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Abstract 18 

Microrisk Lab was designed as an interactive modeling freeware to realize parameter 19 

estimation and model simulation in predictive microbiology. This tool was developed based 20 

on the R programming language and ‘Shinyapps.io’ server, and designed as a fully responsive 21 

interface to the internet-connected devices. A total of 36 peer-reviewed models were 22 

integrated for parameter estimation (including primary models of bacterial growth/ 23 

inactivation under static and non-isothermal conditions, secondary models of specific growth 24 

rate, and competition models of two-flora growth) and model simulation (including integrated 25 

models of deterministic or stochastic bacterial growth/ inactivation under static and non-26 

isothermal conditions) in Microrisk Lab. Each modeling section was designed to provide 27 

numerical and graphical results with comprehensive statistical indicators depending on the 28 

appropriate dataset and/ or parameter setting. In this research, six case studies were 29 

reproduced in Microrisk Lab and compared in parallel to DMFit, GInaFiT, IPMP 2013/ 30 

GraphPad Prism, Bioinactivation FE, and @Risk, respectively. The estimated and simulated 31 

results demonstrated that the performance of Microrisk Lab was statistically equivalent to that 32 

of other existing modeling system in most cases. Microrisk Lab allowed for uniform user 33 

experience to implement microbial predictive modeling by its friendly interfaces, high-34 

integration, and interconnectivity. It might become a useful tool for the microbial parameter 35 

determination and behavior simulation. Non-commercial users could freely access this 36 

application at https://microrisklab.shinyapps.io/english/. 37 
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List of symbols 41 

𝑌(𝑡), 𝑌0, 𝑌𝑚𝑎𝑥 
the natural logarithm of real-time, initial, and maximum bacterial 

counts (ln CFU/g). 

𝑦(𝑡), 𝑦0, 𝑦𝑚𝑎𝑥 
the 10-base logarithm of real-time, initial, and maximum bacterial 

counts (log10 CFU/g). 

𝑦𝑟𝑒𝑠  the 10-base logarithm of the residual bacterial counts (log10 CFU/g). 

𝜇𝑚𝑎𝑥, 𝜇𝑜𝑝𝑡  the maximum and optimal specific growth rate. 

𝑘𝑚𝑎𝑥  the maximum specific inactivation rate. 

𝐷  the time of decimal reduction in inactivation. 

𝐷𝑟𝑒𝑓  the referenced decimal reduction time at 𝑇𝑟𝑒𝑓. 

𝑡𝑙𝑎𝑔  the time of lag in growth. 

𝑆𝑙  the time of shoulder (or before inactivation) in inactivation. 

𝑡  the time point. 

𝑡𝑚𝑎𝑥  the time when entering the stationary phase in growth. 

𝑆𝑡  the time when entering the stationary phase in inactivation. 

𝑇, 𝑝𝐻, 𝑎𝑤 The temperature (℃), pH, and water activity at 𝑡. 

𝑇𝑚𝑖𝑛, 𝑇𝑜𝑝𝑡, 𝑇𝑚𝑎𝑥 the minimum, optimal, and maximum growth temperature (℃). 

𝑇𝑟𝑒𝑓  the referenced inactivation temperature (℃). 

𝑝𝐻𝑚𝑖𝑛, 𝑝𝐻𝑜𝑝𝑡, 

𝑝𝐻𝑚𝑎𝑥 
the minimum, optimal, and maximum growth pH. 

𝑎𝑤𝑚𝑖𝑛, 𝑎𝑤𝑜𝑝𝑡, 

𝑎𝑤𝑚𝑎𝑥 
the minimum, optimal, and maximum growth water activity. 

𝑞0  the initial physiological state of the inoculum in the Baranyi model. 

𝛿, 𝑝  the coefficients in the Weibull model. 

𝛿𝑟𝑒𝑓  the referenced 𝛿 value at 𝑇𝑟𝑒𝑓. 

𝑎, 𝑏  the coefficients in the square-root model. 

𝐴, 𝑚 the coefficients in the dynamic Huang model. 

𝑧  the coefficients of the bacterial thermal resistance (℃). 

  42 
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1. Introduction 43 

Foodborne pathogens have caused widespread food safety issues and potential severe 44 

risks nowadays (WHO, 2015). It is critical to understand and control the behavior (growth, 45 

survival or inactivation) or contaminated level of the focused microorganisms under different 46 

environmental conditions to ensure that foods are safe for consumption (Geeraerd, 47 

Valdramidis, & Van Impe, 2005; Augustin, 2011; González et al., 2018). For this reason, 48 

predictive microbiology has been developed as an efficient solution to estimate the bacterial 49 

concentration level in the perspective of mathematical modeling (Ross & McMeekin, 1994; 50 

Peleg & Corradini, 2011; Baranyi & Buss da Silva, 2017). 51 

Microbiological predictive models are ordinarily classified as the primary model, 52 

secondary model, and tertiary model (Whiting & Buchanan, 1993). The primary model 53 

represents the relation between microbial concentrations and time under a specific condition 54 

by introducing the kinetic parameters, such as lag time, maximum specific growth/ 55 

inactivation rate, and decimal reduction time. While the secondary model describes the 56 

influence of environmental conditions on the kinetic parameters, such as growth and 57 

inactivation rates. The tertiary model refers to the computer program that integrates validated 58 

pertinent information to characterize the situation or explain the trend of the microbial 59 

contamination level under a specific condition (Whiting & Buchanan, 1993). Commonly, 60 

regression (or fitting) should be firstly applied to obtain the kinetic parameter and the effect of 61 

environmental conditions in accordance with the experimental observation (e.g. maximum 62 

population density, growth boundaries, and decimal reduction time). After identifying and 63 

validating the characteristic of the target microorganism(s), microbial behaviors (e.g. growth, 64 
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inactivation, and survival) can be simulated under different conditions. 65 

For realizing the parameter estimation, mathematical computing environments, such as R 66 

(www.R-project.org), MATLAB (The MathWorks, Inc., USA), and Python 67 

(www.python.org), are widely used in predictive microbiology. For example, ‘nlsMicrobio’ 68 

(Baty & Delignette-Muller, 2015) and ‘Bioinactivation’ (Garre, Fernández, Lindqvist, & 69 

Egea, 2017) are two packages dedicated to obtaining the microbial kinetic parameters in the R 70 

environment. However, the requirement of specific coding skills may increase the learning 71 

burden during the modeling process. Thus, many useful interactive modeling systems were 72 

developed in the last decades (Huang, 2014/2017b; Tenenhaus-Aziza & Ellouze, 2015; Dolan, 73 

Habtegebriel, Valdramidis & Mishra, 2015; Koutsoumanis, Lianou, & Gougouli, 2016). 74 

Among the developed freeware, IPMP 2013/ Global Fit (Huang, 2014/2017b), desktop 75 

DMFit, GInaFiT (Geeraerd, Valdramidis, & Van Impe, 2005/ 2006) and PMM-Lab (Plaza-76 

Rodriguez et al., 2015) provided numerical and graphical interfaces for users to obtain 77 

different microbial model parameters without coding. These tools required to be installed and 78 

run under the desktop system of Windows or Mac OS. The online free tools, namely, the 79 

online DMFit of ComBase (www.combase.cc) and Bioinactivation FE (Garre et al, 2018) 80 

could be easily accessed via different internet-connected devices, which provided the ability 81 

of cross-platform to users. 82 

On the other hand, some modeling systems put more emphasis on simulating or 83 

predicting the bacterial concentration level under different environmental conditions, which 84 

have some reference significance to microbial risk assessment and management. As the well-85 

known free tools, Pathogen Modeling Program (USDA, 2016), and ComBase Predictor 86 
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supported by their extensive microorganism-food database has been applied to predict the 87 

microbial behavior in culture medium or different food matrices. The applicability of a 88 

tertiary model is very dependent on the quantity and quality of the available knowledge 89 

integrated into the modeling system, such as experimental challenge test data, model types 90 

and associated model parameters. Recently, an updated application MicroHibro (González et 91 

al., 2018) allowed users to freely defined the model type and relevant parameter. This 92 

functionality may practically help users update the knowledge for the simulation when new 93 

evidence is observed. Meanwhile, it is also critical to take account of the uncertainty and 94 

variability of model parameters, especially in the application of the individual cell behavior 95 

modeling and risk assessment (Natau, 2001; Busschaert, Geeraerd, Uyttendaele, & Van Impe, 96 

