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Intercellular communication is crucial for function of cells but current methods for reconstruction 
of intercellular signaling from single cell data can be challenging to connect with biological 
outcomes. Here, we present Domino (github.com/chris-cherry/domino), a computational tool 
which reconstructs intercellular signaling coupled with transcription factor activation. Matching 
signaling with transcription factor activation allows for immediate connection of results to known 
biological phenotypes. We first apply Domino to model biomaterial environments in a muscle 
wound where different chemical compositions produce distinct tissue microenvironments. While 
traditional single cell RNA sequencing analyses captured few differences between conditions, 
Domino identified previously unknown signaling pathways distinct to conditions. We then 
demonstrate Domino on a previously published human Alzheimer’s data set to discover new 
signaling pathways associated with health and disease. 
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Introduction 
Single cell technologies provide unprecedented capabilities to rapidly assess the cellular 
content of tissues during development and in health and disease. Programs such as the Human 
Cell Atlas (Regev et al., 2017) and the Tabula Muris Consortium (Schaum et al., 2018) continue 
to increase the number of data sets available for analysis that cover a broad range of 
conditions. While extensive information is achieved from single cell sequencing, there are still 
limitations in the depth of sequencing and capture of rare cell populations with significant 
biological implications that can limit understanding (Rizzetto et al., 2017; Svensson et al., 2017). 
New strategies to uncover more biology from each cell experimentally are developing, including 
mult-iomics (Angermueller et al., 2016; Hou et al., 2016) and spatial analysis (Rodriques et al., 
2019; Vickovic et al., 2019; Xia et al., 2019). However, new computational techniques can also 
be leveraged to enable greater biological understanding and therapeutic targets from new and 
existing single cell sequencing datasets (Lähnemann et al., 2020). A key area where 
computational techniques can increase biological understanding is cell-cell communication 
which is central to many processes in tissue homeostasis and dysfunction. 
 
Cell-cell communication depends primarily on ligands (L), secreted by a signaling cell, that 
diffuses to and activates receptors (R) on target cells which subsequently leads to 
transcriptional activation and phenotypic changes. Computational tools available today correlate 
expression of ligands and receptors across groups of cells (Efremova et al., 2020; Noël et al., 
2020; Tsuyuzaki et al., 2019; Wang et al., 2019a; Wang et al., 2019b). These methods do not 
account for activation of the receptor and downstream signaling which are influenced by multiple 
factors beyond ligand and receptor expression. These confounding factors reduce the ability of 
ligand and receptor mRNA counts to accurately predict cell-cell communication. Furthermore, 
some receptors may be activated by multiple ligands and receptor activation in some cases can 
lead to different transcriptional activation. NicheNet (Browaeys et al., 2020) addresses this issue 
by first identifying activation of a phenotypic feature and then receptors and ligands related to 
that feature, increasing the probability that the ligand-receptor pairs are activated and inform the 
associated phenotype with that activation. This program requires a user-defined set of genes 
associated with a feature to screen for expression of ligand-receptor (LR) pairs. Unfortunately, 
previously defined gene sets relevant to specific experimental conditions do not always exist. In 
such cases interpretation of results can be challenging. 
 
To address the challenge of defining cell-cell communication from single cell data sets in an 
unbiased manner without prior knowledge of LR pairs, we developed Domino. Domino 
reconstructs intracellular communication based on transcription factor (TF) activation. We use 
transcription factor activation scores derived from gene regulatory network analysis to identify 
upstream receptors, so a user-defined gene set is not required. Pearson correlation is used to 
link receptors with transcription factor and finally identify ligands capable of activating those 
receptors. This analysis is performed globally with individual cells. Signaling networks from 
differing experimental conditions can then be compared to identify condition specific 
transcription factor-receptor correlations, independent of clustering methodology. The signaling 
network can also be used to generate cluster-cluster communications and investigate signaling 
specific to clusters. We demonstrate the ability of Domino to identify unique cell-cell 
communication and activation in a new aggregated single cell data set from biomaterial tissue 
environments with similar clusters via standard algorithms yet with known differences in immune 
profile and physiological outcomes. Finally, we apply Domino to a previously published data set 
from Alzheimer’s patients (Grubman et al., 2019) and identify new signaling pathways specific to 
diseased or healthy brain. 
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Results 
Generation of intracellular and intercellular signaling networks  
Intercellular communication can be modeled as the result of four biological steps (Fig. 1A). 
Ligands are produced by signaling cells, ligands bind to and activate receptors on target cells, 
receptor activation triggers a signaling cascade, and transcription factors at the end of the 
cascade initiate transcription of specific genes. These transcriptional changes then lead to 
phenotypic changes in the target cell population. Domino reconstructs cell communication 
events in reverse to identify signaling connected with specific phenotypic changes (Fig. 1B).  

