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Abstract

For many horticultural crops, variation in quality (e.g., shape and size) contribute
significantly to the crop’s market value. Metrics characterizing less subjective harvest
quantities (e.g., yield and total biomass) are routinely monitored. In contrast, metrics
quantifying more subjective crop quality characteristics such as ideal size and shape
remain difficult to characterize objectively at the production-scale due to the lack of
modular technologies for high-throughput sensing and computation. Several
horticultural crops are sent to packing facilities after having been harvested, where they
are sorted into boxes and containers using high-throughput scanners. These scanners
capture images of each fruit or vegetable being sorted and packed, but the images are
typically used solely for sorting purposes and promptly discarded. With further analysis,
these images could offer unparalleled insight on how crop quality metrics vary at the
industrial production-scale and provide further insight into how these characteristics
translate to overall market value. At present, methods for extracting and quantifying
quality characteristics of crops using images generated by existing industrial
infrastructure have not been developed. Furthermore, prior studies that investigated
horticultural crop quality metrics, specifically of size and shape, used a limited number
of samples, did not incorporate deformed or non-marketable samples, and did not use
images captured from high-throughput systems. In this work, using sweetpotato (SP) as
a use case, we introduce a computer vision algorithm for quantifying shape and size
characteristics in a high-throughput manner. This approach generates 3D model of SPs
from two 2D images captured by an industrial sorter 90 degrees apart and extracts 3D
shape features in a few hundred milliseconds. We applied the 3D reconstruction and
feature extraction method to thousands of image samples to demonstrate how variations
in shape features across sweetptoato cultivars can be quantified. We created a
sweetpotato shape dataset containing sweetpotato images, extracted shape features, and
qualitative shape types (U.S. No. 1 or Cull). We used this dataset to develop a neural
network-based shape classifier that was able to predict Cull vs. U.S. No. 1 sweetpotato
with 84.59% accuracy. In addition, using univariate Chi-squared tests and random
forest, we identified the most important features for determining qualitative shape (U.S.
No. 1 or Cull) of the sweetpotatoes. Our study serves as the first step towards enabling
big data analytics for sweetpotato agriculture. The methodological framework is readily
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transferable to other horticultural crops, particularly those that are sorted using
commercial imaging equipment.

Introduction 1

The market value of a horticultural crop can be heavily dependent on its quality, 2

particularly on physical characteristics such as size and shape. Consumers prefer 3

produce that have specific shape properties [1–3], which are often referred in the 4

literature as“Ideal,”“Grade A”, or defined by United State Department of Agriculture 5

as “U.S. No. 1” [2, 4–6]. Despite having the same nutritional value as the ideally 6

shaped produce, deformed or “Cull” products are often rejected by consumers. As a 7

result, deformed crops can be a source of food waste [2,7,8] and significant financial loss 8

to growers. This loss can be severe for crops with high shape variability (e.g., 9

sweetpotatoes and bell peppers). With recent advancements in optical sorting 10

technologies in the vegetable and fruit packaging industry and advancements in big data 11

analytics, the quantification of shape and size characteristics at production scale could 12

enable the identification of factors (i.e., environmental factors, genotype, and cultural 13

practices) that contribute to shape deformation in horticultural crops. Through 14

improved understanding of the underlying drivers of crop shape, growers could revise 15

their cultural practices to promote crop consistency, leading to increased grower profits 16

and reduced food waste. A major obstacle, however, to implementing big data analytics 17

in support of crop quality assessment is the absence of efficient, high-throughput 18

methods to quantify 3D features associated with crop shape. Many horticultural crops 19

are regularly analyzed at packing facilities using high-throughput imaging equipment, 20

but images captured at these facilities are exclusively used to sort fruits and vegetables 21

into shipping boxes and containers, and the images are not stored or used for further 22

downstream analyses. To date, no methodological framework exist for analyzing size 23

and shape quality metrics from images collected from commercial sorting systems, 24

leaving the images largely unused. Yet, with the proper technology, these images could 25

be further scrutinized to log the size and shape characteristics of harvested crops at 26

large production-scales. Though automated morphological feature extraction 27

approaches have been proposed for several fruits and vegetables [1, 4, 9–17], these 28

