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Abstract 16 

Transposable elements (TEs) make up a majority of a typical eukaryote’s genome, 17 

and contribute to cell heterogeneity and fate in unclear ways. Single cell-sequencing 18 

technologies are powerful tools to explore cells, however analysis is typically gene-19 

centric and TE activity has not been addressed. Here, we developed a single-cell TE 20 

processing pipeline, scTE, and report the activity of TEs in single cells in a range of 21 

biological contexts. Specific TE types were expressed in subpopulations of embryonic 22 

stem cells and were dynamically regulated during pluripotency reprogramming, 23 

differentiation, and embryogenesis. Unexpectedly, TEs were expressed in somatic 24 

cells, including human disease-specific TEs that are undetectable in bulk analyses. 25 

Finally, we applied scTE to single cell ATAC-seq data, and demonstrate that scTE can 26 

discriminate cell type using chromatin accessibly of TEs alone. Overall, our results 27 

reveal the dynamic patterns of TEs in single cells and their contributions to cell fate 28 

and heterogeneity. 29 

 30 
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Introduction 32 

Transposable elements (TEs) are a heterogeneous collection of genomic elements 33 

that have at various stages invaded and replicated extensively in eukaryotic genomes. 34 

The vast majority of TEs are fossils, and can no longer duplicate themselves, but they 35 

remain inside the genome and in mammals occupy nearly half the total DNA1. 36 

Intriguingly, it is becoming clear that both the active and remnant TEs are participating 37 

in evolutionary innovation and in biological processes2-5, such as embryonic 38 

development6-9, and in human disease and cancer10,11. Additionally, TEs carry cis-39 

regulatory sequences and their duplication and insertion can reshape gene regulatory 40 

networks by redistributing transcription factor (TF) binding sites and evolving new 41 

enhancer activities12-14. TEs transcription also has a key influence upon the 42 

transcriptional output of the mammalian genome15. However, the role of TEs in cell 43 

type heterogeneity and biological processes has only recently begun to be explored 44 

in depth. 45 

Single cell RNA-seq (scRNA-seq) has developed as a powerful tool to observe 46 

cell activity16-18. Many new techniques have been developed to recover or reconstruct 47 

missing observations, such as spatial, temporal, and cell lineage information. However, 48 

an important source of genomic information has so far been overlooked in single cell 49 

studies: the effect of TEs. Despite their importance, we lack quantitative understanding 50 

of how those genomic elements are involved in cell fate regulation at the single cell 51 

level. As TEs pose unique challenges in quantification, due to their degeneracy and 52 

multiple genomic copies, a prerequisite to understand TEs at the single cell level is a 53 

tool to quantify the hundreds to millions of copies of repetitive elements within the 54 
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genome. To this end, we developed scTE, an algorithm that quantifies TE expression 55 

in single-cell sequence data. 56 

We firstly demonstrate scTE’s capabilities through an analysis of mouse 57 

embryonic stem cells (mESCs), which is one of the best characterized models for TE 58 

expression, as the expression of the endogenous retrovirus (ERV) MERVL marks a 59 

small population of cells in embryonic stem cell (ESC) cultures that are totipotent19,20, 60 

scTE could accurately recover the expected pattern of heterogeneous MERVL 61 

expression. Then, we applied our approach to several biological systems including 62 

human in vitro cardiac differentiation, mouse gastrulation, adult mouse somatic cells, 63 

the induced pluripotent reprogramming process and human disease data. Overall, we 64 

unveil hitherto unknown insights into complex TE expression patterns in mammalian 65 

development and human diseases. 66 

 67 

Results 68 

Quantification of TE expression in single cells with scTE  69 

Analysis of TEs pose special challenges as they are present in many hundreds to 70 

millions of copies within the genome. A common strategy in regular analyses is to 71 

discard multiple mapped reads, however this leads to loss of information from TEs 21. 72 

Assigning these reads to the best alignment location is the simplest way to resolve 73 

TE-derived reads, but it is not always correct for individual copies21,22. To solve this 74 

problem, we designed an algorithm in which TE reads are allocated to TE metagenes 75 

based on the TE type-specific sequence. We built a framework named scTE with this 76 

strategy, scTE maps reads to genes/TEs, performs barcode demultiplexing, quality 77 

filtering, and generates a matrix of read counts for each cell and gene/TE (Fig. 1a and 78 
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Supplementary Fig. 1a). scTE is easy to use, and its output is designed to be easily 79 

integrated into downstream analysis pipelines including, but not limited to, Seurat and 80 

SCANPY23,24. The algorithm can in principle be applied to infer TE activities from any 81 

type of single-cell sequencing based data, like single-cell ATAC-seq data, DNA 82 

methylation, and other single-cell epigenetic data.  83 

We first tested scTE’s ability by in silico mixing two cells lines, MEFs (mouse 84 

embryonic fibroblasts) and ESCs in different ratios25. Comparison with the gene-based 85 

Cell Ranger pipeline26, scTE shows nearly identical topology in a UMAP (Uniform 86 

Manifold Approximation and Projection) plot, and in marker genes expression (Fig. 1b 87 

and Supplementary Fig.1b). Even when one cell type only contributes a 1% minority 88 

in the mixture, scTE identified it correctly (Fig. 1b), indicating that scTE did not 89 

influence the global analysis of gene expression. These results demonstrate the 90 

sensitivity of scTE. 91 

Next, we sought to explore TE expression, around 12-14% of the reads were 92 

derived from TEs (Fig. 1c). Requiring at least 2-fold change and FDR<0.05, scTE 93 

detected 150 significantly differentially expressed TEs between ESCs and MEFs 94 

(Supplementary Fig. 1c), including ERVB7_1-LTR_MM, which is highly expressed in 95 

ESCs, and RMER10B in MEFs (Fig. 1d and Supplementary Fig.1d). Furthermore, 96 

UMAP based on single cell TE expression alone could distinguish the cell types with 97 

the expected ratio (Fig. 1e), demonstrating TE expression discerns cell identity. 98 