To reconstruct cell communication, we first use the SCENIC (Aibar et al., 2017) gene 
regulatory network analysis pipeline to generate transcription factor activation scores from raw 
counts data. Second, transcription factor scores are connected with receptors in order to identify 
receptors potentially upstream of transcription factor activation using Pearson correlation. To 
ensure correlation is not due to transcription factor targeting of the receptor, receptors found in 
individual transcription factor modules are excluded from correlation. Finally, a publicly available 
ligand-receptor database (Efremova et al., 2020) is queried to identify potential ligands for 
receptors. 

The L-R-TF linkages assembled from the cell communication reconstruction form a 
global signaling network for the data set irrespective of any clustering. This process allows for 
unsupervised exploration of L-R-TF activation in single cell data sets. This method of reverse 
assembly allows for identification of receptors correlated with transcription factors. Because 
transcription factor activation in specific cell types is associated with phenotypic changes, it 
allows for prediction of downstream biological changes. Further, condition-specific signaling 
networks can be calculated and then compared to identify transcription factors and receptors 
unique to experimental conditions or disease state.  
 The global signaling network is independent of clustering but can be integrated with 
cluster labels to investigate intercluster signaling dynamics. To identify signaling relevant for 
specific clusters, we first identify transcription factors enriched by cluster (Fig. 1C). The global 
signaling network is then pruned for nodes disconnected with the cluster-specific transcription 
factors to generate a cluster-specific signaling network. This process selects for ligands not only 
capable of binding to receptors expressed by the target cluster but also enriches ligands likely to 
be responsible for activation of transcription factors. These sets of ligands are then used to 
generate a cluster-cluster signaling network based on global expression patterns of the ligand 
sets (Fig. 1D).  
 
A single cell atlas and connectome of the biomaterial tissue microenvironment 
Biomaterials are a component of medical devices and implants (Christman, 2019). They are 
also used to create specialized cell and tissue microenvironments to probe biological questions 
(Dye et al., 2020; Xie and Murphy, 2019). In this case, biomaterials can serve as a model for 
characterization of cell populations in controlled local environments. While many aspects of the 
physiological response to biomaterials have been studied over the years, single cell studies are 
limited. Application of single cell analyses is poised to transform our understanding of the 
biomaterial response and thus biomaterial design.  

We applied clinically relevant biomaterials that induce divergent immune phenotypes 
and physiological outcomes in a muscle wound. Specifically, we used a biological scaffold 
derived from urinary bladder extracellular matrix (ECM) to induce a pro-regenerative tissue 
environment and a type 2 immune response characterized by interleukin 4 (IL4) (Sadtler et al., 
2016; Wolf et al., 2019) and the synthetic material polycaprolactone (PCL) that promotes 
fibrosis, the development of senescent cells and a type 3 immune environment characterized by 
IL17 (Anderson et al., 2008; Chung et al., 2020). 

To create a single cell atlas of the biomaterial response, we assembled data sets from 
multiple experiments with ECM and PCL implanted in a murine volumetric muscle loss wound in 
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young and old animals for 1 and 6 weeks. Fibroblasts were sorted as CD45-CD31-CD29+ and 
processed for single cell RNA sequencing as previously described (Macosko et al., 2015). The 
compiled dataset from sorted fibroblasts, sorted macrophages (Sommerfeld et al., 2019), and 
CD45+ enriched whole tissue (Han et al., in preparation) includes a total of 42,156 cells (after 
filtering) with an average of 198,000 reads per cell. After integration with Harmony and shared-
nearest neighbor based clustering, we identified 18 clusters of cells characterized by expression 
of signature genes (Fig. 2A-C, Supplementary Table 2).  