methods are neither transferable to industrial sorting facilities nor capable of generating 29

large datasets due to their low throughput. Previously published methods have focused 30

mostly on 2D morphological features (i.e., height, width, and aspect ratio) and are 31

unsuitable for quantifying produce with highly irregular shapes (e.g., sweetpotatoes, bell 32

peppers, cucumbers, and carrots). In addition, previous studies did not incorporate 33

existing industrial imaging infrastructure, but instead designed or used independent 34

systems for image acquisition, making the methods unsuitable to couple with existing 35

industrial machinery [2, 4, 17,18]. 36

In this paper, we introduce a novel computer vision approach to extract 3D shape 37

features from crop images and classify individual fruits and vegetables into grade classes. 38

We use sweetpotato (SP), a highly variable and irregular crop, as a representative use 39

case. We used digital images obtained from a commercially available sorter (capable of 40

capturing 5 sweetpotato images per second per lane) installed at the Sweetpotato 41

Breeding Program at the Horticulture Crop Research Station (HCRS) in Clinton, NC, 42

to reconstruct three-dimensional models of sweetpotatoes. We calculated shape features 43

from the 3D model that could not be extracted directly from 2D images (i.e., curvature, 44

radii of cross-sections, and tail length). We applied the 3D reconstruction and feature 45

extraction method to 12,579 image samples collected from a sweetpotato yield trial to 46

demonstrate how variations in shape features across sweetptoato cultivars can be 47

quantified. We created a sweetpotato shape dataset containing sweetpotato images, 48
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extracted shape features, and labeled qualitative shape types (U.S. No. 1 or Cull) for 49

1,332 of the 12,579 sweetpotatoes. We used this dataset to identify a machine learning 50

architecture to best classify shape type. We found that a neural network classifier 51

performed best, predicting Cull vs. U.S. No. 1 sweetpotato with 84.59% accuracy. In 52

addition, using univariate Chi-squared tests and random forest, we identified curvature, 53

length-width ratio, cross-sectional roundness, and cross-sectional diameters to be the 54

most important features for determining qualitative shape (U.S. No. 1 or Cull) of 55

sweetpotato. 56

The 3D reconstruction and feature extraction method allows us to capture the 57

variation in shape features extracted from thousands of sweetpotatoes, paving a way to 58

apply big data analytics to understand sweetpotato shape variation. Our method makes 59

use of currently discarded commercial imagery and provides data that could enable 60

downstream analytics for quantifying and understanding shape variation across 61

cultivars, and identifying the factors responsible for these variations. Thus, in addition 62

to supporting research on industrial agricultural production dynamics, our method has 63

the potential to support plant breeding programs by objectively providing phenotypic 64

metrics beyond yield that can be incorporated into breeding and selection processes for 65

the development of high-value cultivars. In addition, we demonstrate that the extracted 66

features can be used to train and test automated machine learning models for 67

classifying individual fruits and vegetables by grade. Automatic shape classification has 68

two benefits. First, it enables researchers to understand what percentage of a particular 69

cultivar is marketable (qualitatively good). Second, in the context of sweetpotato 70

specifically, existing industrial sorters do not effectively capture sweetpotato shape 71

features and fail to accurately sort SPs based on shape in an automated way. Due to 72

the ability to calculate 3D features in milliseconds, our method can be incorporated into 73

existing industrial sorters to improve their performance. Industrial deployment of this 74

method will help packers improve accuracy and efficiency of the existing grading process 75

(by reducing manual labor), and will also create novel datasets that can be used to 76

analyze industrial-scale trends in crop quality. 77

Materials and Methods 78

We developed a computer vision algorithm for creating 3D sweetpotato models from 79

images captured by the Exeter Accuvision Sorter (Exeter Engineering, Exeter, CA). We 80

extracted thirteen 3D shape features from the 3D SP model. We performed validation 81

experiments to evaluate the accuracy of our 3D modeling and feature extraction method. 82