 99 

Deciphering TE heterogeneity in mouse ESCs and during human cardiac 100 

differentiation  101 
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It is known that a small subset of ESCs acquire a totipotent state named 2C-like cells 102 

and express a MERVL TE which also marks the embryonic 2-cell stage19,27,28. scTE 103 

could correctly identify this rare 2C-like subpopulation in UMAP plots, based on the 104 

specific marker genes Zscan4c and Tcstv3, and the expression of MERVL and 105 

MT2_Mm TEs (Fig. 2a, b and Supplementary  Fig. 2a, b)19,29. If we discarded multiple 106 

mapped reads and only considered unique reads, the level of MERVLs was reduced, 107 

but it was still specifically expressed in the 2C-like cells (Supplementary Fig. 2c). This 108 

confirms that scTE can correctly identify known TE patterns.  109 

In humans, HERV-H LTRs are expressed in early embryos and human pluripotent 110 

stem cells (hPSCs), and contribute to pluripotency maintenance and somatic 111 

reprogramming6,30-32, but little is known about TE expression dynamics during 112 

differentiation to somatic cells. Applying scTE to an scRNA-seq time series of hPSCs 113 

differentiating to cardiomyocytes33, we accurately recovered the repression of HERV-114 

H LTRs including LTR7 and HERVH-int during differentiation, concomitant with 115 

reduction in the expression of the pluripotency factor POU5F1 (Fig. 2c, d and 116 

Supplementary  Fig. 2d). During in vitro cardiac differentiation of hPSCs there is a 117 

bifurcation towards definitive cardiomyocytes (dCM) and non-contractile cells (Fig. 2c). 118 

Between these two branches, marked by NKX2-5 and SPARC, respectively, we found 119 

differential expression of TEs such as LTR32, MER57A-int and MER45A in the dCM 120 

cells, whilst, MLT1H1, HERVIP10B-int and LTR5A were specifically expressed in the 121 

non-contractile cells (Fig. 2e, f and Supplementary Fig. 2e). Independent bulk RNA-122 

seq data34 demonstrated that these TEs were expressed in late cardiac differentiation 123 

(Supplementary Fig. 2f), however, as the bulk is a mixture of dCM and non-contractile 124 

cells, the restriction of these TEs to divergent fates can only be observed in the 125 
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scRNA-seq data. This highlights the importance of analyzing TE expression in sc-126 

RNA-seq data, as MLT1H1 is very high in the bulk RNA-seq, but this hides the reality 127 

that it is restricted to the non-contractile cells and plays no role in dCMs (Fig. 2e, f and 128 

Supplementary Fig. 2f). 129 

 130 

Analysis of TEs in mouse gastrulation and early organogenesis reveals the 131 

widespread cell fate-specific expression of TEs 132 

The previous analysis showed how TE expression contributed to in vitro cardiac 133 

differentiation, next we explored complex in vivo developmental processes. TE 134 

expression is dynamic during pre-implantation development6, however the expression 135 

of TEs in gastrulation has not been described. We took advantage of the single-cell 136 

time course of mouse gastrulation16. Analysis with scTE did not introduce any 137 

unexpected sample-bias, and a side-by-side comparison could retrieve similar 138 

patterns of marker gene expression in the expected lineages (Fig. 3a and 139 

Supplementary Fig. 3a-f). We found every lineage expressed a series of lineage-140 

specific TEs (Fig. 3a, b, and Supplementary Fig. 4a-c). In the extraembryonic 141 

ectoderm cells, IAP and RLTR45-family TEs were activated (Fig. 3b, c), and in Apoa2+ 142 

extraembryonic endoderm cells, MER46C, RLTR20B3 and LTRIS2 were up-regulated 143 

(Fig. 3b, d). The expression of these TEs was validated using bulk RNA-seq from in 144 

vitro35-37 mimics of these embryonic stages including ESCs, epiblast stem cells 145 

(EpiSCs), extraembryonic endoderm cells (XENs) and trophoblast stem cells (TSCs) 146 

(Fig. 3e). Other embryonic lineages, particularly the Gypa+ erythroid and the Tnnt2+ 147 

cardiomyocyte lineages expressed specific TEs such as L1_Mur and L1ME3D, 148 

respectively (Fig. 3b, f).  149 
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       As this dataset provides dynamic trajectories for each lineage, we wondered if 150 

TEs where transiently activated during cell fate commitment. To this end, we noticed 151 

ETnERV3-int, whose expression coincides with the early development of the cardiac 152 

fate from the mesoderm, and is reduced in Tnnt2+ cells, while L1ME3D was expressed 153 

in the Tnnt2+ cells (Fig. 3g). Consistently, ETnERV3-int was specifically expressed in 154 

in vitro derived cardiomyocytes, which more closely resemble a fetal state, whilst 155 

L1ME3D was expressed only in the mature heart (Fig. 3h)38,39. However, the bulk 156 

samples could not capture the complexity of the transient expression of ETnERV3-int 157 

which extended from the late epiblast into the endoderm and mesoderm. To expand 158 

on this, we reanalyzed an scRNA-seq dataset of the developing mouse embryonic 159 

heart40 (Fig. 3i and Supplementary  Fig. 5a-c), and found that ETnERV3-int was 160 

expressed in the myocardium and epicardium, but not in the endocardium, neural crest 161 

and embryonic cells (Fig. 3j). L1ME3D was expressed in Tnnt2+ myocardium, 162 

however in an inverse pattern with respect to ETnERV3-int (Fig. 3j, k). Therefore, 163 

ETnERV3-int activity is present in an intermediate stage in cardiac lineage 164 

development. Intriguingly, there was a close relationship between the expression of 165 

ETnERV3-int and Isl1 gene, which marks multipotent progenitors 40 (Fig. 3j). These 166 

results highlight the complex patterns of TE expression in developmental processes. 167 

 168 

Widespread tissue-specific expression of TEs in somatic cells 169 

TE activity is considered to be silenced in somatic cells except LINE-1 expression and 170 

retrotransposition in the developing brain27,28,41. As we revealed unexpected 171 

heterogeneity of TEs in somatic MEFs and during organogenesis, we next measured 172 

TE expression in somatic cells using the Tabula Muris large scale scRNA-seq dataset 173 
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that profiles 20 mouse organs42 (Fig. 4a). Surprisingly, our analysis revealed in total 174 

130 TEs that were specifically expressed in distinct cell types (Fig. 4b and 175 

Supplementary Fig. 6a). These associations include the expected expression of LINE1 176 

elements in brain cells, of which many L1 family members like L1MEh, L1M, L1MC4a, 177 

L1MA7 and L1P5 elements are specifically expressed in oligodendrocytes or microglia 178 

(Fig.4c and Supplementary Fig. 6a). We also found expression of LTR58, MLT1EA-179 

int, MER110 and RLTR46 that specifically in B cells, T cells, type B pancreatic cells 180 

and hepatocytes, respectively (Fig.4c). Next, we took advantage of the Tabula Muris 181 

dataset to measure overall TE expression heterogeneity, and, in general, the LTRs 182 

and DNA transposons are the major source of heterogeneity (Fig. 4d, e). 183 

TE expression is regulated by chromatin modification and transcription factors 184 