Despite known immunological and physiological differences in the outcomes, cell 
numbers did not differ significantly between clusters (Supplementary Figure 2) and differential 
expression between conditions within each cluster found few strong condition specific 
expression signatures (Supplementary Figure 3). Because of the gap between known divergent 
biological outcomes and the single cell clustering and differential expression, we hypothesized 
that differences in signaling between the similar cell populations may be responsible for the 
distinct outcomes that could not be captured with standard analysis. 
 
Domino identifies signaling patterns associated with biomaterial conditions and 
physiological outcomes. 
To identify signaling patterns that were specific to a treatment condition, we developed a 
method of cross-comparison of signaling networks between conditions (Fig. 2D). We applied 
Domino on the data set to determine global signaling networks for the ECM (Fig. 3A) and PCL 
(Fig. 3D) tissue environments. In both networks, receptors and transcription factors self-
assembled into modules enriched in fibroblasts, immune cells, or tissue-specific cells when 
visualized with a force-directed layout. To identify condition specific signaling components, we 
performed set comparisons between the gene members of the two networks. These 
transcription factors, receptors, and ligands represent possible signaling pathways specific to 
each condition.  

ECM specific transcription factors were enriched in fibroblasts, tissue-specific cells, and 
immune cells according to their modules as predicted (Fig. 3B). Many of their predicted 
receptors were specific to ECM as well. Taken together, these transcription factors and their 
receptors represent signaling pathways which may be active specifically in the ECM biomaterial 
environment that contribute to wound healing and resolution (Fig. 3C). For example, we show 
Esrra as a downstream target of Il4ra in myeloid cells in ECM. Esrra activates anti-inflammatory 
macrophages (Yuk et al., 2015), which are induced by IL4 and have been shown to be active in 
response to ECM. We further show activation of Sox17 in endothelial cells linked to expression 
of the receptor Osmr. Sox17 has been shown as critical for endothelial cell regeneration in 
response to injury (Liu et al., 2019) but not identified in ECM response. Finally, we also identify 
activation of Ctcf, a muscle specific transcription factor (Delgado-Olguín et al., 2011), in 
fibroblasts linked to Tnfrsf12a or TweakR, recently shown to improve burn wound healing (Liu et 
al., 2018) but connections with ECM response are not known. These three findings identify IL4, 
OSM, and TWEAK signaling pathways as potential therapeutic targets to promote regenerative 
wound healing. 
 The PCL specific transcription factors and their predicted receptors were also organized 
by enrichment in specific cell subsets (Fig. 3E). In contrast to ECM, the PCL-specific 
transcription factors associated with tissue-specific cell subsets had modest to low expression 
levels. Instead, the cell specific subsets shared expression patterns similar to fibroblasts which 
may suggest suppression of tissue specific regenerative programs. Using Domino’s signaling 
predictions, we identified a linkage between Tgfbr2 and both Sox11 and Sox4 (Fig. 3F). Related 
to these findings, Bhattaram et al. demonstrated that Sox4 and Sox11 induce transformation of 
synoviocytes to fibroblast-like synoviocytes in rheumatoid arthritis (Bhattaram et al., 2018). 
These cells are thought to be responsible for the inflammatory environment that drives RA 
disease but their involvement in biomaterials response is unknown. Transforming growth factor 
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beta (TGF-) signaling is active in fibrotic environments like the foreign body response 

(Gerarduzzi and Di Battista, 2017). While it is known that TGF- signaling is active in fibrosis, 
these findings suggest that induction of an inflammatory phenotype in fibroblasts driven by Sox4 

and Sox11 may regulate TGF- driven fibrosis. We also identify Pirb in the PCL myeloid 
population correlated with pro-inflammatory transcription factor Irf4. Interestingly, Pirb is an 
immune checkpoint regulating anti-inflammatory effects in myeloid populations (Bashirova et al., 
2014). This suggests that Pirb may be a novel target to reduce chronic inflammation associated 
with fibrosis in response to PCL. 
 