2011; Cornu et al., 2011; Koutsoumanis & Lianou, 2013; Alonso, Molina, & Theodoropoulos, 97 

2014; Augustin et al., 2014). Thus, it is essential to introduce the stochastic approach in the 98 

prediction and simulation study.  99 

Besides, much more complex situations should be considered to describe the microbial 100 

behavior in the real food chain, namely, the coexistence of multi-microorganisms, and the 101 

concentration change under dynamic conditions (Iannetti et al., 2017; Li, Huang, & Yuan, 102 

2017, Göransson, Nilsson, & Jevinger, 2018; Ndraha et al, 2018; Hwang & Huang, 2018). In 103 

non-isothermal modeling, free tools of ComBase Predictor, IPMP Dynamic Prediction 104 

(USDA, 2017), GroPIN (https://www.aua.gr/psomas/gropin/), FSSP (http://fssp.food.dtu.dk), 105 

and UGPM (Psomas, Nychas, Haroutounian, & Skandamis, 2011) were designed for 106 

microbial simulation. The web-based tool, Bioinactivion FE, was recently developed for 107 

fitting and simulating microbial inactivation under isothermal or non-isothermal conditions 108 
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(Garre et al, 2018). This tool exactly facilitated scientists handle different inactivation 109 

analyses without the need to code the mathematical models in a programming environment. 110 

However, there was still a lack of tools for kinetic analysis on the microbial dynamic growth 111 

(Tenenhaus-Aziza & Ellouze, 2015; Koutsoumanis, Lianou, & Gougouli, 2016). Hence, it 112 

may be helpful to design an integrated system containing the functionality for parameter 113 

estimation and model simulation under non-isothermal conditions. 114 

This research introduced the main features of Microrisk Lab, an online modeling system 115 

integrating comprehensive microbial predictive models. Six case studies were implemented to 116 

describe a part of functionality and performance of this new application for parameter 117 

estimation and model simulation in predictive microbiology. The first version of Microrisk 118 

Lab was deployed on the ‘Shinyapps.io’ server, and available at 119 

https://microrisklab.shinyapps.io/english/ (in English) and 120 

https://microrisklab.shinyapps.io/chinese/ (in Chinese). 121 

 122 

2. Materials and methods 123 

2.1. Design logic and programming basics of Microrisk Lab 124 

Microrisk Lab was designed as a R-based web application with a user-friendly interface 125 

for performing parameter estimation or model simulation studies in predictive microbiology. 126 

The coding language R, an open-source mathematical environment, could run on a wide 127 

variety of computer systems, including Windows, UNIX, and Mac OS. Several basic R 128 

packages, such as ‘ggplot2’ (Wickham et al., 2019), ‘mc2d’ (Pouillot & Delignette-Muller, 129 

2010), and ‘Metrics’ (Hamner, B., Frasco, M., & LeDell, E., 2018), were referenced in this 130 
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tool for mathematical and statistical analysis (see supplementary data). Meanwhile, the 131 

platform of ‘Shiny’ (http://shiny.rstudio.com/), shinydashboard’ (Chang & Borges Ribeiro, 132 

2019), and ‘plotly’ (https://plot.ly) were introduced to improve the operability and 133 

practicability of Microrisk Lab. The simple graphical user interface (GUI) and interactive 134 

output can automatically adapt to different screen sizes (Fig.1). Each section has a uniform 135 

interactive logic from left to right (horizontal view) or up to down (vertical view) 136 

corresponding to problem selection, condition setting, and result analysis. The observed 137 

measurement for parameter estimation or model simulation can be directly typed in the data 138 

dialog or pasted from other table files. After submitting all condition settings, users are free to 139 

make a real-time control on the interactive plot for better visualization then save as the local 140 

image file (Portable Network Frame file). 141 

The structural framework of Microrisk lab is shown in Fig.2, which is basically divided 142 

into the ‘Estimation’ and ‘Simulation’ module. The ‘Estimation’ module was focused on 143 

determining the microbial parameters by the experimental observations under different 144 

conditions. The ‘Simulation’ module aimed to simulate the bacterial concentration changes 145 

under different temperatures by using different built-in predictive models. 146 

In the ‘Estimation’ module, the least-squares method was implemented to search the 147 

optimized model parameter, which was conducted by the nls function in the ‘stats’ package. 148 

Both ‘NL2SOL’ algorithm (for the dynamic regression) and Gauss-Newton algorithm (for 149 

other regressions) were used in Microrisk Lab. If the fitting is successful, results of the fitted 150 

curve, parameter estimation, and model evaluation should be reported in the ‘Results Panel’. 151 

Meanwhile, the  raw and generated datasets (observed, fitted, and simulated data) are 152 
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downloadable as ‘csv.’ files. Otherwise, a pop-up window would remind the user that 153 

regression is failure. 154 

The ‘Simulation’ module in Microrisk Lab does not restrict the type of microorganisms 155 

or food. The microbial growth and inactivation should be simulated by defining the model 156 

type, microbial kinetic parameter, and temperature condition (or time-temperature profile). 157 

Besides, the stochastic simulation can be performed at static conditions. In this case, 158 

probability distribution of the parameter and condition are defined according to the mean 159 

value and standard deviation. Here, the duration of growth or inactivation steps is assumed as 160 

a Uniform distribution, and other default parameter settings are assumed as the Normal 161 

distribution. According to former researches (Baranyi, George, & Kutalik, 2009; 162 

Koutsoumanis & Lianou, 2013; Huang 2016), the LogNormal/ Gamma distribution and 163 

LogNormal/ Logistic distribution were additionally considered in the parameter setting of lag 164 

time (shoulder) and specific growth rate, respectively. Then the stochastic model can be 165 

conducted by using the simple sampling method with optional 100/1,000/10,000 iteration 166 

times for Monte-Carlo simulation.  167 

 168 

2.2. Mathematical models and statistical indicators in Microrisk Lab 169 

In version 1.0, Microrisk Lab contained 36 peer-reviewed models to implement 170 

parameter estimation or model simulation in predictive microbiology. Specifically, 20 explicit 171 

equations were chosen by considering different shapes of the growth/ inactivation curve for 172 

microbial dynamics under static conditions (Tab.1); 10 secondary models were selected in 173 

view of the impact of temperature/ pH/ water activity on the specific growth rate (Tab.2); 2 174 
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piecewise functions were applied to describe two flora competition growth (Tab.3); and 4 175 

groups of ordinary differential equations were presented by combining the primary model and 176 

secondary model for microbial growth/ inactivation under non-isothermal conditions (Tab.3). 177 

The definition of each parameter was illustrated in the list of symbols. 178 

Note that the 2nd order Runge-Kutta method or Heun's method (Eq.1, Press, Teukolsky, 179 

Vetterling, & Flannery, 2007) was applied as the rapid numerical method to solve the ordinary 180 

differential equations in the dynamic kinetic analysis. During the computational procedures, 181 

the non-isothermal growth/ inactivation was firstly solved by the 2nd order Runge-Kutta 182 

method to calculate the predicted value, corresponding to each of the sampling time for 183 

bacterial counting. Then, the predicted values were applied to match the observed values by a 184 

nonlinear least-squares function to determine the optimized parameter estimation. Similar 185 

algorithm of the 4th order Runge-Kutta method was also realized by R and other programming 186 

languages in previous studies (Press, Teukolsky, Vetterling, & Flannery, 2007; Cattani et al., 187 

