signal) 172 

and low DNA methylation, occupying 0.64% of the genome (Supplementary Fig. 1a, d). The ten-173 

mark model defined three additional enhancer states, with two of the three (EnhLo and EnhPois) 174 

being regroupings of the genomic regions assigned to the four enhancer states in the eight-mark 175 

model. The other enhancer state defined by the ten-mark model (EnhPr) corresponded to a subset of 176 

the regions assigned one of the enhancer states by the eight-mark model, showing high chromatin 177 
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accessibility but low levels of enhancer marks (Supplementary Fig. 1d). Thus, the additional marks 178 

led to refined definitions of enhancer states. 179 

 180 

One example of a tissue-specific enhancer is located inside the housekeeping gene Metap1d 181 

(methionyl aminopeptidase Type 1D, which functions in the mitochondria) and 10 kb upstream of the 182 

Dlx1 gene, which encodes a brain-specific homeobox transcription factor. Dlx1 is highly expressed in 183 

the forebrain (~200 transcripts per million or TPM), but not expressed in most other tissues (e.g., < 3 184 

TPM in the liver). This region is annotated as a high-signal enhancer (Enh) in the forebrain, showing 185 

high ATAC and H3K27ac signals and low DNA methylation. It is annotated as a quiescent gene 186 

(QuiesG) in the liver due to its low ATAC and histone mark signals and high DNA methylation (Fig. 187 

1e). A VISTA enhancer (accession: hs553) overlaps this region, and it is active in the forebrain and 188 

cranial nerve of mouse embryos32.  189 

  190 

The five-mark model annotated three bivalent states with high levels of the active marks H3K4me1 191 

and H3K4me3, as well as high levels of the repressive mark H3K27me3; however, both the eight-192 

mark and ten-mark models only annotated one bivalent state, which additionally showed high levels of 193 

other active marks (H3K4me2, H3K9ac, and ATAC) and low levels of DNA methylation 194 

(Supplementary Fig. 1a). Roughly the same set of genomic regions were assigned to these bivalent 195 

states across the three models, suggesting that the state definition became more complete when 196 

more marks were available (Supplementary Fig. 1e). 197 

 198 

The five-mark and eight-mark models annotated one quiescent state (Quies), which had very low 199 

signals for all available histone marks. The ten-mark model defined three additional quiescent states 200 

besides Quies. These four quiescent states all showed very low levels of the eight histone marks and 201 

ATAC, but they differed in DNA methylation, with the Quies state (49.0% of the genome) showing very 202 

high methylation levels and the Quies2 state (9.9% of the genome) showing very low levels of DNA 203 

methylation (Supplementary Fig. 1a). The quiescent states in the three models cover roughly the 204 

same set of genomic regions (Supplementary Fig. 1b). 205 

 206 

Variation of state assignments across tissues and along developmental time-points 207 

After carefully analyzing the properties of the chromatin states in the ten-mark model, we assessed 208 

how variable the assignments of these states were among the 66 mouse epigenomes. We computed 209 

the Jaccard similarity index on the genomic regions assigned to each state between tissues or 210 

between developmental time-points. The enhancer states exhibited the greatest variability among 211 

tissues or across time-points, while the promoter, quiescent, and transcription states showed the least 212 

variability (Fig. 2a). The repressive state Het, enriched in H3K9me3, was almost as variable as the 213 
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enhancer states (Fig. 2a). Moreover, all chromatin states were more similar across time-points in the 214 

same tissue than across tissues at the same time-point (Fig. 2a), consistent with the notion that the 215 

epigenome is inherited within the cell lineage.  216 

 217 

Temporal chromatin state transitions for each tissue occurred mostly between related states, e.g., 218 

among the promoter states (Tss, TssFlnk, and TssBiv) or among the enhancer states (Enh, EnhLo, 219 

EnhPois, and EnhPr). We also observed a preference for temporal transitions into or out of the 220 

quiescent states (Fig. 2b, c).  221 

 222 

To investigate whether the variations captured by the chromatin states could recapitulate the 223 

embryonic developmental trajectory, we applied the UMAP dimension-reduction technique33 to the 66 224 

tissue biosamples using levels of chromatin marks at the genomic bins assigned to each chromatin 225 

state. H3K27ac signal levels at genomic bins assigned high-signal enhancers (Enh) in any of the 66 226 

biosamples (in total 5.4% of the genome) cleanly segregated the 66 biosamples by tissue (Fig. 2d, 227 

left panel). The liver (with an endoderm origin) and heart (mesoderm) biosamples formed two 228 

separate clusters. Tissues with similar developmental origins were positioned near each other, with 229 

the four brain regions (ectoderm), the lung (endoderm) and the digestive organs stomach and 230 

intestine (endoderm), and limb and facial prominence (with cells from both endoderm and ectoderm 231 

origins) forming three clusters (Fig. 2d). The kidney (mesoderm) biosamples were positioned right 232 

next to the stomach, intestine, and lung (endoderm) biosamples. Furthermore, the earlier time-points 233 

(open symbols) are segregated from later time-points (filled symbols). A similar UMAP analysis on 234 

genomic bins assigned to the bivalent state (TssBiv) in any of the biosamples (in total 1.2% of the 235 

genome) by the levels of the ten chromatin marks also led to clear segregation of the biosamples by 236 

tissue, although there was some mixing between the lung biosamples and the stomach and intestine 237 

biosamples (Fig. 2d, right panel). Thus, the epigenomic landscapes captured by chromatin states 238 

Enh and TssBiv can accurately recapitulate the tissue lineages during embryonic development.  239 

 240 

Genome regions transit among TssBiv, Tss, and ReprPC states 241 

Over developmental time, regions assigned to the bivalent promoter state (TssBiv), which has both 242 

active marks and the repressive H3K27me3 mark (Fig. 1c), can either lose repressive H3K27me3 243 

and become active TSSs (Tss) or lose the active marks and transition into the repressive polycomb 244 

(ReprPC) state (Supplementary Fig. 2). Roughly 0.3% of any particular epigenome is assigned to 245 

the TssBiv state; cumulatively 1.2% of the genome is assigned to TssBiv across all tissues and time-246 

points. TssBiv is less than half as prevalent as Tss and ReprPC, which constitute 0.8% and 0.8% of 247 

each epigenome and 2.2% and 5.5% of the genome overall, respectively. Almost all stretches of 248 

TssBiv genomic bins are flanked by ReprPC genomic bins. As an example, the promoter of the Dlx1 249 
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gene is annotated as Tss in the forebrain, where it is highly expressed, and as TssBiv in the liver, 250 

where it is not expressed, and the bivalent promoter in the liver is surrounded by ReprPC regions 251 

(Fig. 1e). Among the genomic bins that are assigned TssBiv in any of the epigenomes, 64.7% are 252 

assigned ReprPC in at least one epigenome and 68.1% are assigned Tss in at least one epigenome 253 

(Supplementary Fig. 3a), indicating that a particular region is TssBiv in some tissue but becomes 254 

monovalent (Tss or ReprPC) in other tissues. Intriguingly, the overall fraction of TssBiv genomic bins 255 

decreased over the course of the development in all five tissues with seven time-points, although due 256 

to the small number of time-points this was statistically significant only in the three brain tissues 257 

(Supplementary Fig. 3b). This suggests that the resolution of TssBiv regions into a monovalent state 258 

is important for development, especially in the brain. 259 

 260 

Bivalent genes are involved in fundamental biological processes 261 

We identified 14,558 bivalent regions, defined as stretches of TssBiv genomic bins surrounded by 262 

repressive chromatin states in any of the 66 biosamples (see Methods). These bivalent regions 263 

overlapped 14,729 GENCODE-annotated TSSs (Supplementary Table 2), belonging to 6,797 genes 264 

(Supplementary Table 3). There were 1,077 genes that were bivalent in all 12 tissues (i.e., having at 265 

least one bivalent TSS at one or more time-points of every tissue), and these genes were highly 266 

enriched in Gene Ontology (GO) terms related to embryonic development of myriad organs and 267 

systems, regulation of fundamental cellular processes, and modulation of cell-cell communications 268 