Comparison of transcription factor and gene set based methods 
To compare results from transcription factor (Domino) and gene set programs, we applied 
NicheNet on the same biomaterials data set. We used genes differentially expressed between 
ECM and PCL conditions (Supplementary Figures 4-6). NicheNet defines overrepresentation of 
ligand regulatory targets in a given set of genes. Because we did not have specific gene sets 
associated with biomaterials response a priori, we used sets of differentially expressed genes 
between ECM and PCL. As described earlier (Supplementary Fig. 3), differentially expressed 
genes by condition had few differences in relative expression (Supplementary Figures 4C, 5C, 
and 6C). We also ran gene set analysis using PANTHER (Mi et al., 2018) with the Reactome 
Pathways (Jassal et al., 2019) gene sets (Supplementary Table 3). Collagen genes present in 
the fibroblast and tissue subsets drove enrichment of pathways regulating collagen and 
extracellular matrix. Pathways provided by PANTHER in the immune cells were unrelated to 
immune function. 

In both fibroblasts and tissue specific cells Tgfb1 is predicted as an important signaling 
ligand connected to the differentially expressed collagens. Expression levels for the collagens 
are similar in both ECM and PCL (Supplementary Figures 4C, 5C). Because of this the 
relationship between Tgfb1 signaling to collagens and biomaterials environment is unclear. 
Domino connected Tgfbr2 to an inflammatory program in the fibroblasts driven by Sox4 and 
Sox11. Other predicted ligands from NicheNet were difficult to interpret. The ligand targets were 
not associated with specific enriched pathways and the relevance of individual genes was not 
clear due to the lack of clear expression differences between conditions. 

The immune cells had stronger differences in expression signatures between ECM and 
PCL (Supplementary Fig 6C).  NicheNet found Tgfb1 as a potential regulator of some cytokines 
and chemokines including Il1b, Ccl12, and Ccl5, all of which were upregulated in PCL. In 
contrast, Domino identified Ccr2 and Csf2ra as regulators of transcription factors Ascl2 and 
Tfeb, promoters of inflammatory response in the PCL environment, in the myeloid population. It 
also identified a myeloid immune checkpoint Pirb as a potential target in response to PCL. 

While NicheNet findings clearly connect ligands with potential regulatory targets, the 
results were frequently difficult to interpret in our data. There is no clearly defined gene set 
associated with components of biomaterials response, so we generated sets by comparing 
conditions with differential expression. In order to interpret importance of ligands regulating 
these genes, the importance of the gene set must be known. We attempted gene set analysis to 
determine this, but results were broad and, in the case of immune cells, irrelevant to immune 
function (Supplementary Table 3). In some cases, knowledge about individual genes was 
sufficient to determine their significance to biomaterials response but in many cases, it was not, 
making interpretation of ligand importance impossible. With good quality gene sets a priori 
NicheNet provides precise analysis of signaling connected to context specific cellular function. 
  
Domino generates new hypotheses from a publicly available Alzheimer’s data set 
To test applicability of Domino to other data sets and tissue environments, we analyzed a 
publicly available data set of healthy brain and brain with Alzheimer’s disease (AD) (Grubman et 
al., 2019). We split the data by disease status and repeated the analysis pipeline to identify 
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signaling pathways specific to each condition. The original publication includes gene regulatory 
network analysis, so we used the clustering provided to ensure identical comparison groups in 
order to determine whether our analysis provided any new insights. 

Similar to the different biomaterials environments, both Alzheimer’s and healthy 
signaling networks organized into modules associated with cell types (Fig. 4A, D). Additionally, 
condition specific transcription factors were connected almost entirely with condition specific 
receptors (Fig 4B, E). The results for AD indicated IL17RB as a potential receptor upstream of 
FOS (Fig. 4C). In support of this finding, IL17 neutralizing antibody has recently been shown to 
improve Alzheimer’s disease (Cristiano et al., 2019). Our data suggest that it may be due to 
FOS activation in astrocytes which has been associated with Alzheimer’s (Anderson et al., 
1994). We also found that neurotrophin-3 signaling through NTRK3 may activate BHLHE40 in 
astrocytes, a transcription factor associated with autoimmunity (Chih-Chung, 2017) suggesting 
further links to IL17 signaling (Zhu and Qian, 2012). While BHLHE40 was not identified as a 
relevant transcription factor in the dataset’s authors’ analysis, FOS did appear in a list of active 
transcription factors in brains from Alzheimer’s patients but was not discussed further. 
 Domino also identified several transcription factors and correlated receptors specific to 
the healthy brain (Fig. 4E). For example, we identified brain derived neurotrophic factor 
signaling through NTRK2 targeting PAX6 in astrocytes uniquely in healthy brain (Fig 4F). 
Polymorphisms in NTRK2 have been correlated with Alzheimer’s disease (Zeng et al., 2013) 
and PAX6 activation has been shown to activate neurogenesis in astrocytes (Sakurai and 
Osumi, 2008), suggesting that interference in NTRK2 function may lead to reduced PAX6 
activation and reduced neurogenesis in Alzheimer’s. We also show activin signaling through 
ACVR1C that may induce SOX10 activation in oligodendrocytes, a transcription factor 
necessary for survival of myelin-producing oligodendrocytes (Takada et al., 2010). Like the 
previously identified AD-associated signaling pathways, these findings were not found in the 
original analysis. 
 