2016; Li et al., 2017; Huang, 2017a; Hwang & Huang, 2018). The time step (0.1, 0.01, or 188 

0.001) could be selected by the user in the regression of non-isothermal growth and 189 

inactivation.  190 

{
 

 𝑌𝑛+1 = 𝑌𝑛 +
ℎ

4
(𝑘1 + 3𝑘2)

𝑘1 = 𝑓(𝑡𝑛, 𝑌𝑛)

𝑘2 = 𝑓 (𝑡𝑛 +
2ℎ

3
, 𝑌𝑛 +

2ℎ

3
𝑘1)

                                      Eq.1 191 

In the module of parameter estimation, a recognition algorithm (if/ else statement) was 192 

preset to transfer the input (counting) data into the appropriate unite before fitting to a specific 193 

model, which allowed users to freely choose the preferred input unit of the counting data 194 

("Log10 CFU/g or CFU/ml", "Ln CFU/g or CFU/ml", or "CFU/g or CFU/ml") in Microrisk 195 
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Lab. Meanwhile, results of the model parameter, the estimated value, standard error, and 196 

lower and upper 95% confidence intervals (Eq.2), were provided by the R package of “stats” 197 

and “nlstool”. After obtaining the estimated and evaluated values, users could select the 198 

decimal digits (0, 1, 2, 3, or 4) of the generated results, which should be determined according 199 

to the unit precision of the parameter. 200 

{

L95%CI = �̂� − 𝑡95%,df ∙ MSE ∙ �̂�

U95%CI = �̂� + 𝑡95%,df ∙ MSE ∙ �̂�

𝑡95%,df = 𝑡95%,∞ ≈ 1.96

                                    Eq. 2 201 

where �̂� is the estimated parameter; MSE is the mean sum of square error; �̂� is the 202 

inverse of the matrix of second derivatives of the log-likelihood function as a function of 𝛽 203 

evaluated at the parameter estimates 𝛽 = �̂�; df is degrees of freedom, which is assumed 204 

infinite; 𝑡95%,df is the value from the t distribution for 95% confidence for the specified 205 

number of df.  206 

Furthermore, several statistical indicators were reported to evaluate and compare the 207 

goodness-of-fit between observed and predicted values, such as the residual sum of squares 208 

(RSS, Eq.3, Draper & Smith, 1998), mean sum of squared error (MSE, Eq.4, Geeraerd et al., 209 

2005), root mean sum of squared error (RMSE, Eq.5, Ratkowsky, 2003), regular Akaike 210 

information criterion (AIC, Eq.6, Akaike, 1974), corrected AIC (AICc, Eq.7, Burnham & 211 

Anderson, 2003) and Bayesian information criterions (BIC, Eq.8, Schwarz, 1978). As pointed 212 

out by Ratkowsky (2003), the coefficient of determination (R2, Eq.9, Rawlings, Pantula, & 213 

Dickey, 2001) and the adjusted coefficient of determination (Adjusted R2, Eq.10, Rawlings, 214 

Pantula, & Dickey, 2001) might be inappropriate to evaluate the non-linear models. Thus, 215 

Microrisk Lab provided these two indicators only for linear models.  216 

RSS = ∑ (𝑦𝑖 − �̂�𝑖)
2𝑛

𝑖=1                                                 Eq.3 217 
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MSE =
RSS

𝑛
                                                         Eq.4 218 

RMSE = √MSE                                                      Eq.5 219 

AIC = −2 log(𝜃) + 2𝑘                                                Eq.6 220 

AICc = AIC +
2𝑘(𝑘+1)

𝑛−𝑘−1
                                                 Eq.7 221 

BIC = −2 log(𝜃) + 𝑘 ln(𝑛)                                            Eq.8 222 

R2 =
∑ (�̂�𝑖−

1

𝑛
∑ 𝑦𝑖
𝑛
𝑖=1 )

2
𝑛
𝑖=1

∑ (𝑦𝑖−
1

𝑛
∑ 𝑦𝑖
𝑛
𝑖=1 )

2
𝑛
𝑖=1

                                                Eq.9 223 

Adjusted R2 = 1 − (1 − R2)
𝑛−1

𝑛−𝑘−1
                                     Eq.10 224 

where 𝑦𝑖 is the i th value of the observation; �̂�𝑖 is the i th value of the prediction; 𝑘 is 225 

the number of parameters; and 𝑛 is the number of sample data; log(𝜃) is the numerical 226 

value of the log-likelihood for the fitted model (the probability of the data given a model in 227 

the model), which is donated by the logLik() function built in the R package ‘stats’. 228 

Besides, for stochastic simulation, the Pearson correlation coefficient (Eq.11) is also 229 

calculated to measure the linear correlation between different model variables (𝑷) and the 230 

final bacterial concentration (𝑦𝑓𝑖𝑛𝑎𝑙). The dependence or association relationship can be 231 

measured by the generated tornado plot. 232 

𝜌𝑋,𝑌 =
cov(𝑿,𝑦𝑓𝑖𝑛𝑎𝑙)

𝜎𝑿𝜎𝑦𝑓𝑖𝑛𝑎𝑙
                                                 Eq.11 233 

where cov(𝑿, 𝑦𝑓𝑖𝑛𝑎𝑙) is the covariance of the final bacterial concentration and different 234 

model variables; 𝜎𝑿 is the standard deviation of different model variables; 𝜎𝑦𝑓𝑖𝑛𝑎𝑙  is the 235 

standard deviation of the final bacterial concentration. 236 

 237 

2.3. Practical examples for Microrisk Lab 238 

To illustrate the performance of Microrisk Lab, we collected 6 datasets from the peer-239 
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reviewed papers and lab observation for parameter estimation and simulation. Specifically, 240 

the study on the static/ non-isothermal growth regression, static/ non-isothermal inactivation 241 

regression, secondary model regression, and static stochastic growth simulation. The datasets 242 

for the kinetic analyses (Case I – V) were attached in the supplementary data. It should be 243 

noted that only a part of models was compared with the relevant modeling system in this 244 

study. More results on the comparison between built-in models were provided in the user 245 

manual (see supplementary data). 246 

2.3.1. Case I – Kinetic analysis of Listeria monocytogenes/ Listeria innocua growth under a 247 

static condition 248 

A growth measurement of L. monocytogenes/ L. innocua in tryptose phosphate broth 249 

(TPB) was obtained from the ComBase browser (ComBase ID: LM127_11) according to the 250 

research of Buchanan & Phillips (1990). In order to compare with the online DMFit and Excel 251 

DMFit, the ‘Complete Baranyi model’ in Microrisk Lab was chosen to determine the  kinetic 252 

parameter of L. monocytogenes. 253 

2.3.2. Case II – Kinetic analysis of Salmonella enterica inactivation under a static condition 254 

A thermal inactivation curve of S. enterica in Brain Heart Infusion (BHI) under 60℃ 255 

reported by Wang, Devlieghere, Geeraerd, & Uyttendaele (2017) was used to evaluate the 256 

inactivation model in Microrisk Lab. According to the suggestion by the author, ‘Log-linear + 257 

Shoulder’ model in GInaFiT (version 1.7) was selected for fitting. Therefore, performance of 258 

‘No tail Geeraerd model’ in Microrisk Lab was compared in parallel with GInaFiT as well. 259 

2.3.3. Case III– Effect of temperature on the specific growth rate of Salmonella Typhimurium 260 

We cited a study on the maximum specific growth rate of S. Typhimurium (ATCC 261 
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14028) in chicken breast (Oscar, 2002) to estimate the growth boundary and optimal 262 

parameter by fitting the cardinal parameters model. The value of the specific growth rate 263 

under different static temperature conditions was converted to the same units (natural 264 

logarithm) in Microrisk Lab before regression. Both IPMP 2013 and Prism (version 7.0, 265 