We applied our feature extraction method to extract shape features from 12,579 SP 83

images and quantified the distributions of these features across different cultivars. In 84

addition, using a labeled dataset of 1,323 SPs and we trained and validated machine 85

learning classifiers for identifying U.S. No. 1 vs. Cull SPs. Using Chi-squared test and 86

random forest analysis we identified the influential features that determined SP shape 87

class. Finally, by evaluating multiple performance metrics, we selected the champion 88

classification model for SP shape type prediction. Fig 1 represents an overview of the 89

methodology. 90

Industrial Packing and Imaging of Sweetpotatoes 91

We obtained 12,579 sweetpotato images captured by an Exeter Accuvision Sorter 92

installed at the North Carolina Department of Agriculture and Consumer Services 93

(NCDA&CS) Horticultural Crop Research Station in Clinton, NC. The Exeter 94

Accuvision Sorter can scan tens of thousands of SPs per hour and captures images of all 95

SPs processed through it (Fig 1). This equipment is currently used by many packers for 96
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Fig 1. SP shape feature quantification and shape classifications. SP images
were captured using a single lane sorter developed by Exeter Engineering, installed at
the Horticulture Crop Research Station (HCRS) in Clinton, NC.

sorting different fruits and vegetables (including sweetpotatoes). We used a sorter with 97

a single lane, whereas industrial packers use the same sorter with multiple lanes. The 98

Exeter sorter captures Near Infrared (NIR) and Color (RGB) images of sweetpotatoes. 99

Both images contain SP views from two separate angles that are 90◦ apart from each 100

other. We used the NIR images for image processing (Fig 2A) and 3D reconstruction as 101

these images are less noisy than the RGB images. 102

3D Reconstruction 103

We segmented sweetpotatoes from the NIR images (Fig 2A) using intensity-based 104

thresholding. The segmentation provided sweetpotato shape outlines viewed from two 105

different angles normal (i.e., 90◦ apart) to each other (front view and side view). We 106

aligned and rotated the segmented sweetpotato images and calculated centroid axes for 107

each segmentation mask. We selected N equidistant points across the axes and obtained 108

sweetpotato radii at these points for both views, giving us N pairs of radii. Next, in a 109

new 3D coordinate system, we constructed N ellipses on the XY plane along the Z-axis 110

using the radii pairs. These ellipses were interpolated across the Z-axis to obtain 111

reconstructed 3D SP shape. We implemented the 3D reconstruction methods and all 112
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image processing tasks in MATLAB R2020a (MathWorks, Natick, MA). We set the 113

number of equidistant points N to 20. The number of points can be changed if 114

necessary (based on the size of fruit or vegetable). However, increasing N will increase 115

the number of computations needed for the 3D reconstruction. 116

A

Front View Side V

Fig 2. Sweetpotato 3D reconstruction. A) NIR image from the Exeter Accuvision
Sorter, B) Segmented sweetpotato from the NIR images, central axes is obtained for
each view, diameters are obtained across the axial length, C) Ellipsoidal reconstruction
using the radii obtained from segmented sweetpotato image.

Camera Scale Factor Calculation 117

We designed an experiment to calculate the camera scale factor and assign specific units 118

to the 3D model. We used a model sweetpotato with known height and width and 119

scanned it using the Exeter scanner to obtain the model sweetpotato’s NIR images. We 120

scanned the model SP nine times at different orientations and estimated the 3D shape 121

for all the scans. Next, we used the known measurements to calculate the camera 122

calibration factor for each scan. The average calibration factor obtained from these nine 123

scans was used to calculate measurements for all other scans. Details of how the scale 124

factor was calculated are provided in S1 Text. 125

Shape Features 126

We used the reconstructed 3D model to calculate 13 SP shape features (Fig 5). Among 127

these features, two (cross-section diameter, cross-section roundness) were calculated 128

across 31 cross-sections of sweetpotato, giving us 73 shape variables in total. 129

Cross-sections were normal to the curved SP axes. We used 31 cross-sections to ensure 130

we had enough cross-sectional information for all sweetpotatoes in our dataset (adjacent 131

cross-section centroids were 0.47 inches apart for the longest SP). The number of 132

cross-sections is an arbitrary parameter and can be changed as needed. Primary shape 133

features include curved length, straight length, maximum diameter/width, and diameter 134

across cross-sections of the SP. In addition, we calculated several secondary shape 135

features using these primary features. We calculated tail length by incorporating 136

cross-sections from the edges of SP that have a diameter less than or equal to 1.5 inches. 137

