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ABSTRACT  

The wound healing assay provides essential information about collective cell migration and 

cell-to-cell interactions. It is a simple, effective, and widely used tool for observing the effect 

of numerous chemical treatments on wound healing speed. To perform and analyze a wound 

healing assay, various imaging techniques have been utilized. However, image acquisition and 

analysis are often limited in two-dimensional space or require the use of exogenous labeling 

agents. Here, we present a method for imaging large-scale wound healing assays in a label-free 

and volumetric manner using optical diffraction tomography (ODT). We performed 

quantitative high-resolution three-dimensional (3D) analysis of cell migration over a long 

period without difficulties such as photobleaching or phototoxicity. ODT enables the 

reconstruction of the refractive index (RI) tomogram of unlabeled cells, which provides both 

structural and biochemical information about the individual cell at subcellular resolution. 

Stitching multiple RI tomograms enables long-term (24 h) and large field-of-view imaging (> 

800  400 m2) with a lateral resolution of 110 nm. We demonstrated the thickness changes of 

leading cells and studied the effects of cytochalasin D. The 3D RI tomogram also revealed 

increased RI values in leading cells compared to lagging cells, suggesting the formation of a 

highly concentrated subcellular structure.  

STATEMENT OF SIGNIFICANCE  

The wound healing assay is a simple but effective tool for studying collective cell migration 

(CCM) that is widely used in biophysical studies and high-throughput screening. However, 

conventional imaging and analysis methods only address two-dimensional properties in a 

wound healing assay, such as gap closure rate. This is unfortunate because biological cells are 

complex 3D structures, and their dynamics provide significant information about cell 

physiology. Here, we presented three-dimensional (3D) label-free imaging for wound healing 

assays and investigated the 3D dynamics of CCM. High-resolution subcellular structures as 

well as their collective dynamics were imaged and analyzed quantitatively. Our label-free 

quantitative 3D analysis method provides a unique opportunity to study the behavior of 

migrating cells during the wound healing process. 

INTRODUCTION 

Most biological systems are composed of multiple cells. These collective cell systems involve 

complex interactions between cells, resulting in a completely different picture compared to 

single-cell activity (1). Collective cell migration (CCM) includes multiple important 

phenomena, such as cancer progression, wound healing, and morphogenesis (2). CCM has been 

widely studied using the wound healing model owing to its simplicity of sample generation 

and ease of analysis (3). Furthermore, it provides an effective tool for high-throughput 

screening by observing the effect of various chemical treatments on wound healing speed (4). 

Numerous studies have observed novel mechanical and molecular interactions between cells 

during the healing process using this assay (5, 6).  

The most common and conventional format of the wound healing model is the two-

dimensional (2D) cell monolayer, and the migration of cells is usually imaged using 2D bright-

field, phase-contrast, or fluorescence microscopy (7-9). These imaging techniques are utilized 

to measure the wound healing rate based on size of the wound or the total number of cells 
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inside the initial wound area. Multiple algorithms and software programs have been developed 

for the analysis of 2D wound healing assay images (10, 11). However, these assay analyses do 

not consider the three-dimensional (3D) characteristic structures of the cells. The 3D structure 

and dynamics of subcellular organelles have not been addressed in the context of CCM in a 

wound healing assay. This is mainly because conventional imaging methods for the study of 

CCM do not consider 3D subcellular imaging of individual cells. 

Here, we presented 3D label-free imaging and quantitative analysis of CCM in a wound 

healing assay. Exploiting optical diffraction tomography (ODT), a 3D quantitative phase 

imaging (QPI) technique (12), we demonstrated that refractive index (RI) tomogram 

measurements reveal the 3D high-resolution structures of individual cells in CCM. By stitching 

multiple 3D RI tomograms measured at various positions and times, we illustrated long-term 

and large-scale CCM. We studied both the overall shape and subcellular structures of individual 

cells using 3D RI information during a time-lapse. Multiple 3D quantities, such as the thickness 

of cells or RI distribution inside the nuclei in groups of cells with different chemical treatments 

or wound boundary locations, were explored. This new biophysical approach would readily 

enable various investigations of the wound healing mechanism, and how the cells react to 

various chemical signals. 

MATERIALS AND METHODS 

Wound healing assay 

NIH3T3 cells (ATCC CRL-1658) were maintained in Dulbecco’s modified Eagle’s medium 

(DMEM; Gibco) supplemented with 10% fetal bovine serum (FBS; Invitrogen) at 37 °C in a 

5% CO2 incubator. Approximately 450,000 cells were seeded in TomoDish (Tomocube Inc., 

Daejeon, Korea), a specially designed cell culture dish to maximize the quality of the tomogram 

during ODT data acquisition. The TomoDish was coated using 0.01% poly-D-lysine for 15 min 

and washed 3 times with distilled water. After washing, it was fully dried and stored until use 

in the experiment. The cells were left to adhere to the dish surface and grow into a confluent 

monolayer for 28-30 h. The wound was formed by scratch assay using a pipette tip. After 

scratching, the healing process of the wound was monitored using an ODT microscope. 

NIH3T3 cells were treated with 1 g/mL cytochalasin D (Cyto D), which was added to the cell 

medium at the start of the migration period. 

Optical diffraction tomography  

To measure the 3D RI tomograms of cells, we utilized ODT, also known as holotomography 

(HT). As an optical analogy to X-ray computed tomography, ODT exploits the RI as an intrinsic 

imaging contrast and reconstructs the 3D RI distribution of unlabeled cells (13-15). 

Furthermore, ODT does not require the use of exogenous labeling agents or dyes. It not only 

greatly simplifies the experimental steps but also eliminates obstacles, such as photobleaching 

or phototoxicity, that originate from the limitations of labeling. This gives ODT an 

incomparable advantage in monitoring the healing process in 3D for an extended period 

compared to other imaging techniques.  