Discussion 
In summary, Domino provides a method to evaluate signaling networks using transcription 
factor activation without need for predefined gene sets. Creating an “atlas” with data from a 
large number of cells may not be adequate to accurately define physiological properties or 
therapeutic targets. Domino generated unique signaling networks and activated cell populations 
in a large single cell data set from different biomaterial microenvironments that had minimal 
differential gene expression or cell clustering distribution. We believe Domino provides a new 
resource for unsupervised exploration of condition specific signaling patterns and generation of 
biologically testable signaling hypotheses. 
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Methods 
Data availability 
All raw data, processed files and commented code are made available at GEOXXXXXXXXXX.  
 
Data preprocessing 
Seurat was used for most processing steps where other software is not specified (Satija et al., 
2015). All cell counts were pruned of cells with UMI counts below 250, cells with more than 10% 
mitochondrial genes, and genes expressed in fewer than 0.1% of cells. We then normalized and 
scaled the data with regression on UMI count and percent mitochondrial genes and calculated 
principle components using the top 2000 most variable genes. For muscle data sets we then 
corrected the principle components for batch effect using Harmony (Korsunsky et al., 2019). 
UMAP and shared nearest neighbor graph construction with subsequent Louvain clustering was 
then run on principle components.  
 
Phenotypic assignment of clusters 
Differential expression testing for clusters was run using Mann-Whitney U tests. Each cluster 
was compared against all other clusters. The resulting gene expression profiles were examined 
to determine cluster phenotype. In many cases, the source publications for the sorted data sets 
identified similar clusters which we used to assist in phenotypic assignment of clusters.  
 
Gene regulatory network analysis 
We used the SCENIC (Aibar et al., 2017) analysis pipeline to identify modules of genes targeted 
by transcription factors and calculate cell level enrichment scores. Genome ranking databases 
and cis-regulatory motif annotations were obtained from cisTarget Databases. First, we used 
Arboreto to fit a stochastic gradient boost machine using transcription factor counts to predict 
gene counts. Modules of genes targeted by transcription factor were then formed from the 
adjacencies including genes with feature importances greater than the 95 percentile. The 
modules were then pruned cross-referencing the motif annotations and ranking databases to 
remove modules with less than 80% of genes mapping to regions near binding sites for 
transcription factors or with less than 20 gene targets. Finally, enrichment for these modules 
was calculated using AUCell to identify cells with enrichment of genes targeted by transcription 
factors. 
 
Construction of a global signaling network 
A list of human ligands, receptors, and their signaling relationships was obtained from 
CellphoneDB2 (Efremova et al., 2020). We then used biomaRt (Durinck et al., 2009) to convert 
genes from HGNC to MGI symbols, taking all conversions for each gene when multiple were 
found. Prior to calculating signaling relationships, counts matrices were pruned for genes 
expressed in fewer than 2.5% of cells. Pearson correlations were calculated between 
transcription factor activation scores and normalized, z-scored expression for identified 
receptors across all cells. Correlation between receptors which were determined as transcription 
factor targets by gene regulatory network analysis were then set to zero. This prevents targets 
of transcription factors, which would be correlated with transcription factor activation, from being 
interpreted as upstream of its transcription factor. Finally, transcription factors and receptors 
were considered signaling connections if Pearson correlation was greater than 0.3 with a 
maximum of ten receptors per transcription factor. For all receptors connected with transcription 
factors, ligand signaling partners were identified from the CellphoneDB2 database. Ligands that 
were not found in the data set were excluded. 
 