(TFs) 3, thus, we wondered if we could infer the regulatory network between TFs and 185 

TEs from large scale scRNA-seq data, taking advantage of the improved cell type 186 

definitions from the scRNA-seq data. The co-expression relationships often reflect 187 

biological processes in which many genes with related functions are coordinately 188 

regulated. Therefore, we reasoned that if a TE is regulated by a TF, they should be 189 

co-expressed. To identify TF-TE regulatory relationships, we performed co-expression 190 

analysis, and revealed the specific co-clustering of neural genes and TEs (Sox2 and 191 

Olig1), the immune system (Cebpe, Tcf7, Pax5 and Sall1), the endoderm/pancreas 192 

(Gfi1b, Nkx6-1 and E2f8), and other lineages (Fig. 4f and Supplementary Fig. 6b). 193 

Motif analysis also showed that the SOX2 motif was significantly enriched within 194 

RLTR13F TEs (Supplementary Fig. 6c). These results highlight the deep link between 195 

TE and TF activity Indicating those TFs may be responsible for activating TEs in the 196 

corresponding cell types. 197 
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We next explored in closer detail neural and immune cell lineages as TE activity 198 

is known to regulate neural activity and immune responses 43-45. Subgrouping the cells 199 

from microglia and neuron samples identified several distinct cell types 200 

(Supplementary Fig. 7a-c), within which cell type-specific expression of TEs was 201 

observed (Supplementary Fig. 7d, e). Next, with the pooled immune cells from marrow, 202 

spleen and thymus, 12 distinct immune cell subtypes were defined (Supplementary 203 

Fig. 7f, g). Intriguingly, besides finding additional cell type-specific TEs in T cells, B 204 

cells and granulocytes, a series of TEs were restricted to subtypes of T cells and B 205 

cells (Supplementary Fig. 7h, i,). These data show different degrees of subtype 206 

specific signatures of TEs in the neural and immune system, and highlight the 207 

importance of looking beyond only genes when exploring how those systems differ.  208 

 209 

TEs are activated during somatic cell reprogramming, in a heterogonous and 210 

cell branch restricted manner 211 

The above analysis has revealed the well-ordered dynamic expression of TEs in 212 

developmental processes, we then wondered if TEs undergo similar stage-specific 213 

regulation during somatic reprogramming. Somatic cells can be reprogrammed to 214 

induced pluripotent stem cells (iPSCs) by various methods, such as ectopic 215 

expression of a group of pluripotency transcription factors25,46,47, or cocktails of 216 

chemicals48,49. The reprogramming process is highly heterogeneous, with abundant 217 

non-reprogramming cells and divergent cell fate transition routes25,50. We took 218 

advantage of reprogramming scRNA-seq data to investigate the activity of TEs during 219 

these drastic cell fate transitions. Reprogramming induced by Oct4/Pou5f1, Klf4, Sox2 220 

and c-Myc (OKSM) generates detectable intermediate branches, including iPSCs, 221 
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trophoblast, stromal and neural-like cells (Fig. 5a and Supplementary Fig. 8a-d)50. We 222 

identified specifically expressed TEs in each cell branch (Supplementary Fig. 8a-d). 223 

For example, the TEs ERVB7_1-LTR_MM, IAPEz-int, RLTR4_Mm, and Lx were 224 

specifically expressed in iPSCs, trophoblast, stromal and neural-like branches, 225 

respectively (Fig. 5b). ERVB7_1-LTR_MM (MusD) and IAPs are up-regulated during 226 

reprogramming 51, however using scRNA-seq data we show that only ERVB7_1-227 

LTR_MM, as well as ETnERV-int and RLTR13G, were up-regulated in the successful 228 

reprogramming route, initiating at the mesenchymal-to-epithelial transition (MET) and 229 

peaking at the iPSCs stage (Fig. 5b and Supplementary Fig. 8a). In contrast, the 230 

trophoblast-branch expressed IAPEz-int and IAPLTR1_Mm (Fig. 5b and 231 

Supplementary Fig. 8c), which are also expressed in in vivo extra embryonic ectoderm 232 

cells (Fig. 3c), suggesting consistent regulation between development and 233 

reprogramming. 234 

        We then analyzed reprogramming induced by Oct4, Klf4, and Sox2 (OKS) 25 or 235 

only chemicals29. There are two validated branches during OKS-mediating 236 

reprogramming25 (Fig. 5c), and we found many TEs, such as ERVB7_1-LTR_MM, that 237 

were specifically up-regulated in the reprogramming-potential (RP) branch, and were 238 

excluded from the non-reprogramming branch (Fig. 5d and Supplementary Fig. 8e). 239 

IAPEz-int and IAPLTR1_Mm were expressed in the RP branch but were ultimately 240 

silenced in the reprogrammed cells (Fig. 5e, f), suggesting IAPs were only activated 241 

in a pre-reprogrammed state and may impede the final step of pluripotency acquisition. 242 

We validated the expression of ERVB7_1-LTR_MM and IAPs by qRT-PCR 243 

(Supplementary Fig. 8f), demonstrating that IAPs are silenced in ESCs. Similar to 244 

OKS-mediated reprogramming, chemical-mediated reprograming bifurcates into two 245 
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branches (Fig. 5g and Supplementary Fig. 8g)29, and TEs, marking an intermediate 246 

2C-like program, were activated at the root of the successful branch (Supplementary 247 

Fig. 8h, i). ERVB7_1-LTR_MM and RLTR13G were specifically up-regulated in the 248 

successful branch, whilst IAPEz-int and IAPLTR1_Mm were activated in the pre-249 

branch and failed branch (Fig. 5h and Supplementary Fig. 8j, k).  250 

The similar expression pattern of TEs among the three distinct reprogramming 251 

systems described above, suggests there are common regulatory mechanisms. 252 

Indeed, we found IAPLTR1_Mm TEs are rich in DNA-binding motifs for JUN and IRF2 253 