Curvature was calculated by taking the ratio of curved length to straight length. We 138

calculated the length to width ratio using straight length and maximum diameter. We 139

also calculated the ratio between tail length and body length. A complete list of 140

extracted shape features is presented in Table 1. Details of feature calculation are 141

available in S2 Text. We extracted shape features for all the available SP samples. We 142

quantified the distributions of different shape features across SP cultivars. 143
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Table 1. Shape Features. Calculated shape features are listed in the table. *
indicates features calculated at every SP cross-section.

Feature Name Description
Axial / Curved Length (LC) Length across the central axis of SP
Straight length (LS) Tip to tip length of sweetpotato
Maximum diameter / width (W) Estimated maximum diameter or width
Tail length (LTail) Tail length estimated by calculating tip

areas with a diameter less than 0.5 inch
Body length (without tail) LB LC − LTail

Length to width ratio LS

W

Curvature Curvature is calculated as the ratio of
curved length to straight length, with ad-
justment for tail length. LC−LTail

Ls−LTail

Diameters across cross-sections* Diameter / Width of each cross-section

Tail to axial length ratio LTail

LC

Tail to body length ratio LTail

LB

Volume (V) Volume estimated from Lc and cross-
sectional areas

Cross-section roundness* Standard deviation of distances from cross-
section center to perimeter normalized by
diameter of cross-section.

Average Cross-section roundness Mean of the standard deviations of radii
across cross-sections.

SP Weight Estimation 144

Our approach can also be used to estimate individual SP weight from SP density and 145

estimated volume. We estimated the volume of an individual SP using features 146

extracted from the 3D model ( S2 Text). To estimate SP density, we measured weights 147

of 19 randomly sampled sweetpotatoes of varying shape and size. Then we scanned each 148

sweetpotato multiple times (16 SPs were scanned 4 times and 3 were scanned 5 times 149

giving us 79 images) using the Exeter sorter. We estimated the density for each scan by 150

using the known weight to obtain the mass and dividing the mass by the estimated 151

volume (density = Mass
V olume ). We used the average density value to estimate weights for 152

individual sweetpotatoes. 153

Shape Classification 154

We used a machine learning-based shape classifier to asses the extent to which our 155

extracted features could be used to discriminate between marketable and unmarketable 156

SPs. To train a machine learning-based shape classifier that takes extracted shape 157

features as input and generates predicted shape label as output, we created a database 158

of 1,332 labeled or classified SP images scanned using the Exeter Accuvision Sorter. 159

Each image was labeled by a domain expert (researcher from the NC State University 160

sweetpotato breeding program) as either U.S. No. 1 (a sweetpotato that will have high 161

market value and meets the U.S. No. 1 standard established by USDA Agricultural 162

Marketing Service [5]) or Cull (a sweetpotato that will potentially have a lower market 163

value or will be discarded during harvesting/sorting) based on its visual properties. In 164

addition, we categorized the Cull sweetpotatoes into four qualitative shape classes: 165

Tailed, Tapered, Curved, and Other (Fig 3). We then extracted shape features for all 166

labeled images. We partitioned the labeled dataset into 80% training and 20% holdout 167
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(used for evaluating classification performance) set. This gave us 1066 (494 U.S. No. 1 168

SP and 572 Culls) training samples and 266 (123 U.S. No. 1 and 143 Cull) holdout 169

samples. Using the extracted features and assigned labels from the training set, we 170

trained binary classifiers (for classifying U.S. No. 1 and Cull SPs) models using SAS 171

Viya V03.05 Model Studio (SAS Institute Inc., Cary, NC). Multiple machine learning 172

models (decision tree [19], neural network [20], random forest [19], logistic 173

regression [21,22], Bayesian network [22] and gradient boosting [19]) were trained and 174

tuned (hyperparameter selection) using a 5 fold cross-validation of the training data set 175

(70% training and 30% validation in each fold). We selected the champion model by 176

comparing different performance metrics (Accuracy, F1 Score [23], and Area Under 177