Comparison of condition specific global signaling networks 
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In order to identify intracellular signaling patterns associated with an independent variable, we 
first split the single cell data by that variable. More specifically, we split the volumetric muscle 
data set by treatment with ECM or PCL and the Alzheimer’s data set by disease status of the 
patients. We then constructed a global signaling network for each of the separate data sets with 
identical parameters. Finally, we identified network items specific to each condition by set 
subtraction. Transcription factors or receptors only present in one condition’s signaling network 
were considered as potentially condition-specific. 
 
Cluster specific subnetwork identification 
In order to identify intracellular signaling patterns within a cluster together with ligands 
responsible for their activation, we first identified active transcription factors by cluster using 
Mann-Whitney U tests. For each cluster, the top over-expressed genes were selected based on 
p-value with positive log fold change as compared to all other clusters. Transcription factors with 
p-values below .001 were included with up to 10 transcription factors per cluster. We then 
generated a signaling subnetwork for each cluster by pruning all network items not connected to 
the cluster enriched transcription factors. 
 
Prediction of intercellular signaling networks 
Using the cluster specific signaling subnetworks, we identified ligands most likely to be 
responsible for activation of cellular phenotype for each cluster specifically which we deem 
incoming ligands. It’s important to note that in the data sets we’ve analyzed there tend to be 
many ligands below detection threshold, so we don’t use signaling pathways without expressed 
ligands in construction of intercellular signaling networks. To calculate intercluster signaling with 
ligands found in the data set, we first averaged z-scored ligand expression by cluster. We then 
generated a signaling score by summing the averaged z-scores by cluster. The signaling 
represents whether a particular cluster is over- or under-expressing the ligands predicted to 
activate the target cluster. These values are used as directed, weighted edges between clusters 
as nodes to construct an intercellular signaling network. 
 
NicheNet analysis 
NicheNet (Browaeys et al., 2020) was run using recommended settings according to vignettes 
available on github. In order to compare results directly to Domino, we grouped cells as 
fibroblasts, tissue-specific cells, or immune cells. Mast, DC, Ma/Mo/Fib Ifn, Ma/Mo IL36y, T/NK, 
Mac R2, Ma/Mo Inflam, and Mac pre clusters were considered immune cells. Muscle, Neuro, 
Endo, and Satellite clusters were considered tissues-specific. Fib peri, Fib cart, Fib immune, Fib 
pre, and Fib generic were considered fibroblasts. To generate sets as input for NicheNet, we 
ran differential expression comparing ECM and PCL within each of these subsets. The resulting 
gene sets were run using NicheNet with default parameters. In order to classify the regulatory 
targets of NicheNet we used PANTHER (Mi et al., 2018) with the Reactome pathway database. 
As background we used all genes present in both the data set as well as the NicheNet global 
regulatory set. 
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Figure 1: Generation of intercellular and intercluster signaling networks.  
A). A model of biological ligand-receptor signaling. Ligands expressed in a signaling cell bind 
and activate receptors on a target cell. Subsequent protein-protein signaling triggers activation 
of transcription factors in the nucleus and expression of target genes.  
 
B). Reconstruction of a dataset-wide signaling network. SCENIC is used to estimate 
transcription factor gene regulatory modules as well as transcription factor activation scores on 
a cell-by-cell level. Receptors expression levels are correlated with transcription factor activation 
scores across the entire data set with exclusion of receptors present in the transcription factor 
modules. Public receptor-ligand databases and then queried to identify ligands capable of 
activation receptors.  
 
C). Identification of cluster-specific signaling subnetworks. Transcription factors enriched by 
cluster are identified by Wilcoxon rank sum and networks pruned for disconnected nodes to 
generate signaling subnetworks relevant for biological activation of clusters. 
  