(Supplementary  Fig. 8l), whose expression closely matched IAP expression in all 254 

three reprogramming systems (Supplementary Fig. 8m) and are known to impair 255 

reprogramming52,53. This suggests that their downregulation deactivates the IAPs 256 

before the finalization of reprogramming, indicating IAPs may impede the final step of 257 

reprogramming. Overall, these results indicate TEs have a deeper unappreciated role 258 

in iPSC formation.  259 

 260 

Inferring TE Associated Accessibility from scATAC-seq Data 261 

Beyond scRNA-seq, many other single-cell sequencing techniques54-56 have shown 262 

great potential to explore cell heterogeneity and increased insight could be fueled by 263 

the additional information provided by scTE. For instance, we reasoned that scTE 264 

would be informative for the analysis of scATAC-seq data and potentially other single-265 

cell epigenetic data because TEs have a wide array of chromatin states3, are widely 266 

bound by transcription factors57, and can act as enhancers14 (Fig. 6a). We then applied 267 

scTE to a dataset of fluorescence-activated cell sorted (FACS) mouse cells58, 268 

including cardiac progenitor cells (CPCs), CD4+ T cells, ESCs and skin fibroblasts 269 
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(SFs). Intriguingly, scTE could accurately recover the expected cell types, based on 270 

only the reads that mapped to TEs (Fig. 6b). Specific accessibility of RLTR13A, 271 

RLTR4_Mm, RLTR13G and RMER19B/C was found in the CPCs, CD4+ T cells, ESCs 272 

and SFs, respectively (Fig. 6c, d and Supplementary Fig.9a). And motif enrichment of 273 

these cell-type specific TEs revealed known master regulators of these cell types, such 274 

as GATA4/HAND1/T for CPCs, ETS1/TCF3 for T cells, SOX2/POU5F1/NR5A2 for 275 

ESCs and FOS/MAF for SFs (Supplementary Fig. 9b), indicating these TEs may act 276 

as cis-regulatory elements bound by transcription factors. For instance, scTE reveals 277 

there is an RLTR13A TE within an intron of Smyd1, a gene essential for heart 278 

development59-61, which was specifically open in CPCs (Fig. 6e), and was specifically 279 

expressed in the myocardium of the fetal heart (Fig. 6f). Applying scTE to scATAC-280 

seq data of peripheral blood monocyte cells (PBMC) was also able to recover the 281 

major cell types and cell type-specific TEs (Supplementary  Fig. 8c-f), which can be 282 

validated by independent bulk ATAC-seq data from FACS sorted cells (Supplementary  283 

Fig. 8g)62. These results indicate that quantifying chromatin accessibility on TE regions 284 

is informative for characterizing cell types and may assist the problems posed by 285 

scATAC-seq analysis due to its especially sparse nature63. 286 

 287 

Disease-specific expression of TEs 288 

The unexpected widespread TE heterogeneity amongst embryonic and somatic cell 289 

types and cell fate transitions raised the question as to whether there is TE 290 

heterogeneity in diseased cells. Alzheimer’s disease (AD) is an age-associated 291 

neurodegenerative disorder that is characterized by progressive memory loss and 292 

cognitive dysfunction for which there is no known cure. TEs have been reported to be 293 
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highly active during aging and may contribute to age-dependent loss of neuronal 294 

function64. To explore the expression of TEs in AD, we reanalyzed the scRNA-seq 295 

data from a mouse model of AD expressing five human familial AD gene mutations, 296 

which contained 13,114 single cells with age and sex-matched wild-type (WT) controls 297 

using the MARS-seq platform65 (Fig. 7a). Projecting the cells with a UMAP, we 298 

recovered the major groups of cells in AD and WT, including the unique disease-299 

associated microglia cluster cells (M2) identified in the original study (Fig. 7b and 300 

Supplementary Fig. 10a). Differential expression analysis demonstrated significant 301 

changes in gene expression in M2, including previously described AD risk factors such 302 

as Apoe, Tyrobp, Lpl, Cstd and Trem2 (Fig. 7c and Supplementary Fig. 10b). 303 

Intriguingly, we also found many TEs such as ERVB7_2-LTR_MM, RLTR17, RLTR28 304 

and Lx4B that were significantly higher and specifically expressed in M2 (Fig. 7c, d 305 

and Supplementary Fig. 10c), indicating those TEs may also be involved in AD 306 

development. 307 

Type 2 diabetes (T2D) is a common human disease caused by a combination of 308 

increased insulin resistance and reduced mass or dysfunction of pancreatic beta cells. 309 

We reanalyzed scRNA-seq from two independent studies of the human pancreas in 310 

healthy and T2D individuals66,67. The major cell types in the pancreas, including alpha, 311 

beta, gamma/PP and delta cells clustered without a visible disease-specific pattern, 312 

indicating no drastic change in cell type (Fig. 7e and Supplementary Fig. 10d). 313 

Contrasting the transcriptome from healthy and T2D in each cell type independently, 314 

CD36 and DLK1 was up-regulated in T2D alpha and beta cells respectively (Fig. 7f), 315 

as reported by the original studies66,67. Notably, many TEs were significantly highly 316 

expressed in T2D beta cells, including L1MC, L1MA4A, Tigger3a, MLT2B4. This 317 
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differential expression pattern was near identical between the two independent 318 

datasets (Fig. 7f). Critically, none of these observations could be observed using bulk 319 

RNA-seq datasets (Fig. 7g and Supplementary  Fig. 10e)66,68, which might be due to 320 

the high expression of these TEs in both normal and T2D alpha cells, emphasizing the 321 

importance of analysis at single-cell resolution.  322 

As a final human disease dataset we reanalyzed a glioblastoma scRNA-seq 323 

experiment69, and were able to identify TEs specifically expressed in neoplastic cells 324 

and that were correlated with the expression of EGFR (Supplementary Fig. 10f-h), a 325 

gene upregulated in a large percentage of glioblastomas69. Above all, these results 326 

revealed the dysregulation of TE expression in diseased human cells, which deserves 327 

further mechanistic study and may help to identify new diagnostic markers and 328 

therapeutic targets. 329 

 330 

Discussion 331 

TEs are the most abundant elements in the genome, however, the understanding of 332 

their impact on genome evolution, function and disease remains limited. The rise of 333 

genomics and large-scale high-throughput sequencing has shed light on the multi-334 

faceted role of TEs. However, many genomic studies exclude TEs due to difficulties 335 

in their analysis as a consequence of their repetitive nature21. Thus, TE analysis often 336 

requires the use of specialized tools to extract meaning5,22. Here, we developed scTE 337 

specifically for the analysis of TEs from single-cell sequencing data. By taking 338 

advantage of this tool we could recover previously identified phenomena such as 339 