GraphPad Software, USA) were applied for comparison. 266 

2.3.4. Case IV – Kinetic analysis of L. monocytogenes growth under non-isothermal 267 

conditions 268 

For growth modeling under non-isothermal conditions, the observed concentration and 269 

time-temperature profile were introduced from a study on L. monocytogenes growth in 270 

cooked beef samples under non-isothermal conditions. During the experiments, four L. 271 

monocytogenes strains (serotype 1/2a, 1/2b, 1/2c and 4b, meat isolated) were inoculated in a 272 

heat-treated ready-to-eat braised beef product (ca. 1% NaCl, pH=6.2, aw=0.983) and 273 

incubated in an air-packaged sterile stomacher bag under the fluctuating temperature ranging 274 

from 5 to 40°C. To date, there were no other integrated systems specialized for non-isothermal 275 

growth regression analysis. Thus, the measurements would be fitted by the ‘Baranyi-Cardinal 276 

parameter model’ and ‘Huang-Cardinal parameter model’ in Microrisk Lab. 277 

2.3.5. Case V – Kinetic analysis of Bacillus sporothermodurans IC4 spores 278 

 inactivation under non-isothermal conditions 279 

In this case, a dataset was adopted from the supplementary data of the verification 280 

research on the non-isothermal inactivation modeling by Bioinactivation core (Garre, 281 

Fernández, Lindqvist, & Egea, 2017). This example data described the inactivation of B. 282 

sporothermodurans IC4 spores under non-isothermal heating conditions. Bioinactivation FE 283 
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(Garre et al, 2018), a web tool based on Bioinactivation core, was introduced to compare for 284 

the estimated results with Microrisk Lab. The dynamic Bigelow model was selected with the 285 

non-linear regression algorithm for inactivation fitting under non-isothermal conditions. 286 

2.3.6. Case VI – Simulation of S. Typhimurium stochastic growth under a static condition 287 

The stochastic simulation was based on the study of Koutsoumanis & Lianou (2013) 288 

which obtained the growth parameters of S. Typhimurium individual cells with an automated 289 

time-lapse microscopy method. A 10,000 times Monte-Carlo simulation was realized in 290 

commercial software, @Risk for Excel (version 6.0, Palisade Corporation, USA), to describe 291 

the stochastic growth of S. Typhimurium individual cells. According to the distribution of the 292 

conditions and parameters, the stochastic growth of a single cell with the Buchanan model 293 

was reproduced in Microrisk Lab for comparison. 294 

 295 

3. Results and discussion 296 

3.1. Comparison of the primary and secondary modeling 297 

Case studies of the growth/ static inactivation under static conditions and the effect of 298 

temperature on the specific growth rate were evaluated in Microrisk Lab and compared with 299 

other integrated modeling systems. The fitted curves of Case I, Case II, and Case III 300 

downloaded from Microrisk Lab are shown in Fig.3, which illustrates the consistency in the 301 

result rendering of different sections. Note that the interactivity of Microrisk Lab allows users 302 

to change the coordinate axis settings and the displayed results freely. 303 

Tab.4 lists the results of the estimation and evaluation in Microrisk Lab and DMFit by 304 

fitting the complete Baranyi model for Case I. Although most of the estimated results were 305 
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similar, there was around four-hour distinction between Online DMFit and Microrisk Lab/ 306 

Excel DMFit on the estimated lag time. It should be noted that, in the DMFit systems, two 307 

curvature parameters of model need to be determined and fixed before regression. According 308 

to the help documentation for Online DMFit (https://browser.combase.cc/DMFit_Help.aspx) 309 

and manual for Excel DMFit (version 3.5), the default values for two curvature parameters, 310 

nCurv and mCurv, were 1 and 10, respectively. In contrast, all estimable parameters were 311 

determined by globally searching for the optimized estimates in Microrisk Lab, which could 312 

also cause the discrepancy of results. The evaluation indicators and standard errors of 313 

parameters are getting close to that in Microrisk Lab when increasing the value of nCurv from 314 

default 1 to 2 in Excel DMFit. However, it is noticeable that the reason for differences of the 315 

estimated value between the online DMFit and Excel DMFit is inexplicable. Meanwhile, the 316 

model evaluation indicators were different in DMFit tools and Microrisk Lab, we further 317 

calculated adjusted R2 by Eq.8 according to the regression in Microrisk Lab for comparison 318 

(Tab.4). The results illustrate that the estimated adjusted R2 has no obvious differences 319 

between Microrisk Lab and DMFit tools with different curvature settings.   320 

As listed in Tab.5, for the static inactivation modeling, results of estimated parameters 321 

and evaluation indicators show no difference between Microrisk Lab and GInaFiT 1.7 when 322 

using the same model. Similarly, the effect of temperature on the 𝜇𝑚𝑎𝑥 of S. Typhimurium in 323 

chicken breast has been equivalently described in Microrisk Lab, IPMP 2013, and GraphPad 324 

Prism by the cardinal parameters model (Tab.6). Remember that the equation of AIC built-in 325 

IPMP 2013 was referred to the study by van Boekel, & Zwietering (2007), which was 326 

different from that of built-in Microrisk Lab. Above results indicated that Microrisk Lab could 327 
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offer an equivalent accuracy to other integrated systems on primary and secondary modeling 328 

studies. 329 

3.2. Comparison of the dynamic modeling 330 

In Case IV, both time-temperature profile and bacterial counting data were needed for the 331 

dynamic analysis. Initial guesses of the model parameter were required to assist in regression 332 

converge easily. According to former studies (ICMSF, 1996; Magalhães et al., 2014), L. 333 

monocytogenes probably has a growth temperature range from 0 to 45°C, the optimal specific 334 

growth rate is around 1ln CFU/h (or 1/h) under 37°C in meat products. Initial guesses 335 

(Default values) of 𝑞0, 𝐴, and 𝑚 are preset as 1 in Microrisk Lab when there has no reliable 336 

basic knowledge on these parameters. With the above initial settings, both regressions could 337 

converge successfully. The fitted curve and the estimated result are exhibited in Fig.4 and 338 

Tab.7, respectively. The results illustrated that the microbial growth parameters could be 339 

obtained from Microrisk Lab with the measurements under non-isothermal conditions in one 340 

analysis. Meanwhile, the Baranyi - Cardinal parameter model and Huang - Cardinal parameter 341 

model could well describe the non-isothermal growth of L. monocytogenes in cooked beef. 342 

Similarly, with the microbial enumeration data and time-temperature profile in Case Ⅴ, 343 

the non-isothermal inactivation fitting could be performed in Microrisk Lab (Fig. 5). Initial 344 

guesses of the estimable parameters were quoted from the primary study and listed in Tab.8, 345 

where the referenced temperature was fixed to 120°C (Garre, Fernández, Lindqvist, & Egea, 346 

2017). As illustrated in Tab.8, the obtained estimations of Microrisk Lab are close to that of 347 

Bioinactivation FE. It should be noted, however, that numerical methods for the ordinary 348 

differential equations were different in these two tools. The LSODA solver in R package 349 
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‘deSolve’ (Soetaert, Petzoldt & Setzer, 2010) was introduced in Bioinactivation series to 350 

conduct the predictor-corrector method or backward differentiation formulae method for the 351 

dynamic model. In contrast, the Runge-Kutta method was provided by Microrisk Lab. These 352 

numerical methods have their own advantages and disadvantages respectively, but the choice 353 

might cause different truncation errors in a regression (Butcher, 2016). Thus, it is 354 

recommended to take care when using the evaluation indicators of AIC, AICc, and BIC 355 

provided from different modeling platforms for model comparison.  356 

3.3. Comparison of the stochastic growth simulation 357 

The stochastic type model is possible to be applied to the static simulation in Microrisk 358 