(Supplementary Fig. 4a and Supplementary Table 4a, b).  269 

 270 

The liver had 5,482 bivalent genes (i.e., having at least one bivalent TSS at one or more time-points), 271 

74% more than the other 11 tissues on average, and 1,291 of these 5,482 genes were not bivalent in 272 

the other 11 tissues. GO analysis on the 1,291 liver-only bivalent genes revealed terms that were 273 

involved in the development of a wide variety of organs other than the liver, such as heart, kidney, 274 

smooth muscle, brain, and cytoskeleton (Supplementary Fig. 4b and Supplementary Table 4c, d). 275 

We observed similar results for bivalent genes specific to other tissues. Thus, the bivalent genes in 276 

each fetal tissue reflect the regulatory pathways that are unused by the developmental program of 277 

that specific tissue. 278 

 279 

Bivalent genes exhibit repressed transcription 280 

We further analyzed the expression of the 25,215 genes that were expressed (≥ 1 TPM) in at least 281 

one of the 66 biosamples, among which 6,324 were among our list of bivalent genes (Methods). We 282 

found that the bivalent genes in a tissue had lower expression levels than non-bivalent genes 283 
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according to RNA-seq data in the same tissue. Across the 66 biosamples, the expression levels of 284 

bivalent genes were 5.2 ± 1.7 TPM, much lower than the expression levels of non-bivalent genes 285 

(39.8 ± 2.1 TPM; Wilcoxon rank-sum test P-value < 2.2×10-16). Furthermore, the genes that were not 286 

bivalent in any of the time-points of a tissue were expressed 7.79-fold higher (Wilcoxon rank-sum test 287 

P-values ≤ 2.2x10-16) than the genes that were bivalent at all time-points of the tissue 288 

(Supplementary Fig. 5). In a particular tissue, genes that were bivalent at different time-points were 289 

largely consistent (forebrain in Fig. 3a; all tissues in Supplementary Fig. 6). For example, 1,830 290 

genes were bivalent at all seven time-points of the liver; only 439 such genes would be expected if the 291 

time-points were independent of one another (P-value < 2.2×10-16; Binomial test). Genes bivalent at 292 

the earliest time-point but not the latest time-point were expressed at significantly lower levels earlier 293 

in development; likewise, genes bivalent at the latest time-point but not at the earliest time-point were 294 

expressed at lower levels later in development (midbrain in Fig. 3b; all tissues in Supplementary Fig. 295 

7). Both of these two sets of genes were expressed at significantly higher levels than genes bivalent 296 

at all time-points in the same tissue (Fig. 3b, Supplementary Fig. 7). Overall, the average expression 297 

level of a TSS across the time-points in a tissue is anti-correlated with the number of time-points at 298 

which the TSS is in a genomic bin assigned to the TssBiv chromatin state; in sharp contrast, a 299 

positive correlation is observed between expression and the duration the TSS is in a genomic bin 300 

assigned to the Tss chromatin state (Fig. 3c; Supplementary Fig. 8). Thus, the expression of 301 

bivalent genes is repressed in a tissue- and time-point-specific manner. 302 

 303 

Bivalent genes are highly enriched in tissue-specific transcription factors 304 

We compared the 6,797 bivalent genes (6,324 expressed in at least one of the 66 biosamples) with a 305 

curated list of 552 TFs with known DNA binding motifs in both mouse and human34, of which 535 were 306 

expressed in at least one of the 66 biosamples. A majority of the 535 TFs (338, 63.2%) were among 307 

the 6,324 bivalent genes (Chi-square P-value < 2.2×10-16). For both TF and non-TF genes, those that 308 

were bivalent were significantly more tissue-specific than those that were not bivalent (2.47-fold and 309 

1.79-fold higher in median tissue specificity for TFs and non-TFs, respectively, Wilcoxon rank-sum 310 

test P-values < 2.2×10-16; Fig. 3d).  311 

 312 

Consistent with earlier findings in embryonic stem cells35,36, a majority of the bivalent TSSs in our 313 

mouse fetal biosamples (mean = 62.5% across the 66 biosamples) overlapped CpG islands, much 314 

higher than non-bivalent TSSs (mean = 29.8%; Chi-square P-values in all 66 biosamples < 2.2×10-16). 315 

The enrichment is highly significant for the TSSs of both the TF genes (mean = 64.4% for bivalent 316 

TSSs vs. 43.5% for non-bivalent TSSs; P-values < 2.2×10-16) and the non-TF genes (62.3% vs. 317 
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29.5%, P-value < 2.2×10-16). CpG promoters are known to be less tissue-specific than non-CpG 318 

promoters37, which may seem at odds with our above finding that bivalent genes were significantly 319 

more tissue-specific than non-bivalent genes (Fig. 3d). To investigate the apparent contradiction, we 320 

separated bivalent and non-bivalent TSSs into CpG and non-CpG sub-groups. Indeed, each CpG 321 

sub-group is significantly less tissue-specific than the non-CpG subgroup with the same valency, yet 322 

the bivalent group is significantly more tissue-specific than the non-bivalent group when CpG and 323 

non-CpG promoters are combined (Supplementary Fig. 9).  324 

 325 

We examined the TFs with the highest tissue-specificity scores, and a vast majority of these TFs were 326 

bivalent. Seventy-five TFs had tissue-specificity scores higher than 6, meaning that the highest 327 

expression level was at least as high as the expression levels in all other tissues combined 328 

(Methods). Of these, 64 were bivalent and the other 11 were not; we illustrate their tissue-specific 329 

gene expression (Fig. 4a) and the chromatin state assignments around eight example TFs (Fig. 4b-i). 330 

Two paralogous TFs, Gata4, and Gata1 (Fig. 4d, e), illustrate bivalent and non-bivalent genes. Gata4, 331 

a bivalent gene, is predominantly expressed in the heart, consistent with its well-known role in 332 

regulating cardiac development38; it is also expressed at low levels in the stomach and intestine but 333 

not in other tissues. Accordingly, its TSS shows broad regions of the Tss state in the heart and 334 

narrower Tss regions surrounded by TssBiv and ReprPC regions in the stomach and intestine, while 335 

the TSS is covered by only TssBiv and ReprPC regions in other tissues (Fig. 4e). In comparison, 336 

Gata1, a non-bivalent gene, is a key regulator of erythrocyte development39 and is predominantly 337 

expressed in the liver. Consistently, the non-bivalent TSS of Gata1 shows a broad Tss domain in the 338 

liver and a narrow Tss domain during early time-points of heart, but it is labeled Quies in other tissues 339 

(Fig. 4d). Thus, there are two distinct modes of gene repression: bivalent TSSs or quiescent TSSs. 340 

 341 

Other bivalent TFs show similar tissue specificity in their chromatin patterns—adopting the Tss state 342 

in the tissues where they are expressed while being in the TssBiv state flanked by ReprPC regions in 343 

the tissues that they are not expressed. The homeobox-containing transcription factor Dlx1 is required 344 

for the migration of progenitor cells from the subcortical telencephalon to the neocortex as well as the 345 

differentiation of these progenitors into GABAergic neurons40. It is expressed in the forebrain and 346 

facial prominence; accordingly, its TSS adopts a highly active state in these tissues and the TssBiv-347 

ReprPC repressive states in other tissues (Fig. 1e). Arx is another homeobox-containing transcription 348 

factor (Fig. 4b) important for the maturation and migration of GABAergic interneurons, and loss-of-349 

function mutations of ARX cause lissencephaly (smooth brain) in humans41. En2 encodes a 350 

homeobox transcription factor that is expressed at high levels in Purkinje cells and it functions as a 351 

transcriptional repressor for neurodevelopment, and En2 mutant mice display defective cerebellar 352 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 24, 2020. ; https://doi.org/10.1101/2020.07.23.218552doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.23.218552


 

11 

patterning and a reduction of Purkinje cell number42. En2 is expressed only in the midbrain and 353 

hindbrain and shows the corresponding tissue-specific chromatin patterns (Fig. 4c). Wilms’ tumor-1 354 