Receiver Operator Characteristics [AUROC] curve [24]) of all the trained classification 178

models. 179

Variable Importance Analysis 180

To understand which shape features played influential roles in determining shape label 181

(U.S. No. 1 or Cull), we conducted a variable importance analysis. We used the 182

Chi-squared test [25–27] (using MATLAB’s fscchi2 function) to examine the 183

dependency between shape class and each shape feature. The random forest 184

classifier [19] also produced a ranking of important variables based on the change of the 185

residual sum of squares [28]. Variable rankings from these two methods provided insight 186

into important features for shape class determination. 187

U.S No. 1 Cull

Curved RoundU.S. No. 1 Tailed Tapered Other
Fig 3. Sweetpotatoes with different shape types. Images captured using Exeter
Accuvision Sorter.

Results 188

3D Reconstruction of Sweetpotato 189

Using our 3D reconstruction approach, we generated 3D models for all 12,579 imaged 190

sweetpotatoes. Fig 4 shows reconstructed models for SPs of various shape types. The 191

MATLAB implementation of our approach produced reconstructed 3D model of a SP 192

within a few hundred milliseconds (on an Intel Core i7 processor with 16 GB Memory). 193

In its current implementation, this algorithm can be used to calculate SP shape features 194

at production-scale with very little delay. The speed of the method can be further 195

improved by utilizing parallel processing of multiple images. Thus, this method can 196

potentially be used in a high-throughput industrial sorter to capture SP features at the 197

time of sorting. 198

Validation of Extracted Features 199

We validated the accuracy of extracted shape features (Fig 5) by measuring the length 200

and maximum diameter (width) of randomly sampled SPs using slide caliper and 201
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Fig 4. Sweetpotato 3D shapes. Examples of 3D reconstructed models of
sweetpotato using images from Exeter Accuvision Sorter.

measuring scale. We scanned these SPs using the Exeter sorter and estimated the same 202

features using the 3D reconstructed model. Fig 6 shows that laboratory measurement 203

and estimated measures are highly correlated (R2 = 0.958 and R2 = 0.923 for estimated 204

straight length and maximum diameter, respectively). These results are strong 205

indicators of the accuracy of the extracted features. 206

Curved Length

(along centroid)

Cross-section

roundness

Straight

Length

Maximum

Diameter (Width)

Fig 5. Sweetpotato Shape features. Extraction of different shape features from
the reconstructed 3D model.

Application of Feature Extraction Algorithm 207

Shape Features Across Cultivars 208

The feature extraction algorithm enabled us to visualize the distribution of shape 209

features across different cultivars. Fig 7 shows distributions of SP shape features in a 210

subset of the data (1,943 sweetpotatoes, restricted to one field and four cultivars). For 211

SP grown on that field, the Covington cultivar had the highest median width of 2.54 212
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Fig 6. Scatter plots showing comparison between experimental measures
vs estimated shape features in randomly sampled sweetpotatoes (n=79) (A)
Estimated vs measured straight length (R2 = 0.958), (B) Estimated vs maximum
diameter (R2 = 0.925).

inches, while the Bellevue had the lowest median width of 1.95 inches. The distribution 213

of curvature across all cultivars grown on that field was approximately the same with 214

the Baeuregard cultivar having the smallest interquartile range. 215

SP Weight Estimation 216

We estimated the average density of 19 randomly sampled sweetpotatoes as 15.64 217

grams/in3 with a standard deviation of 1.27 grams/in3. Root mean squared error 218

between the estimated weight and actual weight of the SPs was 27.4173 grams. We 219

used the average density value to calculate the weights of 1,323 labeled SPs from their 220

estimated volume. We want to point out that this is just an estimate of the density. 221

Inaccuracies in this calculation could stem from unclean SPs that still contained soil on 222

the surface and differences in density in bulk vs. tail parts of the SP. Fig 8 shows a plot 223

of the variation in SP weight for SPs labeled as US No. 1’s vs SPs labels as Culls. The 224

median estimated weight of the SPs labeled as U.S. No. 1 was 150.77 grams while the 225

median estimated weight of the SPs labeled as Cull was 166.78 grams. Among the Cull 226

SPs we found 6 SPs weighing above 1000 grams, 4 of these SPs belonged to the Other 227

subclass, 1 belonged to the Round subclass, and 1 belonged to the Curved subclass. 228
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Fig 7. Box plots showing variation in shape features of sweetpotatoes
sampled from a field trial in Clinton, NC. (A) Distribution of curvature across
different cultivars, (B) Distribution of width across different cultivars.
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Fig 8. Box plot showing variation in weights among US. No.1 and Cull
sweetpotatoes in our labeled dataset.