Lab by defining the distribution of different model variables. As previously mentioned, the 359 

behavior of microorganisms may be quite different when the population size decreases to the 360 

single-cell level. It is thus necessary to consider the uncertainty and variability of the cells 361 

during the simulation. In the referenced study of Case VI, Koutsoumanis & Lianou (2013) 362 

described the growth of the S. Typhimurium at the different single-cell level by establishing a 363 

stochastic model. Depending on the condition for the software of @Risk for Excel, the 364 

parameter setting of Microrisk Lab was listed in Tab.9, and the simulated results are presented 365 

in Fig.6(A). The probability distribution of the specific growth rate and the final bacterial 366 

concentration is provided with the mean value and standard deviation in Fig 6(C). According 367 

to the definition of the coefficient of variation (%CV = 100×standard deviation/mean) in the 368 

original study, the estimated %CV for S. Typhimurium final concentration is also around 369 

25.5% in Microrisk Lab. The above result demonstrates that Microrisk Lab can perform a 370 

Monte-Carlo simulation for bacterial stochastic modeling. Moreover, Fig 6(D) shows the 371 
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tornado graph of the sensitivity analysis on bacterial counts obtained by different associated 372 

parameters. Thus, restricted by the above settings, the uncertainty of the duration of growth 373 

time has a relatively higher impact (than other variables) on the bacterial count during the 374 

stochastic growth of S. Typhimurium single cell. 375 

From the above cases, Microrisk Lab can be easily applied in microbial predictive 376 

modeling, however, functionalities should be improved to handle more practical modeling 377 

tasks. The model applicability could be expanded, for example, paying more attention to the 378 

impact of the interaction between different intrinsic or extrinsic factors on the microorganism. 379 

Algorithms involved in regression and simulation are also deserved to be developed for more 380 

options. Bioinactivation FE provides a good example for containing different fitting 381 

algorithms, while the functionality of fixed parameter could help users decide the estimable 382 

parameter (Garre et al, 2018). Meanwhile, Latin Hypercube sampling is a widely used method 383 

for the Monte-Carlo simulation in qualitative microbiological risk assessments (Ding et al., 384 

2013; Membré & Boué, 2017; Dogan, Clarke, Mattos & Wang, 2019), which should be 385 

considered in our future update to improve the sampling efficiency. 386 

 387 

4. Conclusions 388 

In this study, a web-based freeware, Mircrorisk Lab, was introduced and used to validate 389 

its performance limited regression and simulation analysis in predictive microbiology. The 390 

interactive interface and simple manipulation logic help users readily obtain the modeling 391 

results. Practical examples elucidated that, in most cases, there was no statistical difference 392 

between the results obtained from Microrisk Lab and other existing modeling systems (except 393 
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the online DMFit) in both regression and simulation studies. The new tool could provide more 394 

statistical results for the estimated parameter or evaluated indicator. Besides, it was also easy 395 

to perform the growth kinetic analysis under non-isothermal conditions without any coding 396 

skill in Microrisk Lab. This freeware might serve as a useful modeling tool and relevant 397 

educational resource for predictive modeling in microbiology. 398 

  399 
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Tables 

 

Table 1. Primary models included in Microrisk Lab 

Name Formula 

Explicit equations for growth* 

Complete Gompertz model 1 𝑌(𝑡) = 𝑌0 + (𝑌𝑚𝑎𝑥 − 𝑌0)𝑒𝑥𝑝 {−exp [
2.71𝜇𝑚𝑎𝑥(𝑡𝑙𝑎𝑔−𝑡)

𝑌𝑚𝑎𝑥−𝑌0
+ 1]}  

Complete Baranyi model 2 

{
 
 

 
 𝑌(𝑡) = 𝑌0 + 𝜇𝑚𝑎𝑥A(t) − ln [1 +

exp(𝜇𝑚𝑎𝑥𝐴(𝑡))−1

exp(𝑌𝑚𝑎𝑥−𝑌0)
]

A(t)

= 𝑡 +
1

𝜇𝑚𝑎𝑥
[ln exp(−𝜇𝑚𝑎𝑥𝑡) + exp(−𝜇𝑚𝑎𝑥𝑡𝑙𝑎𝑔) − exp(−𝜇𝑚𝑎𝑥𝑡 − 𝜇𝑚𝑎𝑥𝑡𝑙𝑎𝑔)]

  

Complete Buchanan model 3 {

𝑦(𝑡) = 𝑦0, 𝑡 < 𝑡𝑙𝑎𝑔

𝑦(𝑡) = 𝑦0 +
𝜇𝑚𝑎𝑥

ln 10
(𝑡 − 𝑡𝑙𝑎𝑔), 𝑡𝑙𝑎𝑔 ≤ 𝑡 < 𝑡𝑚𝑎𝑥

𝑦(𝑡) = 𝑦𝑚𝑎𝑥 ,    𝑡 ≥ 𝑡𝑚𝑎𝑥

  

Lag-logistic model 4 {
𝑌(𝑡) = 𝑌0, 𝑡 < 𝑡𝑙𝑎𝑔

𝑌(𝑡) = 𝑌𝑚𝑎𝑥 − ln{1 + [exp(𝑌𝑚𝑎𝑥 − 𝑌0) − 1]exp[−𝜇𝑚𝑎𝑥(𝑡 − 𝑡𝑙𝑎𝑔)]} , 𝑡 ≥ 𝑡𝑙𝑎𝑔
  

Complete Huang model 5 {
𝑌(𝑡) = 𝑌0 + 𝑌𝑚𝑎𝑥 − ln{exp(𝑌0) + [exp(𝑌𝑚𝑎𝑥) − exp(𝑌0)] exp(−𝜇𝑚𝑎𝑥B(t))}

B(t) = 𝑡 +
1

4
ln

1+exp[−4(𝑡−𝑡𝑙𝑎𝑔)]

1−exp(4𝑡𝑙𝑎𝑔)

  

Logistic model 6 𝑌(𝑡) = 𝑌0 + 𝑌𝑚𝑎𝑥 − ln{exp(𝑌0) + [exp(𝑌𝑚𝑎𝑥) − exp(𝑌0)]exp(−𝜇𝑚𝑎𝑥𝑡)}  

No lag Buchanan model 7 {
𝑦(𝑡) = 𝑦0 +

𝜇𝑚𝑎𝑥

ln 10
𝑡, 𝑡 < 𝑡𝑚𝑎𝑥

𝑦(𝑡) = 𝑦𝑚𝑎𝑥 , 𝑡 ≥ 𝑡𝑚𝑎𝑥
  

Reduced Baranyi model 8 
𝑌(𝑡) = 𝑌0 + 𝜇𝑚𝑎𝑥𝑡 + ln[exp(−𝜇𝑚𝑎𝑥𝑡) + exp(−𝜇𝑚𝑎𝑥𝑡𝑙𝑎𝑔) − exp(−𝜇𝑚𝑎𝑥𝑡 −

𝜇𝑚𝑎𝑥𝑡𝑙𝑎𝑔)]  

Reduced Buchanan model 9 {
𝑦(𝑡) = 𝑦0, 𝑡 < 𝑡𝑙𝑎𝑔

𝑦(𝑡) = 𝑦0 +
𝜇𝑚𝑎𝑥

ln 10
(𝑡 − 𝑡𝑙𝑎𝑔), 𝑡 ≥ 𝑡𝑙𝑎𝑔

  

Reduced Huang model 10 𝑌(𝑡) = 𝑌0 + 𝜇𝑚𝑎𝑥𝑡 +
1

4
𝜇𝑚𝑎𝑥 ln

1+exp[−4(𝑡−𝑡𝑙𝑎𝑔)]