(WT1), which encodes a transcription factor and RNA-binding protein, is essential for kidney 355 

development43. It is predominantly expressed in the kidney and at lower levels in the heart, stomach, 356 

and intestine. Its TSS is in the Tss state in the kidney and shows a broad TssBiv domain in the heart 357 

while being TssBiv-ReprPC in other tissues (Fig. 4f). The forkhead transcription factor Foxq1 is 358 

required for the maturation of the abundant mucin-producing foveolar cells that line the mucosal 359 

surface in the developing gastrointestinal tract44. Foxq1 is expressed in the gastrointestinal tissues 360 

and in the Tss state in these tissues, but bivalent in other tissues (Fig. 4g). Evx2 is required for the 361 

morphogenesis of limbs45, which is consistent with its expression and chromatin pattern (Fig. 4h). 362 

Finally, the aristaless-like homeobox 1 transcription factor Alx1 plays an important role in the 363 

development of craniofacial mesenchyme, the first branchial arch, and the limb bud, and a complete 364 

loss of function of ALX1 protein causes severe disruption of early craniofacial development in 365 

humans46. Consistent with its functions, Alx1 is predominantly expressed in the embryonic facial 366 

prominence and shows the corresponding chromatin profile (Fig. 4i).  367 

 368 

Genomic regions assigned to TssBiv are highly conserved evolutionarily 369 

Genomic bins assigned to the bivalent state (TssBiv) are much more evolutionarily conserved than 370 

the genomic bins assigned to any of the other 17 chromatin states (Fig. 5a). In each biosample, we 371 

calculated the mean PhyloP47 score in each 200-bp genomic bin and then averaged these mean 372 

PhyloP scores for the genomic bins assigned to each chromatin state (Methods). The TssBiv state 373 

showed the highest PhyloP scores (0.51 averaged over the 66 biosamples), substantially higher 374 

(Wilcoxon signed-rank test P-values < 2.2×10-16) than the transcription-related states Tx (0.41) and 375 

EnhG (0.42), the active TSS state Tss (0.36), the high-signal enhancer state Enh (0.30), which were 376 

in turn substantially higher than the remaining 13 states, with Quies2 (0.02) being the lowest (Fig. 5a).  377 

 378 

For enhancer-related states (Enh, EnhLo, EnhPois, and EnhPr), the assigned regions in the four brain 379 

tissues (forebrain, midbrain, hindbrain, and neural tube) had the highest PhyloP scores, the regions in 380 

the liver had the lowest PhyloP scores, and the other seven tissues were in between (Fig. 5a). There 381 

were some variations in the PhyloP scores over the time-points within each tissue (Supplementary 382 

Fig. 10), but the four brain tissues were clearly the highest and the liver the lowest (Fig. 5b). For 383 

example, the average PhyloP score of Enh genomic bins was 0.42 for midbrain, while it was 0.13 for 384 

liver (Wilcoxon rank-sum test P-value = 5.8×10-4 for comparing the 7 midbrain time-points with the 7 385 

liver time-points). We examined the transposon content in these Enh genomic bins and found that 386 

40.6% of the Enh genomic bins in the liver overlapped annotated transposons, while only 14.1-17.5% 387 
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of those in the four brain tissues did (Fig. 5c), which explained their substantially different levels of 388 

evolutionary conservation. These results suggest that the liver tissue has adopted some ancient 389 

transposon sequences as enhancers. 390 

 391 

We directly examined the evolutionary conservation of the TSSs of TFs, stratified by whether they 392 

resided in a TssBiv genomic bin or not (the two bottom-right panels in Supplementary Fig. 10). The 393 

average PhyloP score of the TF TSSs in TssBiv genomic bins was 0.82, substantially higher than that 394 

of the TF TSSs not in TssBiv genomic bins (0.53, Wilcoxon rank-sum test P-value < 2.2×10-16 for 395 

comparing the two groups in 66 biosamples). Combined with our aforementioned findings that TFs are 396 

highly enriched in bivalent regions, these results indicate that TFs with bivalent TSSs play a key role 397 

in evolutionarily conserved pathways driving tissue development. 398 

 399 

Genomic regions assigned to TssBiv are enriched in PRC2-bound silencers and their target 400 

TSSs 401 

We used a set of 1800 silencers bound by Polycomb Group 2 proteins (PRC2), identified using ChIA-402 

PET assays targeting PRC2 component proteins in mouse embryonic stem cells28, to further annotate 403 

the chromatin states we defined in fetal mouse tissues. The PRC2-bound silencers overlapped 404 

extensively with the 14,558 bivalent regions (defined as TssBiv genomic bins surrounded by 405 

repressive bins; see Methods): 1069 out of 1800 silencers overlapped bivalent regions by at least 406 

50% of the lengths of the silencers, while on average only 21 silencers overlapped with random 407 

regions with matching sizes as the bivalent regions (Z-score = 140; P-value < 2.2×10-16). In individual 408 

biosamples, the center locations of most silencers fall in the genomic bins assigned TssBiv or ReprPC 409 

(24 ± 4% and 28 ± 6% of the silencer centers, corresponding to 85.7- and 36.4-fold enrichment over 410 

the genomic footprints of these states), consistent with the enrichment of these two states in 411 

H3K27me3, the histone mark that PRC2 recognizes specifically.  412 

 413 

The enrichment of the PRC2-bound silencers with chromatin states varied by silencer types. The 414 

silencers were clustered into four groups according to their H3K27ac signal profiles across the fetal 415 

mouse tissues28, a subset of the data we used to define chromatin states (H3K27ac is one of the ten 416 

marks used to train our ten-mark model). Group 1 silencers (N = 371) had the highest H3K27ac 417 

signals in the fetal mouse tissues28, and the centers of these silencers were in the Tss and Enh states 418 

in some biosamples, especially in the brain, but not so much in the liver (Supplementary Fig. 11). 419 

Group 2 silencers (N = 126) were depleted in H3K27ac in all fetal mouse tissues28, and the centers of 420 

most of these silencers were in quiescent states in all tissues (Supplementary Fig. 11). Group 3 and 421 

4 silencers (N = 683 and 620) had intermediate levels of H3K27ac (higher in Group 3 than in Group 422 
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4)28, and their centers mostly fell in TssBiv and ReprPC states (Supplementary Fig. 11). We included 423 

in these alluvial plots the chromatin assignments in mouse embryonic stem cells (ES) using the ten-424 

mark model with ENCODE data on 7 histone marks (missing H3K4me2, ATAC, and WGBS), which 425 

show similar chromatin state assignments as in the fetal tissues (Supplementary Fig. 11). To 426 

normalize for the genomic footprint of each genomic state, we compared genomic bins assigned to 427 

TssBiv (the least abundant state; Fig. 1c) with an equal number of genomic bins randomly drawn from 428 

the other states in individual biosamples for their overlap with each group of PRC2-bound silencers. 429 

TssBiv showed the highest enrichment for Group 1 and Group 3 silencers and moderate enrichment 430 

for Group 4 silencers; ReprPC showed moderate enrichment for all groups of silencers; Tss showed 431 

moderate enrichment for only Group 1 silencers; and none of the other states showed enrichment 432 

(Fig. 6a).  433 

 434 

The ChIA-PET data further provided the target TSSs for each PRC2-bound silencer28, and these 435 

TSSs also predominantly fell in the TssBiv, Tss, and ReprPC states, with the percentages of TSSs in 436 

active chromatin states ranked in the descending order for Group 1, 3, 4, and 2 silencers 437 

(Supplementary Fig. 12). Again, the brain regions showed higher percentages of TSSs in the Tss 438 

state than the liver for Group 1 silencers (e.g., 57.9% for forebrain and 13.4% for the liver; 439 

Supplementary Fig. 12). After normalizing for the genomic footprints of the chromatin states, TssBiv 440 

showed a strong enrichment for the target TSSs of all four groups of silencers, while Tss and ReprPC 441 

showed weak enrichment (Fig. 6b). Anong the 75 tissue-specific TFs (Fig. 4a), 44 of the 62 bivalent 442 

TFs but none of the 13 non-bivalent TFs were targeted by the PRC2-bound silencers (Fisher’s exact 443 