MERVL and LTR7/HERVH expression in mouse and human ESCs, respectively. We 340 

then revealed widespread heterogeneity of TE expression throughout embryonic 341 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 24, 2020. ; https://doi.org/10.1101/2020.07.23.218800doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.23.218800
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

development, in mature somatic cells, during the reprogramming process and in 342 

human diseases, and discovered a wealth of cell fate-specific TE expression. These 343 

associations with cell fate cannot be observed when only considering bulk samples, 344 

demonstrating the enormous power of single-cell sequencing, and the importance of 345 

analyzing TE expression. 346 

One of the key findings of our analysis has revealed the various TEs that are 347 

specifically expressed in different cell types. The expression of TEs during the pre-348 

implantation development stage has been demonstrated previously6, our findings 349 

extend this to gastrulation and early organogenesis. We find a wide array of 350 

expression of TEs in the extraembryonic tissues, which may be related to their activity 351 

as enhancers70. Furthermore, we show the expression of TEs within the specific 352 

lineages in the developing fetal heart. In addition, TEs are also heterogeneously 353 

expressed between cell types in adult somatic cells, which has not been demonstrated 354 

before, as TEs are thought to be primarily silent in adult tissues. Notably, we found a 355 

vast of trove of TEs that are expressed in the brain and the immune system, and 356 

individual TE types that are specifically expressed in different sub cell types. 357 

Considering the close relationship between the evolution of immune system, brain and 358 

TEs43-45, these results hint at further functions for TEs in these two systems. 359 

How cells decide their fate is a fundamental question in biology. Stem cell 360 

differentiation and somatic cell reprogramming are both powerful in vitro models that 361 

mimic in vivo development and have provided great insight into cell fate decisions. 362 

However, how TEs are involved in these processes is still largely unknown. In this 363 

study, we have identified the TEs LTR32 and MLT1H1 that were differentially 364 

regulated between contractile and non-contractile cell fate decisions during human 365 
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cardiac differentiation. In addition, we also found ERVB7_1-LTR_Mm and IAP 366 

elements divergent expression during reprogramming, whereas ERVB7_1-LTR_Mm 367 

may promote iPSC formation, IAP elements need to be silenced at the final stage 368 

before iPSCs formation (Fig. 5b, f, h). These mechanisms are shared among the 369 

Yamanaka factor based and chemical based reprogramming systems, indicating a 370 

tight association between TEs and cell fate decisions. 371 

Considering the growing implication that TEs are important contributors to human 372 

disease, their study is becoming increasingly important. In addition to the ability of TEs 373 

to impact genomic stability as they duplicate71, which has clear implications for the 374 

development of cancer72, TEs are also playing more subtle roles in epigenetic control 375 

and transcript expression. For example, TEs are spliced into chimeric transcripts that 376 

drive the expression of oncogenes11. Similarly, the expression of TEs has been 377 

associated with several nervous system-related disorders, including 378 

neurodegeneration10, and L1 LINE expression is important in inflammation during 379 

aging73. In our work, we demonstrate that in single cells of the pancreas there is 380 

substantial TE expression deregulation in the beta cells, which is suggestive of 381 

epigenetic dysfunction and a loss of control over TE expression. Critically, this 382 

observation cannot be observed from bulk pancreatic islet samples. Considering the 383 

growing importance of exploring human disease using primary patient samples, the 384 

analysis of TEs should be included. However, to date the contribution of TE expression 385 

to the aging and diseased states remains relatively unexplored. Our approach will be 386 

an important tool in understanding the contributions of TEs to cellular heterogeneity in 387 

a variety of systems and in human disease.  388 

 389 
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Methods 390 

Software availability 391 

scTE is available at https://github.com/jphe/scTE. The code is freely available and is 392 

released under the MIT license. scTE requires Python >3.6, and the python module 393 

numpy, scTE supports the Linux and Mac platforms. Software code for the analysis of 394 

the data in this manuscript can be found at: 395 

https://github.com/jphe/scTE/tree/master/example.  396 

 397 

scTE pipeline 398 

The input data for scTE consists of the annotation files for genes and TEs, and 399 

alignment files in either the SAM or BAM format74. By default, scTE uses GENCODE75 400 

and the UCSC genome browser Repeatmasker track76 annotations for genes and TEs, 401 

respectively. The SAM/BAM file contains the aligned read genome locations. Many 402 

alignment programs can distinguish reads that have a unique alignment in the genome 403 

(termed unique-reads) or map to multiple genomic loci (termed multimapping reads or 404 

non-unique reads). Multimapping reads are critical for TE quantification, as TEs 405 

contain many repeated sequences and non-unique reads often map inside the TEs. 406 

To get an accurate quantitation of the number of reads mapping to TEs these reads 407 

should be preserved. However, in many analysis pipelines these reads are discarded. 408 

scTE recommends aligners to keep all of the mapped reads, and we recommend that 409 

the best single aligned multimapped read be kept. The reads can be aligned by any 410 

genome aligner, but the aligned reads must be against the genome (i.e. not against a 411 

set of genes or transcript assembly). scTE is most tuned to STAR-solo77 or the Cell 412 

Ranger pipeline outputs, and can accept BAM files produced by either of these two 413 
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programs. For other aligners, the barcode should be stored in the ‘CR:Z’ tag, and the 414 

UMI in the ‘UR:Z’ tag in the BAM file. If the UMI is missing or not used in the scRNA-415 

seq technology (for example on the Fluidigm C1 platform), it can be disabled with –416 

UMI False (the default is True) switch in scTE. If the barcode is missing it can be 417 

disabled with the –CB False (the default is True), and instead the cell barcodes will be 418 

taken from the names of the BAM files (multiple BAM files can be provided to scTE 419 

with the –i option). 420 

 421 

scTE gene and TE indices 422 

scTE builds genome indices for the fast alignment of reads to genes and TEs. These 423 

indices can be automatically generated using the commands:  424 

scTE_build -g mm10 # mouse genome 425 

scTE_build -g hg38 # human genome 426 

These two scripts will automatically download the genome annotations, for mouse: 427 

ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_mouse/release_M21/gencode.vM21.annotation.g428 

tf.gz 429 

http://hgdownload.soe.ucsc.edu/goldenPath/mm10/database/rmsk.txt.gz 430 

Or for human: 431 

ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_30/gencode.v30.annotation.gtf432 

.gz 433 

http://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/rmsk.txt.gz 434 

These annotations are then processed and converted into genome indices. The scTE 435 

algorithm will allocate reads first to gene exons, and then to TEs, by default. Hence 436 

TEs inside exon/UTR regions of genes annotated in GENCODE will only contribute to 437 

the gene, and not to the TE score. This feature can be changed by setting ‘–mode/-m 438 

exclusive’ in scTE, which will instruct scTE to assign the reads to both TEs and genes 439 

if a read comes from a TE inside exon/UTR regions of genes. 440 
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 441 

Analysis of 10x-style data 442 

scRNA-seq data was processed using the scTE 10x pipeline, Briefly, reads were 443 

aligned to the genome using STARsolo77 with the setting ‘--outSAMattributes NH HI 444 