1−exp(4𝑡𝑙𝑎𝑔)
  

Linear model 𝑌(𝑡) = 𝑌0 + 𝜇𝑚𝑎𝑥𝑡  

Explicit equations for inactivation 

Completed Geeraerd model 11 𝑦(𝑡) = 𝑦𝑟𝑒𝑠 + log10 [
(10𝑦0−𝑦𝑟𝑒𝑠−1) exp(𝑘𝑚𝑎𝑥𝑆𝑙)

exp(𝑘𝑚𝑎𝑥𝑡)+exp(𝑘𝑚𝑎𝑥𝑆𝑙)−1
+ 1]  

Three-phase model 12 {

𝑦(𝑡) = 𝑦0, 𝑡 < 𝑆𝑙

𝑦(𝑡) = 𝑦0 +
𝑘𝑚𝑎𝑥

ln 10
(𝑡 − 𝑆𝑙), 𝑆𝑙 ≤ 𝑡 < 𝑆𝑡

𝑦(𝑡) = 𝑦𝑟𝑒𝑠,    𝑡 ≥ 𝑆𝑡

  

Weibull-tail model 13 𝑦(𝑡) = 𝑦𝑟𝑒𝑠 + log10 [(10
𝑦0−𝑦𝑟𝑒𝑠 − 1) 10−

(
𝑡

𝛿
)
𝑝

+ 1]  

No shoulder Geeraerd model 14 𝑦(𝑡) = 𝑦𝑟𝑒𝑠 + log10{(10
𝑦0−𝑦𝑟𝑒𝑠 − 1) exp(𝑘𝑚𝑎𝑥𝑡) + 1}  

No shoulder two-phase model 
15 

{
𝑦(𝑡) = 𝑦0 +

𝑘𝑚𝑎𝑥

ln 10
𝑡, 𝑡 < 𝑆𝑡

𝑦(𝑡) = 𝑦𝑟𝑒𝑠 ,    𝑡 ≥ 𝑆𝑡
  

No tail Geeraerd model 16 𝑦(𝑡) = 𝑦0 +
𝑘𝑚𝑎𝑥𝑡

ln 10
+ log10 {

exp(𝑘𝑚𝑎𝑥𝑆𝑙)

1+[exp(𝑘𝑚𝑎𝑥𝑆𝑙)−1]exp(𝑘𝑚𝑎𝑥𝑡)
}  

No tail two-phase model 17 {
𝑦(𝑡) = 𝑦0 , 𝑡 < 𝑆𝑙

𝑦(𝑡) = 𝑦0 +
𝑘𝑚𝑎𝑥

ln 10
(𝑡 − 𝑆𝑙),    𝑡 ≥ 𝑆𝑙
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Weibull model 18 𝑦(𝑡) = 𝑦0 − (
𝑡

𝛿
)
𝑝

  

Bigelow model 19 𝑦(𝑡) = 𝑦0 −
𝑡

𝐷
  

1 Zwietering, Jongenburger, Rombouts, & van 't Riet, 1990; 2/ 8 Baranyi & Roberts, 1995; 3/ 7/ 9 Buchanan, Whiting, 

& Damert, 1997; 4 Rosso et al., 1996; 5/ 6/ 10 Huang, 2008; 11/ 14/ 16 Geeraerd, Valdramidis, & Van Impe, 2000; 12/ 15/ 17 

Buchanan & Golden, 1995; 13 Albert & Mafart, 2005; 18 van Boekel, 2002; 19 Bigelow, 1921. 

* Reduced model is the model without asymptote. 
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Table 2. Secondary models for 𝜇𝑚𝑎𝑥 included in Microrisk Lab 

Name Formula 

Temperature models  

Suboptimal square-root model 1 𝜇𝑚𝑎𝑥 = [𝑎(𝑇 − 𝑇𝑚𝑖𝑛)]
2  

Full square-root model 2  𝜇𝑚𝑎𝑥 = 〈𝑎(𝑇 − 𝑇𝑚𝑖𝑛){1 − exp[𝑏(𝑇 − 𝑇𝑚𝑎𝑥)]}〉
2  

Suboptimal Huang square-root model 3  𝜇𝑚𝑎𝑥 = [𝑎(𝑇 − 𝑇𝑚𝑖𝑛)
0.75]2  

Full Huang square-root model 4 𝜇𝑚𝑎𝑥 = 〈𝑎(𝑇 − 𝑇𝑚𝑖𝑛)
0.75{1 − exp[𝑏(𝑇 − 𝑇𝑚𝑎𝑥)]}〉

2  

Cardinal parameter model 5 𝜇𝑚𝑎𝑥 =
𝜇𝑜𝑝𝑡(𝑇−𝑇𝑚𝑎𝑥)(𝑇−𝑇𝑚𝑖𝑛)

2

[(𝑇𝑜𝑝𝑡−𝑇𝑚𝑖𝑛)(𝑇−𝑇𝑜𝑝𝑡)−(𝑇𝑜𝑝𝑡−𝑇𝑚𝑎𝑥)(𝑇𝑜𝑝𝑡+𝑇𝑚𝑖𝑛−2𝑇)](𝑇𝑜𝑝𝑡−𝑇𝑚𝑖𝑛)
  

pH models  

Cardinal 3-parameter model 6 𝜇𝑚𝑎𝑥 =
𝜇𝑜𝑝𝑡(𝑝𝐻−𝑝𝐻𝑚𝑖𝑛)[𝑝𝐻−(2𝑝𝐻𝑜𝑝𝑡−𝑝𝐻𝑚𝑖𝑛)]

(𝑝𝐻−𝑝𝐻𝑚𝑖𝑛)[𝑝𝐻−(2𝑝𝐻𝑜𝑝𝑡−𝑝𝐻𝑚𝑖𝑛)]−(𝑝𝐻−𝑝𝐻𝑜𝑝𝑡)
2  

Cardinal 4-parameter model 7 𝜇𝑚𝑎𝑥 =
𝜇𝑜𝑝𝑡(𝑝𝐻 − 𝑝𝐻𝑚𝑖𝑛)(𝑝𝐻 − 𝑝𝐻𝑚𝑎𝑥)

(𝑝𝐻 − 𝑝𝐻𝑚𝑖𝑛)(𝑝𝐻 − 𝑝𝐻𝑚𝑎𝑥) − (𝑝𝐻 − 𝑝𝐻𝑜𝑝𝑡)
2 

Quasi-mechanistic model 8 𝜇𝑚𝑎𝑥 = 𝜇𝑜𝑝𝑡(1 − 10
𝑝𝐻𝑚𝑖𝑛−𝑝𝐻)  

Water activity models  

Cardinal 2-parameter model 9 𝜇𝑚𝑎𝑥 =
𝜇𝑜𝑝𝑡(𝑎𝑤−𝑎𝑤𝑚𝑖𝑛)

2

(1−𝑎𝑤𝑚𝑖𝑛)
2   

Cardinal 3-parameter model 10 𝜇𝑚𝑎𝑥 =
𝜇𝑜𝑝𝑡(𝑎𝑤−1)(𝑎𝑤−𝑎𝑤𝑚𝑖𝑛)

2

(𝑎𝑤𝑜𝑝𝑡−𝑎𝑤𝑚𝑖𝑛)[(𝑎𝑤𝑜𝑝𝑡−𝑎𝑤𝑚𝑖𝑛)(𝑎𝑤−𝑎𝑤𝑜𝑝𝑡)−(𝑎𝑤𝑜𝑝𝑡−1)(𝑎𝑤𝑜𝑝𝑡+𝑎𝑤𝑚𝑖𝑛−2𝑎𝑤)]
  

1/ 2 Ratkowsky et al., 1983; 3/ 4 Huang & Hwang, 2011; 5 Rosso, Lobry, & Flandrois, 1993; 6/ 7 Rosso, Lobry, Bajard, 