P-value = 1.6×10-6). Among the seven example bivalent TFs (Fig. 4b-i), five were targeted by the 444 

silencers (En2, Gata4, Wt1, Foxq1, and Evx2).  445 

 446 

 447 

DISCUSSION 448 

We defined 18 chromatin states by integrating data on eight histone marks (ChIP-seq), chromatin 449 

accessibility (ATAC-seq), and DNA methylation (WGBS) in 66 biosamples across fetal mouse 450 

development (Fig. 1). We recapitulated the human states previously defined using fewer marks10 and 451 

refined enhancer, bivalent, and quiescent states. Regions annotated in these states showed higher 452 

variations among tissues and lower developmental variations across time-points in the same tissue 453 

(Fig. 2a), and the variations were specific enough to distinguish the tissue-of-origin for the 66 454 

biosamples (Fig. 2c). Our chromatin state annotation should provide a useful resource for studying 455 

mammalian development. 456 

 457 
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We define two types of repressive states: ReprPC and ReprPCWk, the two states highly enriched in 458 

H3K27me3, jointly occupy 3.7% of the genome, and Het, the state highly enriched in H3K9me3, 459 

occupies 1.8% of the genome. However, Zaret and colleagues reported much larger genomic 460 

footprints for H3K27me3 domains (~10% of the human genome) and H3K9me3 domains (~20% of the 461 

human genome)48. They pointed out that if H3K9me3 and H3K27me3 ChIP-seq data were not 462 

normalized to input chromatin from the same experiment, reads for those marks would be under-463 

represented, which could result in smaller H3K27me3 and H3K9me3 domains. We did normalize all 464 

histone mark ChIP-seq data to the input chromatin from the same experiment, and our signal files for 465 

H3K27me3 and H3K9me3 showed the same enriched regions as in the earlier work48; thus, the 466 

smaller genomic footprints of our ReprPC, ReprPCWk, and Het states were not a normalization 467 

artifact. We also define five quiescent states (Quies, Quies2, Quies3, Quies4, QuiesG) collectively 468 

occupy 80.5% of the mouse genome. These states show closed chromatin, very low levels of histone 469 

marks, and varying levels of DNA methylation. Except for Quies2, the other four quiescent states 470 

show low levels of H3K27me3 and H3K9me3 (Fig. 1c), the two repressive histone marks, and could 471 

encompass some of the H3K27me3 and H3K9me3 domains. Thus, we directly compared ChromHMM 472 

states with the H3K27me3 and H3K9me3 domains in the same IMR90 cell line as Becker et al., and 473 

found that 17% of H3K27me3 domains and 60% of H3K9me3 domains were in quiescent states; 474 

nevertheless, the ReprPC and ReprPCwk states were the most enriched in H3K27me3 domains and 475 

the Het state was the most enriched in H3K9me3 domain. Thus, Quies, Quies3, Quies4, and QuiesG 476 

states contain large portions of low-signal H3K27me3 and H3K9me3 domains.  477 

 478 

Because enhancers and promoters have been examined extensively in previous ChromHMM 479 

studies6,10,29, we decided to focus on the TssBiv state in the current study. TssBiv has the smallest 480 

genomic footprint (0.3% of the genome in a particular biosample) among the 18 states, yet TssBiv is 481 

discovered consistently by the five-mark, eight-mark, and ten-mark models. TssBiv is particularly 482 

conserved evolutionarily, on average more conserved than genomic regions assigned to any other 483 

states (Fig. 5). We define 14,558 bivalent regions upon an integration of data in 66 biosamples, and 484 

roughly half of these regions overlap GENCODE-defined TSSs and the other half are intergenic. The 485 

bivalent TSSs show low mRNA levels in a tissue and developmental time-point specific manner (Fig. 486 

3). These TSSs are highly enriched in tissue-specific TF genes (Fig. 3, 4). The TF TSSs in the TssBiv 487 

state are much more evolutionarily conserved than the TF TSSs in other chromatin states (the two 488 

bottom-right panels in Supplementary Fig. 10). Comparison with the recent ChIA-PET data28 489 

revealed that the bivalent regions are highly enriched in PRC2-bound silencers and their target TSSs. 490 

Meanwhile, the TSSs of the target genes of PRC2-bound silencers are highly enriched in the TssBiv 491 

state in individual biosamples (Fig. 6). Taken together, these results indicate that TssBiv is a 492 

chromatin state that marks evolutionarily conserved PRC2-bound silencers and their target TSSs. It is 493 
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intriguing that both PRC2-bound silencers and their target TSSs possess the same epigenetic 494 

signature and hence are assigned the same TssBiv state. This is perhaps not surprising because they 495 

are recognized by the PRC2 protein complex. Along this line of reasoning, Enhancers and active 496 

TSSs also share some epigenetic features (open chromatin, high levels of active marks such as 497 

histone acetylation, and low DNA methylation; Enh and Tss states in Fig. 1c). 498 

  499 

Our systematic analysis of bivalent regions in mouse fetal tissues complement earlier studies on 500 

bivalent regions in other cell types and biological systems. Bivalent regions were first discovered in 501 

embryonic stem cells23, where their functions have been extensively studied. They have been shown 502 

to repress their associated genes and yet allow them to be poised for quick responses to stimuli. 503 

When embryonic stem cells differentiate, these bivalent genes become monovalent, retaining either 504 

the active marks or the repressive mark, and accordingly be expressed or repressed19. Subsequent 505 

studies reported bivalent domains in the differentiating CD4+ T cells27, the multipotent cranial neural 506 

crest cells26, adult intestinal villi cells with regenerative potential24, and terminally differentiated 507 

medium spiny neurons in the striatum25. In each of these studies, disruption of Polycomb group 508 

proteins led to the activation of the bivalent genes but not genes marked by H3K27me3 only24,25, 509 

suggesting that bivalency is a mechanism for persistent gene repression from embryonic stem cells to 510 

terminally differentiated cells.  511 

 512 

Our analysis of bivalent genes in mouse fetal tissues indicates that they have low expression levels in 513 

the tissues where they are bivalent and are enriched for developmental transcription factors under 514 

tissue- and time-point-specific repression. A repressed gene can be in a quiescent chromatin state, 515 

which corresponds to low levels of all histone marks and high DNA methylation, such as GATA1 (Fig. 516 

4d). Alternatively, it can be in an H3K9me3-enriched Het state accompanied by low levels of active 517 

histone marks and high levels of DNA methylation (Fig 1d). However, a majority of the bivalent TSSs 518 

in fetal tissues overlap CpG islands (mean = 62.5% across the 66 biosamples, vs. 29.8% for non-519 

bivalent TSSs). DNA-hypomethylated CpG islands recruit both Polycomb group and Trithorax group 520 

proteins to lay down H3K27me3 and H3K4me3 marks respectively, and the expression level of the 521 

gene reflects the competition between Polycomb-mediated repression and Trithorax-mediated 522 

activation49,50. As a result, the interplay between the TssBiv, Tss, and ReprPC chromatin states 523 

(Supplementary Fig. 3a) reflects the main mechanism—distinct from quiescent or Het chromatin 524 

states—for silencing genes with CpG-rich TSSs in a tissue-specific manner throughout fetal 525 

development and possibly in adulthood. 526 

 527 

In conclusion, we present genome-wide annotations of 18 chromatin states using ten chromatin marks 528 

all assayed in a mouse developmental matrix—twelve fetal tissues across 4-7 developmental time-529 
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points at daily intervals from E11.5 to birth. These comprehensive annotations enabled us to 530 

investigate the changes of chromatin profiles across tissue and time-points and connect the changes 531 

with gene expression. In particular, we analyzed bivalent regions in detail and found these 532 

evolutionarily conserved regions to be highly enriched in master transcriptional factors important for 533 

regulating tissue-specific developmental processes. More broadly, our results suggest that bivalent 534 

regions represent a mechanism for silencing CpG-rich genes in a tissue- and time-point-specific 535 

manner.  536 

 537 

 538 

METHODS 539 

Experimental data processing for mouse epigenome construction and chromatin state 540 

definition 541 

We downloaded datasets processed for the mouse genome (mm10) from the ENCODE Portal12,51 542 

(http://encodeproject.org) that corresponded to eight histone marks (H3K4me1, H3K4me2, H3K4me3, 543 