AS nM CR CY UR UY --readFilesCommand zcat --outFilterMultimapNmax 100 --445 

winAnchorMultimapNmax 100 --outMultimapperOrder Random --runRNGseed 777 --446 

outSAMmultNmax 1’. The default scTE parameters for 10x were used to get the 447 

molecule count matrix. The count matrix was lightly filtered to exclude cell barcodes 448 

with low numbers of counts: Cells with less than 1000 UMIs and less than 500 genes 449 

detected were filtered out, and only the top 10,000 cells with the highest gene count 450 

were kept (these default setting can be altered with the ‘--expect-cells, --min_count 451 

and --min_genes’ switches in scTE, note that the cell counts are further filtered on a 452 

case-by-case basis for each experiment, as detailed below). Other downstream 453 

analysis was performed by SCANPY24. Specific analysis settings for the individual 454 

datasets are described below. 455 

 456 

Analysis of C1/SMART-seq-style data 457 

scRNA-seq data were processed using the scTE C1/SMART–seq pipeline, Briefly, 458 

reads were aligned to the genome using STAR77, with the setting ‘--459 

winAnchorMultimapNmax 100 --outSAMmultNmax 1 --outSAMmultNmax 1’. The 460 

default scTE parameters for C1/SMART-seq were used to get the molecule count 461 

matrix. Cells with less than 10,000 counts and less than 2000 expressed genes were 462 

filtered out. Cells with more than 20% fraction of mitochondrial counts were discarded. 463 

Downstream analysis was performed the same as for the 10x data pipeline. Fluidigm 464 
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C1/SMART-seq data comes as a single BAM file per barcode. To analyze this data, 465 

the ‘barcode’ is taken from the input BAM filenames, and both -CB and -UMI should 466 

be False:  467 

scTE -i *.bam -p 4 -o <output_name> --genome mm10 -x mm10.exclusive.idx -CB False -UMI 468 

False 469 

The resulting matrices can then be integrated into an scRNA-seq analysis pipeline. 470 

 471 

Analysis of human cardiac differentiation scRNA-seq data 472 

The raw data were download from E-MTAB-626833. As this data was generated using 473 

the Single Cell 3’ Library, Gel Bead and Multiplex kit (version 1, 10x Genomics, Cat. 474 

#PN-120233), the cell barcode and UMI sequence are not in the same read. First, we 475 

merged the cell barcode and UMI sequence into the same read using a custom script, 476 

and then aligned the modified fastq file to the hg38 genome using STARsolo, as 477 

described above. Cells with less than 500 expressed genes/TEs and cells that have 478 

more than 20% fraction of mitochondrial reads were discarded. Single cell trajectory 479 

was analyzed by Harmony78 and the top 1000 highly variable genes were used for 480 

PCA, and the force directed layout was computed using first 150 PCs (principle 481 

components). Differentially expressed genes and TEs were analyzed using the 482 

SCANPY rank_genes_groups functions by t-test method, the top 500 specifically 483 

expressed TEs and genes with Benjamini-Hochberg corrected p-value <0.01 and 484 

log2(fold-change) > 0.5 are selected for downstream analysis. 485 

 486 

Analysis of the gastrulation scRNA-seq data 487 
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The raw data was download from E-MTAB-6967, and aligned to the mm10 genome 488 

using STARsolo77, with the parameters ‘--readFilesCommand zcat --489 

outFilterMultimapNmax 100 --winAnchorMultimapNmax 100 --outMultimapperOrder 490 

Random --runRNGseed 777 --outSAMmultNmax 1’. Cells with less than 3000 491 

expressed genes/TEs, and less than 8000 UMIs were discarded. Genes expressed in 492 

less than 50 cells were removed from the analysis. The count matrix was normalized 493 

using normalize_total function of SCANPY, and the top 2000 most highly variable 494 

genes were used for PCA, and the first 20 PCs (principle components) were used, as 495 

described in the original publication16. UMAP plots were generated (min_dist=0.6). 496 

Data is from E-MTAB-696716. 497 

 498 

Analysis of Tabula Muris scRNA-seq data 499 

The C1/Smart-seq2 scRNA-seq raw data was download from GSE109774 42, the 500 

reads were aligned to the mm10 genome using STAR with the parameters ‘--501 

readFilesCommand zcat --outFilterMultimapNmax 100 --winAnchorMultimapNmax 502 

100 --outMultimapperOrder Random --runRNGseed 777 --outSAMmultNmax 1’. The 503 

genes/TEs and cell expression matrix was generated using scTE. Cells with less than 504 

50000 counts or more than 27 counts, less than 1000 expressed genes, or more than 505 

20% fraction of mitochondrial counts were removed. The filtered matrix was 506 

normalized using scran79. The top 4000 most highly variable genes were used for PCA, 507 

and the first 50 PCs were used for downstream analysis. The cell cluster specific 508 

expressed genes/TEs was calculated using SCANPY rank_genes_groups functions 509 

by t-test method, the top 500 specifically expressed TEs and genes with Benjamini-510 
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Hochberg corrected p-value <0.01 and log2(fold-change) >0.5 compare to all other 511 

groups of cells were kept. 512 

 513 

Analysis of the OKSM/Chemical reprogramming data 514 

The raw data were download from GSE11594350 and GSE11495229. Cells with less 515 

than 10000 UMIs or more than 1000000 UMIs, or expressed less than 1000 expressed 516 

genes, or more than 20% fraction of mitochondrial counts were removed. The filtered 517 

matrices were normalized using scran79. The top 4000 most highly variable genes 518 

were used for PCA, and the first 50 PCs were used for downstream analysis. The cell 519 

trajectory routes were taken from the original studies. Differentially expressed 520 

genes/TEs were calculated using SCANPY rank_genes_groups functions by the t-test 521 

method, the TEs and genes with Benjamini-Hochberg corrected p-value <0.01 and 522 

log2(fold-change) >0.5 compared to all other branches of cells were kept.  523 

 524 

Analysis of the OKS reprogramming data 525 

The C1/SMART-seq data were taken from GSE103221 25. the reads were aligned to 526 

the mm10 genome using STAR with the parameters ‘--readFilesCommand zcat --527 

outFilterMultimapNmax 100 --winAnchorMultimapNmax 100 --outMultimapperOrder 528 

Random --runRNGseed 777 --outSAMmultNmax 1’. The genes/TEs and cells 529 

expression matrix was generated using scTE. Cells with less than 10000 counts or 530 

more than 27 counts, less than 1000 expressed genes, or more than 20% fraction of 531 

mitochondrial counts were removed. The filtered matrix was normalized using scran 532 