Variable Importance 229

We analyzed relative importance of different shape features in determining U.S. No. 1 230

vs. Cull shape classes. The top 30 important features (for U.S. No. 1 vs Cull 231
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determination) identified by Chi-squared test [25–27] and random forest [28] are shown 232

in Fig 9. We found that curvature and length-width ratio are the two most important 233

features in determining shape labels and were identified by both methods. The rest of 234

the common influential features are the roundness of cross-sections (σRi) and diameters 235

across cross-sections (Di). Random forest method also picked curved length, body 236

length, and straight length as important factors for determining shape label. 237
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Fig 9. Variable importance calculated using (A) Chi-squared test, (B) Random
forest. The X-axis represents relative variable importance scores. Curvature, length to
width ratio (LW ratio), cross-section diameter (Di), and roundness (σRi) are identified
as the most influencing features in determining shape labels by both approaches.
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Binary Shape Classification 238

Evaluation metrics for all competing classifier models are provided in Table 2. We 239

obtained the optimum hyperparameters for the classifiers using the genetic search 240

algorithm in SAS Viya (S4 Text). The neural network model yielded the highest 241

accuracy and F1 Score [23] on the holdout set. The neural network had 1 hidden layer 242

with 100 neurons with hyperbolic tangent activation function [20]. The confusion 243

matrix [29] for the neural network model is given in Table 3. We obtained an accuracy 244

(True Positive + True Negative
No. of Samples ) of 84.59%, F1 score [23] of 0.85, and AUROC [24] of 0.88 for 245

the neural network model. 246

Table 2. Evaluation metrics (on the holdout data) for competing binary
classification models. Neural network yielded highest accuracy and F1 score.

Model Accuracy F1 Score AUROC
Neural network 84.59% 0.848 0.88
Gradient boosting 83.08% 0.830 0.857
Logistic regression 79.32% 0.795 0.889
Random forest 78.20% 0.783 0.827
Decision tree 75.56% 0.754 0.772
Bayesian network 74.81% 0.741 0.809

Table 3. Confusion matrix for neural network classification, evaluated on
holdout data. TP stands for True Positive and TN stands for True
Negative. The overall accuracy on the holdout set is 84.59%

n=266 Predicted U.S. No. 1 Predicted Cull
U.S. No. 1 114 (TP) 9
Cull 32 111 (TN)

Multi-class Classification 247

Our main goal was to identify Cull and U.S. No. 1 sweetpotatoes using the best 248

performing classification model. However, we also wanted to assess the ability to detect 249

subclasses of Cull sweetpotatoes using a machine learning model. We performed a 250

model comparison analysis for the multi-class classification problem ( S5 Table). The 251

gradient boosting [19] model did better than the neural network [20] for multi-class 252

classification. However, the overall accuracy of the gradient boosting multi-class 253

classifier was only 65% on the holdout set. Gradient boosting model for multi-class 254

classification achieved 91.87% sensitivity ( True Positive [TP]
TP+False Negatives [FN] ) in predicting U.S. No. 255

1 sweetpotatoes and 80.76% sensitivity in predicting Round sweetpotatoes. However, 256

the sensitivity for other class labels were dramatically lower (52.94% for Curved, 22% 257

for Tailed, 21% for Tapered, and 0% for Other). The multi-class model predicted 258

majority of the Tapered and Tailed sweetpotatoes as U.S. No. 1. 259

Discussion 260

We developed a method that can accurately capture shape features (Fig 6) by 261

reconstructing the 3D model of a horticultural crop from 2D images acquired by a 262

high-throughput commercial sorter (Fig 5). To our knowledge, our method is the first 263

to utilize existing industrial imaging equipment. It is also able to extract shape features 264

significantly faster than previously reported shape extraction methods for different fruits 265

July 17, 2020 12/18

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 26, 2020. ; https://doi.org/10.1101/2020.07.24.199539doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.24.199539
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 4. Confusion matrix for gradient boosting algorithm evaluated on
holdout data for multi-class classification. TP stands for True Positive. We
can see that the model performs well in predicting U.S. No. 1 and Round
sweetpotatoes, but fails to distinguish among other Cull types.