H3K9ac, H3K27ac, H3K36me3, H3K9me3, H3K27me3), ATAC-seq, and WGBS for each of 66 544 

epigenomes (Supplementary Table 1). All biosamples were from the C57BL/6 mouse strain. For 545 

each histone mark, two biological replicates of the ChIP experiment were performed, and for each 546 

epigenome, two replicates of the control (input) experiment were performed. We ran ChromHMM6 on 547 

the 66 epigenomes at the default 200-bp resolution, using the histone ChIP-seq BAM files and the 548 

relevant control files for each dataset. For ATAC-seq data, each BAM file was converted to a signal 549 

track as follows. Reads were extended to their fragment size and counts-per-million were calculated 550 

for all non-overlapping 200-bp genomic windows. Quantile normalization was then applied across the 551 

entire data set and the normalized signal was binarized, using a threshold of 0.5. For WGBS data, 552 

BED files containing CpG percentages were downloaded from the ENCODE portal (Supplementary 553 

table 1), mean %CpG was calculated for all non-overlapping 200-bp genomic windows and after 554 

combining the two replicates for each biosample, binarization was applied, at a cutoff of 50% CpG. 555 

 556 

We defined 18 chromatin states using ChromHMM6 using the processed data described above on the 557 

10 marks and assigned each 200-bp genomic bin (13,627,678 of them in total for the entire mouse 558 

genome) to one of the 18 chromatin states in each biosample. We used the genomic bins with 559 

posterior probability > 0.5 for the downstream analysis; these bins composed 99% of the genome on 560 

average. 561 

 562 

Enrichment of chromatin states in other annotations (Fig. 1c) 563 

We assessed the chromatin states assignments in each of the 66 epigenomes for their enrichments in 564 

three types of annotations (Fig. 1c, the right panel titled Enrichment): (1) for CpG islands, we 565 
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downloaded cpgIslandExtUnmasked.txt from the UCSC Genome Browser; (2) we used GENCODE 566 

version M4 for gene-related annotations (transcription start sites or TSS, transcription end sites or 567 

TES, gene, exon, and intron); and (3) we used epigenetic annotations (EP300 and CTCF ChIP-seq 568 

peaks and DHS). 569 

 570 

For every chromatin state, we computed its enrichment for each annotation, defined as the observed 571 

joint probability (P) of a chromatin state and an annotation occurring together over the expected joint 572 

probability (i.e., assuming the state and the annotation occur independently): 573 

 574 

Enrichment = P(chromatin state i, annotation j) / P(chromatin state i) x P(annotation j) 575 

 576 

For visualization (the right panel of Fig. 1c titled Enrichment), the enrichments were scaled between 0 577 

and 1: 578 

 Enrichmentscaled = (Enrichment - Enrichmentmin) / (Enrichmentmax - Enrichmentmin) 579 

 580 

We further integrated the RNA-seq data (Supplementary Table 1) processed with the ENCODE 581 

uniform processing pipeline to compute the enrichment of the chromatin states in expressed or 582 

repressed genes for each of the 66 epigenomes12. For plotting the enrichment panels in Fig. 1c, we 583 

clustered genes into either expressed or repressed groups in each biosample based on an 584 

expression-level cutoff determined using a two-component Gaussian mixture model. The expression 585 

levels (in TPM) for the two replicates of each biosample were averaged.  586 

 587 

We calculated the enrichment of the chromatin states in EP300 and CTCF ChIP-seq peaks and 588 

DNase hypersensitive sites (the right-most panel in Fig. 1c) for those epigenomes that had the EP300 589 

and CTCF ChIP-seq or DNase-seq data available in the corresponding tissues and time-points 590 

(Supplementary Table 1). For the EP300 ChIP-seq data, the BAM files from two biological replicates 591 

were pooled, and peaks were called using MACS252 with the q-value cutoff of 0.01. For the CTCF 592 

ChIP-seq data, the optimal IDR thresholded peaks53 defined by the ENCODE uniform ChIP-seq 593 

pipeline were used12. For the DNase-seq data, the hotspots defined by the ENCODE uniform DNase-594 

seq processing pipeline were used12. 595 

 596 

Partial epigenome simulation and construction (Fig. 1d) 597 

To assess the reliability of chromatin state assignments on epigenomes that lacked the data for one of 598 

the ten chromatin marks, for each biosample we simulated ten partial epigenomes, starting with the 599 

ten-mark epigenome and omitting the data for each mark individually. We applied the ten-mark 18-600 

state ChromHMM model to the available data on the remaining nine marks and compared the 601 
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resulting chromatin states assignments with the chromatin state assignments of the ten-mark 602 

epigenome by computing the Jaccard similarity between all genomic bins (Fig. 1d). The chromatin 603 

states with Jaccard similarity less than 0.5 were labeled as misassigned in the missing-one-mark 604 

epigenomes.  605 

 606 

For the comparison with PRC2-bound silencers in embryonic stem cells, we also performed chromatin 607 

state assignment on embryonic stem cells, with data on seven histone marks (Supplementary Table 608 

1), missing H3K4me2, ATAC, and DNA methylation data. We simulated the effect of missing three 609 

marks using midbrain and forebrain samples. These chromatin state assignments of the seven-mark 610 

epigenomes were used to define bivalent genes and compared with the bivalent genes defined using 611 

the chromatin state assignments of the ten-mark epigenomes (see below).  612 

 613 

Chromatin state variations across tissues and time-points (Fig. 2a) 614 

We computed Jaccard similarity between a pair of epigenomes by comparing the chromatin states at 615 

the corresponding genomic bins between the two epigenomes.  616 

 617 

UMAP analysis of the epigenomes (Fig. 2d) 618 

We performed two-dimensional visualization of the 66 epigenomes using UMAP33 analysis on two 619 

sets of 200-bp genomic bins: those assigned to the Enh state or the TssBiv state in one or more 620 

biosamples. For the Enh genomic bins, UMAP was provided with the H3K27ac signal levels across 621 

the 66 biosamples and the following parameters were used: n_neighbors = 7, min_dist = 0.5, seed = 622 

11. For the TssBiv genomic bins, UMAP was provided with the signal levels of all ten marks across 623 

the 66 biosamples and the following parameters were used: n_neighbors = 10, min_dist = 0.04, seed 624 

= 12. 625 

 626 

Identification of bivalent TSSs and bivalent genes (Fig. 3, 4) 627 

We developed a method to identify bivalent TSSs and bivalent genes by their chromatin states in 628 

each epigenome, described as follows. We first converted each epigenome to a character string using 629 

an 18-letter alphabet (one symbol for each state). Regular expressions were then used to extract 630 

punctate (median length 1800 bp) bivalent domains (stretches of contiguous genomic bins) in each 631 

epigenome, defined as bivalent chromatin states flanked by quiescent or heterochromatin states 632 

(ReprPC, ReprPCWk, Quies, Quies2, Quies3, Quies4, or QuiesG state). We used the union (14,558 633 

regions across all tissue time-points, median 3,514 per tissue time-point, neighboring regions were 634 

not merged) of the detected genomic regions matching our regular expression for downstream 635 

analyses. Of the 14,558 regions detected in the 66 biosamples collectively, 14,729 regions 636 

overlapped GENCODE-annotated TSSs; we denote these bivalent TSSs. We further define a bivalent 637 
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gene as having at least one bivalent TSS, yielding 6,797 genes that are bivalent in any of the 12 638 

tissues.  639 

 640 

We detected on average ~3,400 bivalent genes per tissue, defined as genes that are bivalent in any 641 

of the time-points in the tissue. We performed Gene Ontology (GO) analysis on bivalent genes using 642 

the PANTHER tool54. The genes used in the Gene Ontology (GO) analysis, of which the results are 643 

listed in Supplementary Table 4 were obtained as follows: TSSs extracted from the M4 GENCODE 644 

annotations were intersected with the bivalent regions detected in each tissue. For each tissue, genes 645 

for which one or more TSSs intersected were retained. Then, the 1,077 genes that were found to 646 

have TSSs overlapping bivalent regions in all tissues were used as input for the GO analysis 647 

(Supplementary Table 4a, b). Another set of 1,291 genes was obtained using the same process, 648 

except genes were collected that had TSSs in bivalent regions only in liver samples and not in any 649 

other 11 tissues (Supplementary table 4c, d). Gene IDs were translated into gene names prior to 650 

submission to PANTHER. For six gene IDs, no matching gene name was found, leaving 1,074 and 651 