79. The top 4000 most highly variable genes were used for PCA, and the first 50 PCs 533 

were used for downstream analysis. The genes/TEs expression trajectories on 534 
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pseudotemporal orderings of cells (Fig. 5e) were analyzed by LineagePulse 535 

(https://github.com/YosefLab/LineagePulse) according to the pseudotime taken from 536 

the original study.  537 

 538 

Analysis of the embryonic heart scRNA-seq data 539 

The raw data was download from GSE12612840. This data was aligned to the genome 540 

using STARsolo77, as described above. Cells with less than 3000 expressed 541 

genes/TEs and the cells with less than 8000 UMIs or more than 100000 UMIS were 542 

deleted from the analysis. The count matrix was normalized using normalize_total 543 

function of SCANPY. The top 2000 most highly variable genes were used for PCA, 544 

and the first 20 PCs were used for downstream analysis. UMA projections were 545 

generated (min_dist=0.7).  546 

 547 

Analysis of Alzheimer’s disease scRNA-seq data 548 

The MARS-seq scRNA-seq raw data were download from GSE98969 65. The raw fastq 549 

file were modified using custom scripts to embed the cell barcode and UMI in the same 550 

read, as in the 10x scRNA-seq format. The modified reads were aligned to the mm10 551 

genome with STARsolo as described above. Cells with less than 5000 UMIs or more 552 

than 1000000 UMIs, or expressed less than 500 genes, or more than 20% fraction of 553 

mitochondrial counts, were removed. The filtered matrix was normalized using scran79. 554 

The top 4000 most highly variable genes were used for PCA, and the first 50 PCs 555 

were used for downstream analysis. The differentially expressed genes and TEs 556 

between M2 and M1/3 were analyzed using SCANPY rank_genes_groups functions 557 
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by t-test method, the genes or TEs with Benjamini-Hochberg corrected p-value <0.01 558 

and log2(fold-change) >0.5 compared to each other were kept.  559 

 560 

Analysis of the Type 2 diabetes/glioblastoma sc-RNA-seq data 561 

The raw data was download from GSE8647366, GSE8160867. The data was aligned 562 

to the hg38 genome using STAR77, as described above for C1 data. Cells with less 563 

than 5000 expressed genes/TEs and cells with less than 1*106 counts or more than 564 

6*106 or were deleted from the analysis. The count matrix was normalized using the 565 

normalize_total function of SCANPY. There was a strong batch effect based on the 566 

sex of the donor in the type 2 diabetes datasets, this was removed using the 567 

regress_out function of SCANPY24. We did not detect any other batch effect from other 568 

confounding variables (age, body-mass index, race). The top 2000 most highly 569 

variable genes were used for PCA, and the first 15 PCs (type 2 diabetes) or 25 PCs 570 

(glioblastoma) were used. UMAP plots were generated using SCANPY (min_dist=0.7).  571 

 572 

Bulk RNA-seq analysis 573 

Analysis of bulk RNA-seq was performed essentially as previously described3,80, with 574 

some modifications. Briefly, reads were aligned to the mouse or human 575 

genome/transcriptome (GENCODE transcript annotations, mouse M21 or human 30) 576 

using STAR (v2.7.1a)77. TEtranscripts81 or scTE (with the setting -CB False -UMI False) 577 

was used to quantitate reads on TEs. Reads were GC normalized using EDASeq 578 

(v2.16.3) 82, and analyzed using glbase83.  579 

 580 

Motif enrichment analysis 581 
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The TF motif enrichment in TEs (Supplementary  Fig. 6c and 8l) was measured using 582 

AME from the MEME suite84 with the options “--control --shuffle“. 583 

 584 

Bulk ATAC-seq analysis 585 

Analysis of bulk RNA-seq was performed essentially as previously described3,85. 586 

Briefly, reads were aligned to the mouse or human genome (mm10 or hg38) using 587 

bowtie2 (v2.3.5.1), with the options: “-p 6 --mm --very-sensitive --no-unal --no-mixed -588 

-no-discordant -X2000”, and reads mapping to TEs were counted using te_counter 589 

(https://github.com/oaxiom/te_counter). The counts per million (CPM) reads metric 590 

was used for enrichment scores. 591 

 592 

Analysis of the scATAC-seq data 593 

We downloaded the scATAC-seq data from the 10x Illumina website 594 

(https://support.10xgenomics.com/single-cell-atac/datasets/1.1.0/atac_pbmc_10k_v1). The 595 

barcode was inserted into the read name, so that the mapping could keep track of the 596 

cell ID. This yielded reads names inside the FASTQ, such as: (where 597 

CCACGTTGTGGACTGA sequence is the cell barcode) 598 

 599 

@CCACGTTGTGGACTGA:A00519:269:H7FM2DRXX:1:1101:1325:1000 1:N:0:AAGCATAA 600 

 601 

The data was aligned to the human hg38 genome using bowtie2 86 with the command 602 

options “-p 6 --mm --very-sensitive --no-unal --no-mixed --no-discordant -X2000”. The 603 

resulting data was then processed using scTE with the command:  604 

 605 

scTE_scatacseq -i $<in> -x hg38.te.atac.idx -g hg38 -p 1 -UMI False -CB True -o <out> 606 
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 607 

The genome indices were prebuilt using:  608 

wget -c -O mm10.te.txt.gz 'http://hgdownload.soe.ucsc.edu/goldenPath/mm10/database/rmsk.txt.gz' 609 
zcat mm10.te.txt.gz | grep -E 'LINE|SINE|LTR|Retroposon' | cut -f6-8,11 >mm10.te.bed 610 
python3 /share/apps/genomics/unstable/scTE/bin/scTEATAC_build -g mm10.te.bed -o mm10.te.atac 611 
 612 

wget -c -O hg38.te.txt.gz 'http://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/rmsk.txt.gz' 613 
zcat hg38.te.txt.gz | grep -E 'LINE|SINE|LTR|Retroposon' | cut -f6-8,11 >hg38.te.bed 614 
python3 /share/apps/genomics/unstable/scTE/bin/scTEATAC_build -g hg38.te.bed -o hg38.te.atac 615 

 616 
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Fig. 1 | scTE workflow and applications. (a) Schematic of the workings of scTE. For scRNA-seq 

data the reads are mapped to the genome, and assigned to either a gene, or a metagene model of 

a TE. Multimapping read data will assign the best mapping read to a type of TE. Reads are always 

mapped to a gene first, and then a TE if no gene is found. The resulting assignments are then 

collapsed into a matrix of read counts for each cell, versus each gene/TE. This matrix can be used 

in downstream applications. (b) UMAP plot showing mixtures of MEFs and ESCs in the indicated 

ratios. The top panels show scTE analysis, the lower panels show Cell Ranger analysis results. 