Count Prediction
n=266
True Class

U.S. No. 1 Curved Round Tailed Tapered Other

U.S. No. 1 (n=123) 113 (TP) 1 2 6 0 1
Curved (n=51) 20 27(TP) 0 3 1 0
Round (n=26) 1 0 21(TP) 2 0 2
Tailed (n=27) 17 1 0 6(TP) 3 0
Tapered (n=24) 13 4 2 0 5(TP) 0
Other (n=15) 9 3 2 1 0 0(TP)

and vegetables [2, 13, 16–18,30,31]. Most research investigating size and shape traits of 266

horticultural crops used lab-scale imaging equipment that are slower and cannot be 267

adapted to production scale environments [17,32]. Further, we considered both ideal 268

and deformed sweetpotatoes making our approach capable of quantifying loss due to 269

shape deformation, while many prior studies excluded sub-standard produce [4, 18]. 270

By using images acquired from already-used industrial equipment, the algorithm 271

presented here can be readily implemented in production agriculture to gather and 272

analyze large scale data. To deploy our method at a production facility, the 273

requirements would be a desktop computer, MATLAB license, and an interface to image 274

data. It is also possible to port this algorithm into an open-source language (e.g., 275

Python, C++), eliminating the need for additional software licensing. A parallel 276

programming implementation of the algorithm can be done with some modification of 277

the existing code. This would allow the algorithm to process multiple images 278

simultaneously and further increase the throughput of our approach. One major 279

challenge in the industrial deployment of this method will be the management of vast 280

amounts of shape data that will be produced from processing hundreds of thousands of 281

SPs per hour. One way to mitigate this challenge is by uploading the data in a cloud 282

server at regular intervals. 283

Our method paves the way for investigating underlying factors responsible for shape 284

variations in different cultivars. As shown in Fig 7, we can quantify shape feature 285

distributions across cultivars in large datasets, which can assist breeders in evaluating 286

genotype×environmental interaction more effectively and can lead to the identification 287

of potential new cultivars in less time. Our main goal was to demonstrate that we can 288

quantify shape features across cultivars using the proposed computer vision approach. 289

Our results for 1,943 SPs grown on one field (Fig 7) suggests that on average Covington 290

SPs have higher curvature and width than those of the Beauregard, Bellevue, and 291

Burgundy SP varieties. Expanding this approach to statistically assess the entire SP 292

yield trial containing 12,579 sweetpotato samples from 14 different cultivars and grown 293

in two different fields would require additional detailed analysis that incorporates the 294

experimental designs of the SP yield trials. 295

Through variable importance analysis, we identified several key features that 296

characterize SP shape by using the Chi-squared test [25–27], and random forest (Fig 9). 297

Previous studies identified the LW ratio captured from 2D images as the standard 298

feature for quantifying shape variations in agricultural produce [2, 33]. However, LW 299

ratio alone is inadequate for capturing sweetpotato shape variation [18]. Our results 300

show that curvature, cross-section roundness, and cross-sectional diameters are 301

influential factors for determining shape class. Multiple previous studies reported 302
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volume as important shape features for horticultural produce [3, 18, 34, 35]. Interestingly, 303

we did not find volume and tail length among the top 30 influencing variables. This 304

result suggests that cross-sectional features (roundness and diameter) capture the 305

information encoded in volume. We think that the ability to extract features from 306

arbitrary cross-sections makes our method applicable to other crops with varying shapes 307

and sizes. One of the most important traits of a sweetpotato is its weight. Fig 8 shows 308

how our method can be utilized to obtain weight for each SP by shape class. It is 309

essential to state that our density estimation was not accurate since we did not clean 310

the SPs before scanning and weighing. In addition, we did not incorporate density 311

variation among different cultivars. Thus, the actual weights of the SPs may be different 312

but proportional to our estimates. With an accurate SP density measurement, our 313

method can quantify weight distribution of SPs across shape class and cultivars, which 314

will allow growers to better predict yields and pack-out from fields. 315

We used the extracted features to train a neural network classifier to classify SPs 316

into Cull and U.S. No. 1 classes with reasonable accuracy (84.59% on holdout data) 317