1,288 genes in the “all tissues” and the “liver-only” gene sets for submission. PANTHER was run on 652 

the GO “Biological Process” ontology, using Fisher’s exact test and FDR for P-value calculations. 653 

 654 

Gene annotations and identification of transcription factors (Fig. 3d, Fig. 4, supplementary 655 

tables 2-4) 656 

GENCODE M4 gene annotations were used to identify genes and transcription start sites (TSSs). To 657 

avoid double-counting TSSs, coinciding TSSs were merged. To identify transcription factors, we used 658 

the list of transcription factors and their homologs in mouse and human34. Ensembl IDs were obtained 659 

by mapping gene names to the GENCODE M4 annotations55. 552 TFs matched IDs in the GENCODE 660 

M4 mouse annotations. 661 

 662 

Evolutionary analysis (Fig. 5a-b, Supplementary Fig. 10) 663 

We averaged the mouse 60-way phyloP47 score across the genomic positions in each 200-bp 664 

genomic bin. We then average this per-bin score for all the genomic bins assigned to a particular 665 

chromatin state in each biosample to obtain the average PhyloP score per state per biosample 666 

(Supplementary Fig. 10, first 18 panels). For each tissue (Fig. 5a), the PhyloP scores from the 667 

biosamples at different time-points were further averaged. For the TF TSSs (Supplementary Fig. 10, 668 

the two bottom-right panels), we used the PhyloP score for genomic bins where each TF TSS resided 669 

in, stratified by whether that bin was assigned to the TssBiv state or not. 670 

 671 

Overlap of Enh regions with annotated transposons (Fig. 5c) 672 
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We used transposon annotations in the mouse genome from Repbase56 to analyze the Enh state 673 

across different tissues (Fig. 5c). We overlapped the genomic bins assigned to the Enh state in each 674 

biosample with annotated transposons, requiring at least 1-bp overlap. The percentage of all genomic 675 

bins that overlapped transposons was used as control (gray dashed line in Fig. 5c). 676 

 677 

Analysis of PRC2-bound silencers (Fig. 6, Supplementary Fig. 11, 12) 678 

We used the 18,000 PRC2-bound silencers classified into four groups based on their H3K27ac signal 679 

in mouse fetal tissues28. We overlapped the PRC2-bound silencers with our 14,558 bivalent regions, 680 

requiring at least half of the length of a silencer length to overlap. We randomly selected genomic 681 

regions with the same lengths as the bivalent regions to act as controls. Furthermore, we assigned 682 

each silencer to a chromatin state in a particular biosample according to which chromatin state the 683 

center of the silencer falls in. 684 

 685 

We included embryonic stem cells in this analysis (ES-Bruce4). These cells were derived from 686 

C57BL/6, the same strain of mice from which the tissues were harvested. We only had data on seven 687 

histone marks on embryonic stem cells (Supplementary Table 1), and simulation of this partial 688 

epigenome (see above Methods) showed no major impact on the assignment of the TssBiv state and 689 

the resulting bivalent genes. Simulating using midbrain and forebrain samples, we found that most 690 

bivalent genes were identified using the partial epigenome. For example, among the 2,250 bivalent 691 

genes in the midbrain E11.5 sample, 2,014 (89.5%) were identified using the partial epigenome. 692 

 693 

Data availability 694 

All experimental data used in this paper can be accessed at the encode Portal 695 

(http://www.encodeproject.org/), using the accession IDs listed in Supplementary Table 1.  696 

 697 

Code Availability 698 

The code used to extract genomic regions based on regular expression can be found on GitHub, at 699 

https://github.com/weng-lab/stateregexp.git. 700 

 701 

Data visualization via a UCSC track hub 702 

We made a track hub (https://users.wenglab.org/vanderva/trackhub/chromhmmpaper/hub_0.txt) for 703 

the UCSC genome browser57 to visualize all the data and annotations used in this study listed below. 704 

The trackhub can be accessed via a UCSC session: 705 

https://genome.ucsc.edu/s/Kaili/ChromHMM_paper. 706 

 707 

1. ten-mark, 18-state chromatin state assignments (in dense mode) 708 
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BigWig experimental data complete for 66 biosamples (in hide mode): 709 

a. ChIP-seq of eight histone marks 710 

b. ATAC-seq 711 

c. WGBS 712 

d. RNA-seq 713 

e. DNase when available 714 

f. EP300 ChIP-seq when available 715 

g. CTCF ChIP-seq when available 716 

2. ES-Bruce4 chromatin state assignments (in dense mode) 717 

BigWig experimental data for ES-Bruce4 (in hide mode) 718 

a. ChIP-seq of seven histone marks 719 

b. RNA-seq 720 

c. EP300 ChIP-seq 721 

d. CTCF ChIP-seq 722 

3. Turn on the GENCODE gene annotation (in pack mode) 723 

4. Turn on the CpG island track from UCSC (in dense mode) 724 

5. Bivalent regions (in dense mode) 725 

6. PRC-bound silencers and their target TSSs in two tracks (in dense mode) 726 

7. Turn on the PhyloP conservation track (in full mode) 727 

8. Turn on VISTA enhancer track hub (in hide mode) 728 

9. Mouse cCREs (in hide mode) 729 

 730 
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FIGURE CAPTIONS 744 

Figure 1: Overview of the 66 epigenomes and 18 chromatin states during mouse 745 

embryogenesis. 746 

a. Twelve tissues at 4-7 developmental time-points have ChIP-seq data for eight histone marks 747 

(green boxes), ATAC-seq data, and DNA methylation (DNAme) data, totaling 66 complete 748 

epigenomes. Twenty-one of these epigenomes also have DNase-seq data (red dots). 749 

Embryonic stem cells (orange box) have ChIP-seq data for seven histone marks, and are 750 

missing H3K4me2, ATAC-seq, and DNAme. 751 

b. Eighteen chromatin states are defined by ChromHMM across the 66 complete epigenomes. 752 

c. Histone-mark probabilities, genome coverage, and overlapping genomic features including 753 

gene expression, regulatory features (P300 binding, CTCF binding, and DNase I 754 

hypersensitive sites), and distances to the TSSs of expressed and repressed genes are shown 755 

for each chromatin state. The enrichments for the categories are the averaged values across 756 

tissues and time-points. 757 

d. Jaccard similarities between the partial epigenomes with each mark omitted and the ten-mark 758 

E13.5 midbrain epigenome.  759 

e. The Dlx1 locus is displayed with chromatin states (color-coded as in a) in the forebrain and the 760 

liver for all seven time-points. Also shown are the signals of several histone marks (scale: 0–761 

50) that differ between forebrain and liver (for E11.5, E13.5, E15.5, and P0 only, due to space 762 

constraints), along with ATAC and DNA methylation signals. A transgenic mouse embryo is 763 

shown on top of the enhancer region, indicating the forebrain-specific activity of this enhancer. 764 

A CpG island that overlaps with the bivalent region at the TSS of Dlx1 is shown at the bottom 765 

of the panel. 766 

 767 

Figure 2: Variations of the chromatin states across tissues and their transitions along the 768 

developmental trajectory. 769 

a. Jaccard similarity between different time-points in the same tissue (y-axis) versus the similarity 770 

between different tissues at the same time-point (x-axis). Error bars indicate the range 771 

between the first and third quartiles. 772 

b. Transitions between chromatin states along midbrain developmental time-points. For clarity, 773 

only the genomic bins assigned TSS-related states (Tss, TssFlnk, and TssBiv) at one or more 774 

time-points are included. 775 

c. Same as b but for genomic bins assigned enhancer-related states (Enh, EnhLo, EnhPois, and 776 

EnhPr) at one or more developmental time-points. 777 

d. Visualization of the 66 epigenomes in two dimensions using the UMAP technique. (Left) 778 

UMAP was given the H3K27ac signals in the Enh genomic bins across the 66 epigenomes. 779 
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There were 735,048 such genomic bins, which were assigned Enh in one or more 780 

epigenomes. (Right) UMAP was given the signals of all ten marks in the TssBiv genomic bins 781 

across the 66 epigenomes. There were 156,752 such genomic bins, which were assigned 782 