D). Calculation of intercluster signaling networks. Once phenotypically relevant receptors are 
identified by cluster specific signaling subnetworks, cluster-cluster signaling scores are 
calculated by cluster averaged scaled expression of ligands present in cluster-specific 
subnetworks. Every potential cluster-cluster combination is scored, and these weights used to 
generate an intercluster signaling network. 
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Figure 2: A Single Cell Atlas of the Biomaterials Immune Microenvironment.  
A). Overview of cell clusters identified in the composite data set. UMAP plots with cluster labels 
(left) and expression levels of Cd45 and Cd29 (right) are shown.  
 
B). Heatmap of up to 10 differentially expressed genes with highest log fold-change from each 
cluster. Cells are ordered and labeled by cluster with random sampling of up to 100 cells per 
cluster.  
 
C). Gene markers for single cell subsets. The dotplot shows expression of genes associated 
with cluster identity. Cluster averaged gene expression values after normalization to the 
maximum averaged expression are shown.  
 
D). Schematic for identification of condition-specific signaling pathways. The data set is first split 
into fibrotic (PCL) and regenerative (ECM) conditions and domino run on each subset. The 
resulting signaling networks are cross-referenced to identify transcription factors and receptors 
specific to each condition. Finally, results are examined and constructed into phenotypically 
relevant, condition specific individual signaling pathways. 
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Figure 3: Domino identifies condition specific signaling pathways.  
A). The ECM global signaling network. Three modules of receptors and transcription factors are 
readily apparent and labeled based on enrichment of transcription factors by cluster.  
 
B). Heatmaps of transcription factor activation score for ECM-specific transcription factors (left) 
and correlation of transcription factor activation score with receptor expression (right). 
Transcription factors are binned according to their membership to the fibroblast, tissue, or 
immune modules from the ECM global signaling network. Cells are ordered and colored 
according to their cluster. Receptors found only in the ECM condition are marked with arrows. 
Connections between receptor and transcription factors are marked with an ‘x’ on the correlation 
heatmap.  
 
C). Example feature plots of gene expression and activation scores for specific receptor-
transcription factor pairs identified by domino in the ECM condition.  
 
D). The PCL global signaling network. Three modules of receptors and transcription factors are 
readily apparent and labeled based on enrichment of transcription factors by cluster.  
 
E). Heatmaps of transcription factor activation score for PCL-specific transcription factors (left) 
and correlation of transcription factor activation score with receptor expression (right). 
Transcription factors are binned according to their membership to the fibroblast, tissue, or 
immune modules from the PCL global signaling network. Cells are ordered and colored 
according to their cluster. Receptors found only in the PCL condition are marked with arrows. 
Connections between receptor and transcription factors are marked with an ‘x’ on the correlation 
heatmap.  
 
F.) Example feature plots of gene expression and activation scores for specific receptor-
transcription factor pairs identified by domino in the fibrotic (PCL) condition. 
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Figure 4: Pathological signaling found from a public data set of Alzheimer’s Disease.  
A). The Alzheimer’s disease (AD) global signaling network. two modules of receptors and 
transcription factors are readily apparent and labeled based on enrichment of transcription 
factors by cluster.  
 
B). Heatmaps of transcription factor activation score for AD-specific transcription factors (left) 
and correlation of transcription factor activation score with receptor expression (right). 
Transcription factors are binned according to their membership to the astrocyte or 
oligodendrocyte modules from the AD global signaling network. Cells are ordered and colored 
according to their cluster. Receptors found only in AD are marked with arrows. Connections 
between receptor and transcription factors are marked with an ‘x’ on the correlation heatmap.  
 
C). Example feature plots of gene expression and activation scores for specific receptor-
transcription factor pairs identified by domino in the AD condition.  
 
D). The healthy global signaling network. Two modules of receptors and transcription factors are 
readily apparent and labeled based on enrichment of transcription factors by cluster.  
 
E). Heatmaps of transcription factor activation score for healthy-specific transcription factors 
(left) and correlation of transcription factor activation score with receptor expression (right). 
Transcription factors are binned according to their membership to the astrocyte or 
oligodendrocyte modules from the global signaling network. Cells are ordered and colored 
according to their cluster. Receptors found only in the healthy signaling network are marked with 
arrows. Connections between receptor and transcription factors are marked with an ‘x’ on the 
correlation heatmap.  
 