Cells and are colored by their sample of origin. (c) Percentage of reads mapping to genes, TEs or 

other regions of the genome in MEFs and ESCs. (d) Violin plot showing the expression of selected 

TEs in MEFs and ESCs. (e) As in panel b, but only TE expression was used. 
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Fig. 2 | Dynamic transcription of TEs in ESCs and during cardiac differentiation. (a) UMAP 

plot of mouse ESCs. Cells are colored by cell type cluster. (b) Same as panel a, but cells are colored 

based on the expression of the indicated genes and TEs. Zscan4c and Tcstv3 are marker genes for 

the 2C-like cells. (c) Trajectory reconstruction of single cells through a cardiac differentiation 

timecourse showing the definitive cardiomyocytes (dCMs) branch and non-contractile branch. Days 

of differentiation (D) are labelled.  (d) As in panel c, but cells are colored by the expression of the 

indicated genes and TEs. (e) Heatmap of expression differences between dCM (contractile) branch 

and non-contractile branch cells, selected differentially expressed genes and TEs are labelled. (f) 

As in panel d, but cells are colored by the expression level of the indicated genes and TEs. 
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Fig. 3 | Widespread cell type-specific expression of TEs during gastrulation.  (a) UMAP plots 

of the mouse gastrulation data using both genes and TEs. Selected lineages are labelled (Leiden, 

resolution=0.3). (b) Dot plot showing a selection of marker genes and TEs for the indicated cell 

lineages. (c) Expression of the indicated extra embryonic ectoderm gene Tfap2c and selected TEs. 

(d) Expression of the extra embryonic endoderm marker gene Apoa2 and selected TEs. (e) 

Expression of the indicated TEs and marker genes in bulk RNA-seq data from ESCs, EpiSCs, XEN 

(extra embryonic endoderm cells) and TSCs (trophoblast stem cells). Tfcp2l1, Fgf5, Gata3 and 

Sox17 serve as markers for ESCs, EpiSCs, TSCs, and XEN cells, respectively. Data is displayed 

as a z-score using the variance from all genes. (f) Expression of the erythroid marker gene Gypa, 

and selected TEs. (g) Expression of the cardiac marker gene Tnnt2 and selected TEs. (h) 

Expression of the indicated TEs and marker genes from bulk RNA-seq data. (i) UMAP plot of the 

embryonic mouse heart scRNA-seq data using both TEs and genes. The indicated developmental 

stages are labelled as in the original study. (j-k) UMAP as panel i, but cells are colored by the 

expression of indicated genes/TEs. 
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Fig. 4 | Class-specific expression of TEs in somatic cells. (a) UMAP plots of the Tabula Muris 

data, using both genes and TEs as analyzed with scTE. The tissue sources for the cells is indicated. 

(b) UMAP plot as in panel a, but clustered into groups (Leiden, resolution=0.5). (c) Same as panel 

b, but cells are colored by the expression of indicated genes/TEs. (d) Scatter plot showing TE 

expression heterogeneity. The x-axis is the mean expression for cells from panel b, the y-axis is the 

standard deviation for each TE type, the higher standard deviation represents higher heterogeneity 

across cell types. (e) Boxplot for the standard deviations for each class of TEs. (f) Correlation 

heatmap showing the co-expression of TFs and TEs. 
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Fig. 5 | Stage-specific expression of TEs in somatic cell reprogramming. (a) Trajectory 

reconstruction during OKSM reprogramming, cells are colored by time point. (b) As in panel a, but 

cells are colored by the expression of the indicated TEs. (c) Force-directed (FR) layout of cells 

during OKS reprogramming, cells are colored by time point. (d) Same with panel c, but cells are 

colored by the expression change of the ERVB7_1-LTR_MM TE during reprogramming. (e) 

Expression heatmap of the top 145 dynamically expressed TEs in a pseudotime ordering for the RP 

branch, selected TEs are indicated. (f) Expression changes of the indicated TEs during 

reprogramming. (g) Trajectory reconstruction during chemical reprogramming, cells are colored by 

time point. (h) As in panel g, but showing TE expression specific to the successful or failed branches 

of reprogramming. 
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Fig. 6
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Fig. 6 | Analysis of the Chromatin State of TEs in Single-Cell ATAC-seq data. (a) Schematic 

plot of scTE for scATAC-seq data analysis. The reads are mapped to the genome, and assigned to 

a metagene TE, and then the cells were clustered based on the TE matrix. (b) UMAP plot of the TE 

chromatin state from scATAC-seq data for a selection of FACS-purified mouse cell types. (c) 

Heatmap of the top 50 cell type-specific opened TEs in the indicated cell types, selected example 

TEs are indicated. (d) UMAP plot as in panel b, but cells are colored by chromatin-state of the 

indicated TEs. (e) Genome tracks showing the aggregate scATAC-seq profiles (top panel). 

Randomly selected 100 single cell profiles are show below the aggregated profiles (bottom panel). 

With include (unique + multiple) or exclude (unique) multiple mapped reads. (f) UMAP plot of the 

expression of the myocardium marker gene Smyd1, from the cardiogenesis data, see Fig. 3i. 
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Fig. 7
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Fig. 7 | TEs are differentially expressed in single cells in the diseased state. (a) UMAP plot of 

the single cells genes and TE expression, cells are colored by WT (wild-type) and AD (Alzheimer’s 

disease) state. (b) UMAP plot, as in panel a, but clustered into groups (Leiden, resolution=0.5). (c) 

Dot plot showing the differential expressed genes (top) and TEs (bottom) between disease 

associated microglia (M2) and homeostatic microglia (M1/3) in AD mice. (d) UMAP plot, as in panel 

a, but cells are colored by the expression of the indicated Apoa2 or the TE RLTR17. (e) UMAP plots 

of pancreatic islet cells. Cells are colored by cell types (left) or disease-state (right). Cell types were 

annotated according to the metadata from the original study, and matched the expression of known 

marker genes. (f) Dot plot showing marker gene expression (green) or TEs (red) differentially 

expressed between healthy and T2D alpha and beta cells (Benjamini-Hochberg corrected Wilcoxon 

rank-sum test, P<0.01, and at least >2-fold change between groups). (g) Bar charts showing the 

expression of the indicated TEs from bulk RNA-seq data. P-value was from an unpaired t-test. 
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