TssBiv in one or more epigenomes. 783 

 784 

Figure 3: Count and expression of bivalent genes along developmental time-points. 785 

a. The number of bivalent genes at 1 to 7 time-points in the midbrain. Observed and expected 786 

numbers of genes are in red and in gray respectively.  787 

b. Median expression levels of three groups of genes: (green) bivalent at the earliest time-point 788 

but not at the last time-point, (blue) bivalent at the last time-point but not at the first time-point, 789 

and (pink) bivalent at all time-points. 790 

c. Distribution of gene expression, with genes grouped by the total number of time-points at 791 

which their TSSs are in the bivalent state TssBiv (left) or in the active state Tss (right) in the 792 

forebrain. The total number of genes in each group is shown below each box plot in 793 

parentheses. For all boxplots, whiskers show 95% confidence intervals, boxes represent the 794 

first and third quartiles, the vertical midline is the median, and outliers are omitted. There is a 795 

negative correlation between expression and the duration of the bivalent state and a positive 796 

correlation between expression and the duration of the active state (P-values < 2.2 x 10-16).  797 

d. Violin plots show the distributions of tissue-specificity scores for bivalent and non-bivalent 798 

genes that encode transcription factors (TFs) and non-TFs. Medians are shown in black bars 799 

with values indicated. P-values are shown for three comparisons as indicated. 800 

 801 

Figure 4: Expression profiles and chromatin states for the transcription factors with the 802 

highest tissue-specificity scores. 803 

a. Hierarchical clustering of expression profiles for the TFs with tissue specificity scores greater 804 

than 6, with 75 TFs in total. Rows on the top show the maximal expression level across all 805 

biosamples (intensities of red), bivalency status (brown for 62 bivalent TFs, and yellow for 13 806 

non-bivalent TFs), and tissue specificity score (intensities of green). 807 

b-i. Example TFs and the chromatin state assignments near their loci. Among these, Gata1 (d) is a 808 

non-bivalent TF and the rest are bivalent TFs: Arx (b), En2 (c), Gata4 (e), Wt1 (f), Foxq1 (g), 809 

Evx2 (h), and Alx1 (i). Each gene name is near the 5´-end of the gene, and CpG islands are 810 

indicated as green boxes beneath each gene. Chromatin states are colored as in Fig. 1. 811 

 812 

Figure 5: Evolutionary conservation of genomic regions by chromatin state. 813 

a. The PhyloP conservation score (phyloP60way for mm10) for genomic regions assigned to 814 

each chromatin state. Colors correspond to tissues. 815 
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b. PhyloP score for genomic bins assigned to Enh in all 12 tissues. 816 

c. Percentage of bins assigned to Enh that overlap with transposons, for all 12 tissues. 817 

 818 

Figure 6: PRC2-bound silencers and their target TSSs are enriched in the TssBiv and ReprPC 819 

states. 820 

a. Percentage of PRC2-bound silencers whose centers overlap a genomic bin assigned to the 821 

TssBiv, Tss, ReprPC, or other chromatin states. Silencers were divided into four groups by 822 

Ngan et al.28 according to H3K27ac signals in mouse fetal tissue biosamples. To normalize for 823 

the differential genomic coverage of the chromatin states, the same numbers of genomic bins 824 

were randomly drawn in the other states to match the number of genomic bins in TssBiv in 825 

each biosample. States are colored as in Fig. 1b and the average of the other 15 states is 826 

shown as a gray dashed line.  827 

b. Same as a but for the TSSs targeted by the PRC2-bound silencers defined by Ngan et al.28. 828 

 829 

 830 

SUPPLEMENTARY FIGURE CAPTIONS 831 

Supplementary Fig. 1: Comparison of the five-mark, eight-mark, and ten-mark models. 832 

a Emission probabilities for the five-mark 15-state model, the eight-mark 15-state model, and the ten-833 

mark 18-state model, with the ten-mark model reproduced from Fig. 1c for easy comparison with the 834 

other two models. b-e Alluvial plots illustrate the correspondence of chromatin states across the three 835 

models in forebrain e13.5. b With genomic bins assigned to a quiescent state by all three models 836 

omitted, 3,743,342 genomic bins are shown. c All 13,627,678 200-bp bins in the genome. d Genomic 837 

bins assigned to Enh by one of the models. e Genomic bins assigned to TssBiv by one of the models.  838 

 839 

Supplementary Fig. 2: Chromatin state transition from early to late time-points. 840 

Genomic bins assigned to TssBiv in the forebrain at one or more time-points are included. States are 841 

colored as in Fig. 1c. 842 

 843 

Supplementary Fig. 3: Comparison of genomic coverages of TssBiv, Tss and ReprPC, and the 844 

decrease of TssBiv coverage over time. 845 

a A Venn diagram shows the overlap of genomic regions assigned to the TssBiv, Tss, or ReprPC 846 

state in any of the 66 epigenomes. b red lines show the percentages of the genome in the TssBiv 847 

state over the time course of development for each tissue. Only the five tissues with seven time-points 848 

are included. P-values for linear fit (blue dashed line, with the 95% confidence interval in gray shaded 849 

area) are provided.  850 

 851 
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Supplementary Fig. 4: Word clouds for enriched GO terms in bivalent genes. 852 

Gene ontology (GO) enrichment analyses were performed using the PANTHER tool for two groups of 853 

genes: genes with bivalent TSSs in (a) all 12 tissues; (b) in the liver and not in any other tissues. For 854 

each analysis, a summary of significantly enriched GO terms is presented as a word cloud. See 855 

Supplementary Table 4 for full PANTHER results. 856 

 857 

Supplementary Fig. 5: Expression levels of genes with or without bivalent TSSs. 858 

For each tissue, the expression levels of genes (in TPM) are plotted, stratified by whether it has a 859 

bivalent TSS at all time-points. For each box plot, the total number of genes in each group is shown at 860 

the bottom. Outliers are omitted for clarity. Wilcoxon P-values for comparing the two groups of genes 861 

in each tissue are provided.  862 

 863 

Supplementary Fig. 6: Number of genes that are bivalent in a certain number of time-points. 864 

For each tissue, the total number of genes that are deemed bivalent in a certain number of time-points 865 

is plotted in red, compared with the expected number (in grey) if genes were randomly assigned to be 866 

bivalent at each time-point. 867 

 868 

Supplementary Fig. 7: Expression of genes with bivalent TSS at early vs. late time-points. 869 

Median expression levels of genes stratified into three distinct categories are plotted: genes deemed 870 

bivalent at the first time-point but not at the last (early-bivalent genes; blue line); genes deemed 871 

bivalent at the last time-point but not at the first (late-bivalent genes; green); and genes with bivalent 872 

TSS at all time-points (all-bivalent genes; red dashed line). Wilcoxon rank-sum test P-values for the 873 

comparisons between early- and late-bivalent genes for their expression levels at the first time-point 874 

(green P-values); between the early- and late-bivalent genes at the last time-point (blue P-values); 875 

and between all-bivalent genes vs. early- and late-bivalent genes (red P-values). n.s. stands for not 876 

significant.  877 

 878 

Supplementary Fig. 8: Correlations between gene expression and the duration of bivalent and 879 

active TSSs. 880 

The expression levels of genes with a certain duration (number of time-points) of being bivalent (a) or 881 

active (b) in each tissue. Numbers in parentheses indicate the number of genes for each duration. P-882 

values were computed with ANOVA with multiple-testing correction. 883 

 884 

Supplementary Fig. 9: Tissue specificity for groups of genes classified by whether their TSSs 885 

overlap CpG islands. 886 
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Tissue-specificity scores are shown for all genes, and subsets of genes depending on whether they 887 

encoded TFs, they have a bivalent TSS, and whether the TSSs overlap CpG islands. Wilcoxon P-888 

values for comparing the CpG and non-CpG groups of genes are provided. 889 

 890 

Supplementary Fig. 10: Evolutionary conservation for genomic bins assigned to each 891 

chromatin state in each biosample. 892 

Average PhyloP scores are plotted for the 18 chromatin states. The last two panels (bottom right) are 893 