F.) Example feature plots of gene expression and activation scores for specific receptor-
transcription factor pairs identified by domino in healthy cells. 
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Supplementary Figure 1: Experimental Overview of Assembled Data Sets. 
A). All data sets were taken from mice after volumetric muscle loss treatment. After surgical 
excision of a large portion of the quadriceps, the wound site was filled with a biomaterial or 
saline control and stapled shut. Mice were then harvested 1 or 6 weeks after surgery. Young (6 
week) or aged (104 week) old animals were used. 
 
B). At time of harvest, cells were isolated one of three ways after digestions. For macrophages, 
cells were sorted as CD45+F4/80HiLy6c+, for fibroblasts cells were sorted as CD45-CD29+, and 
for the all-cell data set CD45+ cells were enriched to ~50% using MACS beads.  
 
C). Data sets were integrated for analysis using Harmony. A complete summary of available 
data sets is given in Supplementary Table 1. 
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Supplementary Figure 2: Cluster Compositions by Treatment. 
A). UMAP of all cells labeled by condition. 
 
B). UMAP of cells labeled by cluster split by condition. Each UMAP displays only cells from the 
given condition. 
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Supplementary Figure 3: Visualization of Differentially Expressed Genes Between 
Condition within Cluster. 
Heatmaps of z-scored expression data for cells belonging to each cluster are shown. Cells are 
ordered and labeled by membership to condition. Within each condition cells are ordered by 
batch. Z-scored expression values are shown for genes differentially expressed by one of the 
conditions compared to the other conditions with a minimum log foldchange of 0.25.  
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Supplementary Figure 4: NicheNet Analysis of Fibroblasts in Wound Healing. 
A). Ligand regulatory potential scores for ligands and their predicted targets by NicheNet. ECM 
and PCL were compared following NicheNet guidelines using all non-fibroblast cells as potential 
signaling cells. Because NicheNet uses both genes with both positive and negative fold-change, 
the results represent predicted ligand signaling targets in both ECM and PCL. 
 
B). Active ligand’s receptors by NicheNet’s network. The interaction potential represents 
connections between ligands and receptors according to bona fide literature sources (i.e. no 
computationally predicted interactions). 
 
C). Heatmap of predicted target genes comparing ECM and PCL in fibroblasts. Z-scored 
expression values are plotted with genes ordered by fold change. 
 
D). Cluster averaged expression of predicted ligands. Averaged z-scored expression values are 
shown. Larger dots represent lower dropout rates. 
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Supplementary Figure 5: NicheNet Analysis of Immune Cells in Wound Healing. 
A). Ligand regulatory potential scores for ligands and their predicted targets by NicheNet. ECM 
and PCL were compared following NicheNet guidelines using all non-tissue cells as potential 
signaling cells targeting the immune population. Because NicheNet uses both genes with both 
positive and negative fold-change, the results represent predicted ligand signaling targets in 
both ECM and PCL. 
 
B). Active ligand’s receptors by NicheNet’s network. The interaction potential represents 
connections between ligands and receptors according to bona fide literature sources (i.e. no 
computationally predicted interactions). 
 
C). Heatmap of predicted target genes comparing ECM and PCL in immune cells. Z-scored 
expression values are plotted with genes ordered by fold change. 
 
D). Cluster averaged expression of predicted ligands. Averaged z-scored expression values are 
shown. Larger dots represent lower dropout rates. 
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Supplementary Figure 6: NicheNet Analysis of Immune Cells in Wound Healing. 
A). Ligand regulatory potential scores for ligands and their predicted targets by NicheNet. ECM 
and PCL were compared following NicheNet guidelines using all non-immune cells as potential 
signaling cells targeting the immune population. Because NicheNet uses both genes with both 
positive and negative fold-change, the results represent predicted ligand signaling targets in 
both ECM and PCL. 
 
B). Active ligand’s receptors by NicheNet’s network. The interaction potential represents 
connections between ligands and receptors according to bona fide literature sources (i.e. no 
computationally predicted interactions). 
 
C). Heatmap of predicted target genes comparing ECM and PCL in immune cells. Z-scored 
expression values are plotted with genes ordered by fold change. 
 
D). Cluster averaged expression of predicted ligands. Averaged z-scored expression values are 
shown. Larger dots represent lower dropout rates. 
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