& Flandrois, 1995;8 Presser, Ratkowsky, & Ross, 1997; 9/10 Rosso & Robinson, 2001. 
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Table 3. Complex models included in Microrisk Lab 

Name Formula 

Two flora competition growth models*  

Jameson - No lag Buchanan model 1 

{
 
 

 
 𝑦1(𝑡) = {

𝑦1 +
𝜇𝑚𝑎𝑥1

ln 10
𝑡, 𝑡 < 𝑡𝑚𝑎𝑥

𝑦1 +
𝜇𝑚𝑎𝑥1

ln 10
𝑡𝑚𝑎𝑥 , 𝑡 ≥ 𝑡𝑚𝑎𝑥

𝑦2(𝑡) = {
𝑦2 +

𝜇𝑚𝑎𝑥2

ln 10
𝑡, 𝑡 < 𝑡𝑚𝑎𝑥

𝑦2 +
𝜇𝑚𝑎𝑥2

ln 10
𝑡𝑚𝑎𝑥 , 𝑡 ≥ 𝑡𝑚𝑎𝑥

  

Jameson - Buchanan model 2 

{
 
 
 

 
 
 
𝑦1(𝑡) = {

𝑦1, 𝑡 < 𝑡𝑙𝑎𝑔1

𝑦1 +
𝜇𝑚𝑎𝑥1

ln 10
(𝑡 − 𝑡𝑙𝑎𝑔1), 𝑡𝑙𝑎𝑔1 ≤ 𝑡 < 𝑡𝑚𝑎𝑥

𝑦1 +
𝜇𝑚𝑎𝑥1

ln 10
(𝑡𝑚𝑎𝑥 − 𝑡𝑙𝑎𝑔1), 𝑡 ≥ 𝑡𝑚𝑎𝑥

𝑦2(𝑡) = {

𝑦2, 𝑡 < 𝑡𝑙𝑎𝑔2

𝑦2 +
𝜇𝑚𝑎𝑥2

ln 10
(𝑡 − 𝑡𝑙𝑎𝑔2), 𝑡𝑙𝑎𝑔2 ≤ 𝑡 < 𝑡𝑚𝑎𝑥

𝑦2 +
𝜇𝑚𝑎𝑥2

ln 10
(𝑡𝑚𝑎𝑥 − 𝑡𝑙𝑎𝑔2), 𝑡 ≥ 𝑡𝑚𝑎𝑥

  

Ordinary differential equations for growth   

Baranyi - Cardinal parameter model 3 

{
 
 
 
 

 
 
 
 

𝑑𝑌

𝑑𝑡
= 𝜇𝑚𝑎𝑥 [

1

1+exp (−𝑄)
] [1 − exp (𝑌 − 𝑌𝑚𝑎𝑥)]

𝑑𝑄

𝑑𝑡
= 𝜇𝑚𝑎𝑥

𝑄 = ln
𝑞

1−𝑞

𝑌(0) = 𝑌0
𝑞(0) = 𝑞0

𝜇𝑚𝑎𝑥 =
𝜇𝑜𝑝𝑡(𝑇−𝑇𝑚𝑎𝑥)(𝑇−𝑇𝑚𝑖𝑛)

2

[(𝑇𝑜𝑝𝑡−𝑇𝑚𝑖𝑛)(𝑇−𝑇𝑜𝑝𝑡)−(𝑇𝑜𝑝𝑡−𝑇𝑚𝑎𝑥)(𝑇𝑜𝑝𝑡+𝑇𝑚𝑖𝑛−2𝑇)](𝑇𝑜𝑝𝑡−𝑇𝑚𝑖𝑛)

  

Huang - Cardinal parameter model 4/5 

{
  
 

  
 

𝑑𝑌

𝑑𝑡
= 𝜇𝑚𝑎𝑥 [

1

1+exp (−4(𝑡−𝑡𝑙𝑎𝑔))
] [1 − exp (𝑌 − 𝑌𝑚𝑎𝑥)]

𝑡𝑙𝑎𝑔 =
exp(𝐴)

𝜇𝑚𝑎𝑥
𝑚

𝑌(0) = 𝑌0

𝜇𝑚𝑎𝑥 =
𝜇𝑜𝑝𝑡(𝑇−𝑇𝑚𝑎𝑥)(𝑇−𝑇𝑚𝑖𝑛)

2

[(𝑇𝑜𝑝𝑡−𝑇𝑚𝑖𝑛)(𝑇−𝑇𝑜𝑝𝑡)−(𝑇𝑜𝑝𝑡−𝑇𝑚𝑎𝑥)(𝑇𝑜𝑝𝑡+𝑇𝑚𝑖𝑛−2𝑇)](𝑇𝑜𝑝𝑡−𝑇𝑚𝑖𝑛)

  

Ordinary differential equations for 

inactivation  
 

Dynamic Weibull model 7 𝑑𝑦

𝑑𝑡
= −𝑝(

10

𝑇−𝑇𝑟𝑒𝑓
𝑧

𝛿𝑟𝑒𝑓
)

𝑝

𝑡𝑝−1, 𝑦(0) = 𝑦0  

Dynamic Bigelow model 8 
𝑑𝑦

𝑑𝑡
= −

1

𝐷𝑟𝑒𝑓
10

𝑇−𝑇𝑟𝑒𝑓

𝑧 , 𝑦(0) = 𝑦0  

* The inferior number 1 or 2 in competition growth models represent the flora type; 

1/ 2 Vimont et al., 2006; 3/ 4/ 6 Huang, 2017a; 5 Hwang & Huang, 2018; 7 Mafart et al, 2002; 8 Van Impe et al., 1992. 
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Table 4 Comparison on static growth fitting results of Microrisk Lab and DMFit (Complete Baranyi model) 

  Microrisk Lab Online DMFit Excel DMFit 

Curvature paramters - Default nCurv=1 (Default) nCurv=1.5 nCurv=2 

Parameter estimation 

Parameters 
Est. (SE)* Est. (SE)* Est. (SE)* Est. (SE)* Est. (SE)* 

(95% CI) ** - - - - 

y0 (log10 CFU/g) 
3.85 (0.12) 3.84 (0.12) 3.82 (-) 3.82 (-) 3.86 (-) 

(3.53, 4.17) - - - - 

ymax (log10 CFU/g) 
9.41 (0.09) 9.44 (0.10) 9.46 (0.12) 9.46 (0.11) 9.46 (0.10) 

(9.16, 9.66) - - - - 

tlag (h) 
38.09 (10.36) 42.72 (11.35) 38.89 (16.08) 38.66 (11.69) 38.01 (10.10) 

(9.32, 66.86) - - - - 

μmax (1/h) 
0.044 (0.002) 0.046 (0.003) 0.045 (0.004) 0.045 (0.004) 0.044 (0.002) 

(0.038, 0.051) - - - - 

Model evaluation 

RSS 0.1239 - - - - 

MSE 0.0310 - - - - 

RMSE 0.1760 - - - - 

AIC 4.0349 - - - - 

AICc 9.3683 - - - - 

BIC 4.3527 - - - - 

Adjusted R2 0.9976*** 0.997 0.9970  0.9974  0.9975  

* Est.: Estimation; SE: Standard error. 

** 95%CI: lower and upper 95% confidence intervals. 

*** Results no show in Microrisk Lab 
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Table 5 Comparison on inactivation fitting results of Microrisk Lab and GInaFiT (No tail Geeraerd model) 

 Microrisk Lab GInaFiT 1.7 

Parameter estimation* 

Parameters 
Est. 