TSSs of transcription factors stratified by whether they fall in a TssBiv genomic bin or not. The 894 

thickness of a line corresponds to the standard error. Tissues are colored accordingly. 895 

 896 

Supplementary Fig. 11: Chromatin state assignments for the center positions of PRC2-bound 897 

silencers. 898 

Four groups of PRC2-bound silencers correspond to those in Fig. 6a are plotted across time-points in 899 

the forebrain (a-d) and liver (e-h). The state assignments for mouse embryonic stem cells (ES) are 900 

included for comparison. States are colored as in Fig. 1c. 901 

 902 

Supplementary Fig. 12: Chromatin state assignments for the TSSs targeted by PRC2-bound 903 

silencers. 904 

This figure corresponds to supplementary Fig. 12 but for the TSSs targeted by PRC2-bound silencers. 905 

 906 

 907 

SUPPLEMENTARY TABLES 908 

Supplementary Table 1: Input datasets and their ENCODE accessions. ENCODE file accession 909 

IDs for all input files. a. BAM files for histone ChIP-seq datasets and controls. b. BED files with CpG 910 

calls from WGBS. c. RNA-seq TPM matrices for the two replicates of each biosample. d. BAM files for 911 

ATAC-seq. e. BAM files for DNase-seq. 912 

 913 

Supplementary Table 2: Bivalent TSSs in each biosample. GENCODE M4 TSS annotations were 914 

intersected with bivalent regions in each biosample. Sites occupying the same genomic position were 915 

merged. 916 

 917 

Supplementary Table 3: Bivalent genes and their expression levels. a. Expression levels are 918 

reported in TPM, in each tissue and time-point. b. The number of bivalent genes shared between any 919 

pair of biosamples. c. The number of bivalent genes shared between any pair of tissues. Diagonal 920 

numbers indicate the total number of bivalent genes in each tissue. d. Bivalent state of the TSSs of 921 
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the genes in each biosample. e. Bivalent regions defined across all biosamples. f. Union of bivalent 922 

regions detected in all biosamples, as determined by regular expression (see Methods). 923 

 924 

Supplementary Table 4: GO enrichment analysis using the PANTHER tool. a. PANTHER output 925 

for genes that are bivalent in all tissues. b. List of genes submitted for analysis in a. c. PANTHER 926 

output for genes that are bivalent exclusively in the liver. d. List of genes submitted for analysis in c. 927 

 928 

 929 
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Figure 1: Overview of the 66 epigenomes and 18 chromatin states during mouse embryogenesis. 
a. Twelve tissues at 4-7 developmental time-points have ChIP-seq data for eight histone marks (green boxes), ATAC-seq data, and 
DNA methylation (DNAme) data, totaling 66 complete epigenomes. Twenty-one of these epigenomes also have DNase-seq data (red dots). 
Embryonic stem cells (orange box) have ChIP-seq data for seven histone marks, and are missing H3K4me2, ATAC-seq, and DNAme. 
b. Eighteen chromatin states are defined by ChromHMM across the 66 complete epigenomes. 
c. Histone-mark probabilities, genome coverage, and overlapping genomic features including gene expression, regulatory features 
(P300 binding, CTCF binding, and DNase I hypersensitive sites), and distances to the TSSs of expressed and repressed genes are shown 
for each chromatin state. The enrichments for the categories are the averaged values across tissues and time-points. 
d. Jaccard similarities between the partial epigenomes with each mark omitted and the ten-mark E13.5 midbrain epigenome.  
The Dlx1 locus is displayed with chromatin states (color-coded as in a) in the forebrain and the liver for all seven time-points. Also shown are 
the signals of several histone marks (scale: 0–50) that differ between forebrain and liver (for E11.5, E13.5, E15.5, and P0 only, due to space 
constraints), along with ATAC and DNA methylation signals. A transgenic mouse embryo is shown on top of the enhancer region, indicating 
the forebrain-specific activity of this enhancer. A CpG island that overlaps with the bivalent region at the TSS of Dlx1 is shown at the bottom 
of the panel.
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Figure 2: Variations of the chromatin states across tissues and their transitions along the developmental trajectory. 
a. Jaccard similarity between different time-points in the same tissue (y-axis) versus the similarity between different tissues at the 
same time-point (x-axis). Error bars indicate the range between the first and third quartiles. 
b. Transitions between chromatin states along midbrain developmental time-points. For clarity, only the genomic bins assigned TSS-
related states (Tss, TssFlnk, and TssBiv) at one or more time-points are included. 
c. Same as b but for genomic bins assigned enhancer-related states (Enh, EnhLo, EnhPois, and EnhPr) at one or more 
developmental time-points. 
Visualization of the 66 epigenomes in two dimensions using the UMAP technique. (Left) UMAP was given the H3K27ac signals in the Enh 
genomic bins across the 66 epigenomes. There were 735,048 such genomic bins, which were assigned Enh in one or more epigenomes. 
(Right) UMAP was given the signals of all ten marks in the TssBiv genomic bins across the 66 epigenomes. There were 156,752 such 
genomic bins, which were assigned TssBiv in one or more epigenomes.
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Figure 3: Count and expression of bivalent genes along developmental time-points. 
a. The number of bivalent genes at 1 to 7 time-points in the midbrain. Observed and expected numbers of genes are in red and in 
gray respectively.  
b. Median expression levels of three groups of genes: (green) bivalent at the earliest time-point but not at the last time-point, (blue) 
bivalent at the last time-point but not at the first time-point, and (pink) bivalent at all time-points. 
c. Distribution of gene expression, with genes grouped by the total number of time-points at which their TSSs are in the bivalent 
state TssBiv (left) or in the active state Tss (right) in the forebrain. For all box plots, whiskers show 95% confidence intervals, boxes 
represent the first and third quartiles, and the vertical midline is the median, and outliers are omitted. The total number of genes in each 
group is shown below each box plot in parentheses. There is a negative correlation between expression and the duration of the bivalent 
state and a positive correlation between expression and the duration of the active state (P-values < 2.2 x 10-16).  
Violin plots show the distributions of tissue-specificity scores for bivalent and non-bivalent genes that encode transcription factors (TFs) and 
non-TFs. Medians are shown in black bars with values indicated. P-values are shown for three comparisons as indicated. 
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Figure 4: Expression profiles and chromatin states for the transcription factors with the highest tissue-specificity scores. 
a. Hierarchical clustering of expression profiles for the TFs with tissue specificity scores greater than 6, with 75 TFs in total. Rows on 
the top show the maximal expression level across all biosamples (intensities of red), bivalency status (brown for 62 bivalent TFs, and yellow 
for 13 non-bivalent TFs), and tissue specificity score (intensities of green). 
b-i. Example TFs and the chromatin state assignments near their loci. Among these, Gata1 (d) is a non-bivalent TF and the rest are bivalent 
TFs: Arx (b), En2 (c), Gata4 (e), Wt1 (f), Foxq1 (g), Evx2 (h), and Alx1 (i). Each gene name is near the 5´-end of the gene, and CpG islands 
are indicated as green boxes beneath each gene. Chromatin states are colored as in Fig. 1.
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Figure 5: Evolutionary conservation of genomic regions by chromatin state. 
a. The PhyloP conservation score (phyloP60way for mm10) for genomic regions assigned to each chromatin state. Colors 
correspond to tissues. 
b. PhyloP score for genomic bins assigned to Enh in all 12 tissues. 
c. Percentage of bins assigned to Enh that overlap with transposons, for all 12 tissues.  
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Figure 6: PRC2-bound silencers and their target TSSs are enriched in the TssBiv and ReprPC states. 
a. Percentage of PRC2-bound silencers whose centers overlap a genomic bin assigned to the TssBiv, Tss, ReprPC, or other 
chromatin states. Silencers were divided into four groups by Ngan et al.26 according to H3K27ac signals in mouse fetal tissue biosamples. 
To normalize for the differential genomic coverage of the chromatin states, the same numbers of genomic bins were randomly drawn in the 
other states to match the number of genomic bins in TssBiv in each biosample. States are colored as in Fig. 1b and the average of the other 
15 states is shown as a gray dashed line.  
b. Same as a but for the TSSs targeted by the PRC2-bound silencers defined by Ngan et al.26. 
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