(Table 3). Among previous works, Okayama et al. achieved 95.7% accuracy in 318

classifying bell peppers into Grade A and Grade B using a neural network classifier. 319

However, their study used four side views and one top view (total five images) of a bell 320

paper to extract 2D shape features from individual views, whereas our method uses just 321

two side views of a SP. With two side views (90◦ apart) of a bell pepper their study 322

achieved less than 60% classification accuracy with the 2D features (by applying 323

statistical thresholds to the features), significantly lower than our results. We believe 324

that, the capability of extracting 3D features allowed our method to perform better 325

with just two views. We think that our method is deployable in industrial packing 326

facilities for improved (i.e., more accurate and faster) automated sorting. This method 327

can also be used in SP yield studies to quantify the amount of deformed SPs across 328

cultivars and obtain a better estimate of post-harvest losses. 329

Though, the binary classifier performed well (Table 3), the accuracy of the 330

multi-class classification was low (65% on holdout data). The multi-class classifier 331

predicted the majority of Tapered and Tailed sweetpotatoes as U.S. No. 1 (Table 4). 332

The model struggled to learn multiple cull shape labels with available data. Overall 333

accuracy on the training set was only 78%. We identified three possible reasons behind 334

the poor performance of the multi-class classifier: (1) inadequate training data for 335

different Cull classes, (2) imbalance of the training data (highly skewed towards U.S. No. 336

1 sweetpotatoes, and (3) similarities among the Tailed, Tapered, and U.S. No. 1 shape 337

classes. 338

For calculating shape features, we used NIR images, which do not have any color 339

information. Color images, which are also captured by the Exeter sorter, may provide 340

more information with regard to certain shape defects. In future works, it would be 341

worth investigating possible correlations between shape defects and color (e.g., defective 342

regions may have a different color pattern than the rest of the crop). These additional 343

color features may further improve classification accuracy, and also provide novel insight 344

into crop quality. 345

Conclusion 346

The irregular structure of many horticultural crops makes shape feature extraction a 347

challenging task. We have introduced a method that extracts multiple 3D shape 348

features from crop images captured by industrial sorters. As a first approach towards 349

automated shape phenotyping at a large scale, our method shows promising results and 350

the potential to be used in industrial sorters. The major contributions of our approach 351

are 1) the capability of capturing shape features for thousands of sweetpotatoes and 352
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assess their variation across cultivars and shape classes, 2) the identification of 3D shape 353

features that are important to determining SP shape class, and 3) the downstream use 354

of these features to create machine learning algorithms for automated sweetpotato shape 355

class determination. We have provided an example of the application of our method in 356

quantifying shape variations across SP cultivars. This work opens up possibilities for 357

creating a large scale SP shape database, which can be coupled with agricultural data 358

to make inferences about SP shapes based on extrinsic factors (i.e., weather, cultural 359

practices, and soil type). Importantly, the applicability of our feature extraction method 360

is not limited to sweetpotato. This approach can be used for analyzing shapes of other 361

vegetables and fruits (i.e., carrot, strawberry, apple) that are sorted using the Exeter 362

sorter or a sorter with similar imaging capabilities. Machine learning classifiers for other 363

crops can also be trained by creating crop-specific labeled datasets. One limitation of 364

our approach is the dependency on predefined features to classify shapes. Existing deep 365

learning methods that can extract inherent features from image data may yield higher 366

classification accuracy. However, training such models will require a significantly large 367

amount of labeled data to train millions of model parameters. We believe that this 368

avenue needs to be explored in future work. With the incorporation of additional 369

labeled images, deep neural network approaches might further increase the classification 370

accuracy and reduce dependency on engineered features. 371
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