(95% CI) ** 
SE Est. SE 

y0 (log10 CFU/g) 
9.01 

(8.83, 9.19) 
0.08 9.01 0.08 

Sl (min) 
0.43 

(0.30, 0.57) 
0.06 0.43 0.06 

kmax (1/min) 
5.581 

(5.106, 6.057) 
0.213 5.58 0.21 

Model evaluation 

RSS 0.1320 0.1320 

MSE 0.0132 0.0132 

RMSE 0.1149 0.1149 

AIC -16.7812 - 

AICc -20.1145 - 

BIC -15.0864 - 

R2 - 0.9938 

Adjusted R2 - 0.9926 

* Est.: Estimation; SE: Standard error. 

** 95%CI: lower and upper 95% confidence intervals. 
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Table 6 Comparison on secondary model fitting results of Microrisk Lab and IPMP 2013 (Cardinal parameter 

model) 

 Microrisk Lab IPMP 2013 GraphPad Prism 7.0 

Parameter estimation* 

Parameters 
Est. 

(95% CI) ** 
SE 

Est. 

(95% CI) ** 
SE 

Est. 

(95% CI) ** 
SE 

μopt (1/h) 
1.620 

(1.558, 1.682) 
0.029 

1.621 

(1.559, 1.682) 
0.029 

1.621 

(1.559, 1.683) 
0.029 

Topt (℃) 
39.7 

(38.9, 40.5) 
0.4 

39.8 

(39.0, 40.6) 
0.4 

39.8 

(38.9, 40.6) 
0.4 

Tmin (℃) 
5.6 

(3.1, 8.2) 
1.2 

5.6 

(3.0, 8.1) 
1.2 

5.6 

(2.9, 8.1) 
1.2 

Tmax (℃) 
49.6 

(48.9, 50.3) 
0.3 

49.6 

(48.9, 50.3) 
0.3 

49.6 

(49.0, 50.5) 
0.3 

Model evaluation 

RSS 0.0816 0.0810 0.0810 

MSE 0.0048 0.0050 - 

RMSE 0.0693 0.0690 0.0690 

AIC -48.9750 -102.7230 - 

AICc -54.4750 - - 

BIC -44.7969 - - 

R2 - - 0.9876 

* Est.: Estimation; SE: Standard error. 

** 95%CI: lower and upper 95% confidence intervals. 
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Table 7 Non-isothermal growth model fitting results of Microrisk Lab 

Baranyi-Cardinal parameter model Huang-Cardinal parameter model 

Parameter estimation* 

Parameters Int. 
Est. 

(95% CI) ** 
SE Parameters Int. 

Est. 

 (95% CI) ** 
SE 

y0 (log10 CFU/g) - 
3.39 

(3.36, 3.43) 
0.02 y0 (log10 CFU/g) - 

3.45 

(3.41, 3.50) 
0.02 

ymax (log10 CFU/g) - 
8.21 

(8.18, 8.25) 
0.02 ymax (log10 CFU/g) - 

8.21 

(8.16, 8.27) 
0.03 

μopt (1/h) 1.000 
1.065 

(0.854, 1.276) 
0.096 μopt (-h) 1.000 

1.242 

(0.825, 1.659) 
0.187 

Topt (℃) 37.0 
36.4 

(35.4, 37.5) 
0.5 Topt (℃) 37.0 

38.0 

(33.5, 42.4) 
2.0 

Tmin (℃) 0.0 
-1.1 

(-2.6, 0.5) 
0.7 Tmin (℃) 0.0 

-2.8 

(-7.4, -1.8) 
2.1 

Tmax (℃) 45.0 
42.4 

(38.4, 46.4) 
1.8 Tmax (℃) 45.0 

40.3 

(38.7, 41.9) 
0.7 

q0 1.0000 
0.0244 

(0.0167, 0.0321) 
0.0035 A 1.00 

1.91 

(1.84, 1.99) 
0.04 

    m 1.00 
0.33 

(0.17, 0.48) 
0.07 

Step size (h) 0.1 

Model evaluation 

RSS 0.0071  0.0155 

MSE 0.0006  0.0016 

RMSE 0.0253  0.0394 

AIC -46.0602  -29.8674 

AICc -48.8602  -29.8674 

BIC -39.8276  -22.7444 

* Int.: Initial guess; Est.: Estimation; SE: Standard error. 

** 95%CI: lower and upper 95% confidence intervals. 
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Table 8 Comparison on non-isothermal inactivation fitting results of Microrisk Lab and Bioinactivation FE 

(Dynamic Bigelow model) 

 Microrisk Lab Bioinactivation FE 

Initial parameter guess 

Parameters Initial estimate Initial estimate 

Tref (℃) 120 (fixed) 120 (fixed) 

Dref (min) 10 10 

z (℃) 8 8 

y0 (log10 

CFU/g) 
- 6 

Parameter estimation* 
 Numerical solution Analytic solution (nlr algorithm) 

Parameters 
Est. 

SE 
Est. 

SE 
(95% CI) ** (95% CI) ** 

Dref (min) 
5.63 

0.72 
5.65 

0.72 
(4.12, 7.14) (4.12, 7.17) 

z (℃) 
6.67 

0.92 
6.65 

0.92 
(4.72, 8.63) (4.70, 8.60) 

y0 (log10 

CFU/g) 

5.78 
0.04 

5.78 
0.04 

(5.69, 5.87) (5.69, 5.87) 

Model evaluation 

RSS 0.1737 - 

MSE 0.0102 0.01 

RMSE 0.1011 0.10 

AIC -32.1667 -27.18 

AICc -36.6667 -25.68 

BIC -29.1795 -24.20  

* Est.: Estimation; SE: Standard error; 

** 95% CI: lower and upper 95% confidence intervals. 
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Table 9 Stochastic growth simulation settings for Microrisk Lab and Palisade @RISK (Buchanan model) 

Parameters Microrisk Lab Palisade @RISK for Excel 

y0 (log10 CFU/g) 

Distribution Normal 

RiskNormal(0, 0) Mean 0 

Standard deviation 0 

ymax (log10 CFU/g) 

Distribution Normal 

RiskNormal(8, 0) Mean 8 

Standard deviation 0 

tlag (h) 

Distribution Lognormal 

RiskLogNorm(3.355, 0.896)−1.628 Mean 3.355 

Standard deviation 0.896 
 Shift -1.628  

μmax (1/h) 

Distribution Logistic 

RiskLogistic(0.754, 0.085) Mean 0.754 

Standard deviation 0.024 

t (h) 

Distribution Uniform 

RiskUniform(0, 8) Maximum 0 

Minimum 8 
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Figures (Color should be used) 

Fig. 1 Overview of the layout of Microrisk Lab and its visual interface on different internet-connected devices. 

 

Fig. 2 The structural framework and workflow of Microrisk Lab. 

 

Fig. 3 The fitted curve of (A) Case I with the ‘Complete Baranyi model’, (B) Case II with the ‘No tail Geeraerd 

model’, and (C) Case III with the ‘Cardinal parameter model’ downloaded from Microrisk Lab. (The blue dot 

represents the observed bacterial count, and the origin line represents the fitted curve.) 

 

Fig. 4 The fitted curve of Case IV with (A) the Baranyi-Cardinal parameter model and (B) the Huang-Cardinal 

parameter model downloaded from Microrisk Lab. (The blue dot represents the observed bacterial count, and the 

origin line represents the fitted curve.) 

 

Fig. 5 The fitted curve of Case V with the Dynamic Bigelow model downloaded from Microrisk Lab. (The blue dot 

represents the observed bacterial count, and the origin line represents the fitted curve.) 

 

Fig. 6 Monte-Carlo simulation of 1 cell growth with 10, 000 iterations in (A) Microrisk Lab, and (B) @RISK for 

Excel (adapted from Fig.7 of Koutsoumanis, & Lianou, 2013). (C) Simulated distribution of the maximum specific 

growth rate and final bacterial count. (D) Tornado graph of the sensitivity analysis between model variables and 

bacterial counts.  
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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