The ODT measurements of live cells were performed since the cells were maintained at 

37 °C and 10% CO2 using a live-cell imaging chamber (Tomochamber; Tomocube Inc, Daejeon, 

South Korea). ODT of wound healing assay cells was performed using a commercial ODT 

microscope (HT-2H; Tomocube Inc., Daejeon, South Korea). The ODT system used is based 

on a Mach-Zehnder interferometric microscope equipped with a digital micromirror device 

(DMD) (16). A coherent laser beam from a diode-pumped solid-state laser (=532 nm) was 

used as the illumination source. The beam from the laser is split by a 22 single-mode fiber 

coupler. One beam illuminates a sample as a plane wave, and its incident angle is controlled 
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by projecting time-multiplexed holograms onto the DMD (17). Following this, the diffracted 

beam for the sample is imaged onto a camera plane, where it generates spatial interference 

patterns or holograms with a reference laser beam split from the fiber coupler.  

For each hologram, both the amplitude and phase images are retrieved using a phase 

retrieval algorithm (18). Subsequently, from multiple 2D optical holograms of a sample 

acquired with various illumination angles, the 3D RI distribution of the sample is reconstructed 

by inversely solving the Helmholtz equation with the Rytov approximation of weak scattering 

(14). The theoretically calculated lateral and axial spatial resolutions of the optical imaging 

system used were 110 nm and 360 nm, respectively (19, 20).  

Owing to the limited numerical aperture of the condenser and objective lenses, side 

scattering signals are not collected, which results in the degradation of image quality in 

reconstructed 3D RI tomograms (21). To address this missing cone problem, an iterative 

regularization algorithm based on the non-negative constraint was used. Details on the 

reconstruction procedure and algorithm can be found elsewhere (15, 22). 

Large field-of-view (FoV) imaging 

The FoV of each 3D RI tomogram was 82 μm  82 μm. To perform large FoV measurements, 

multiple 3D RI tomograms were measured at various lateral positions and stitched into one 

large FoV tomogram. To accomplish this, a motorized sample stage was synchronized with the 

image acquisition, and the stitching algorithm was used to seamlessly connect multiple 3D RI 

tomograms (23).  

Multiple field area stitching for wide-field imaging was performed using a stitching 

function in commercial software (Tomostudio; Tomocube Inc.). The overlap area between each 

tile was 30% of the area of a single FoV. A large area of a sample (up to 1 mm × 1 mm) was 

imaged with a high resolution (down to 110 nm and 360 nm for the lateral and axial spatial 

resolutions, respectively) at a high frame rate (up to 3−5 tomograms per s for a FoV of 82 μm 

× 82 μm). Tomograms were taken every few minutes to hours. 

Cell parameter analysis 

3D tomogram imaging by ODT can provide information about the RI in the sample. The 

volume and thickness of the cells were calculated by thresholding the RI tomogram with 

respect to the background RI value using a custom-written MATLAB code. The thickness 

calculated using this method thus directly relates to the thickness of the cell monolayer. 

Cell nuclei RI histogram analysis was performed using the ImageJ Analyze-Histogram tool 

(National Institutes of Health [NIH], Bethesda, MD, USA) after selecting the nuclei region 

using the freehand selection tool (24). The regions were selected at different depths in the 

tomogram to obtain volumetric data. The analysis was conducted on 15 cells at the wound 

boundary (leading cells) and 17 cells that were located at least 8−10 rows of cells away from 

the boundary (lagging cells). 

Particle image velocimetry (PIV) analysis 

PIV analysis was performed using the PIV lab software (25) written in MATLAB. It calculates 

the velocity information in multiple grid positions from 2D cross-section image pairs. It is 

based on a discrete Fourier transform technique that calculates the correlation matrix using the 

Fourier transform of each grid tile and finds the relative position between tiles at different time 

points. The resulting velocity vectors indicate the change in the cell position as a function of 

both time and position. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 28, 2020. ; https://doi.org/10.1101/2020.07.24.219774doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.24.219774
http://creativecommons.org/licenses/by/4.0/


Statistical analysis 

Distributions obtained for RI inside the nuclei of cells in different categories were compared 

using the two-sample t-test. The shaded error bars in the thickness graph and nuclei RI 

histogram represent the standard deviation (SD). In the RI distribution graphs, the upper and 

lower box ranges indicate the 25th and 75th percentiles, respectively. 

RESULTS AND DISCUSSION 

Optical diffraction tomography imaging of the collectively migrating cells 

To demonstrate 3D label-free, large-scale FoV imaging of a wound healing assay, the CCM of 

NIH3T3 fibroblasts was measured (Fig. 1; see Methods). From the 2D multiple holograms 

measured at various illumination angles, the amplitude and phase images were retrieved using 

the phase retrieval algorithm (Fig. 1A). Following this, the 3D RI tomogram of a sample was 

reconstructed using the ODT algorithm. To cover a large FoV, multiple RI tomograms were 

measured at various lateral positions, from which the 3D RI tomogram with a large FoV was 

stitched. 

   The reconstructed large-scale RI tomogram of NIH3T3 cells presented large-scale, high-

resolution volumetric imaging. Figure 1B is a representative image with the total FoV covering 

both sides of the wound (670 m  1,120 m). Figure 1C shows the left side of a wound where 

the cells collectively migrate towards the right. The maximum intensity projection (MIP) along 

the axial direction visualizes the overall distribution of cells (Fig. 1B).  

Unlike conventional imaging methods, HT enables the multiscale tomographic imaging of 

multicell systems with a large FoV covering both sides of the wound and down to high-

resolution subcellular features (Fig. 1C). The cell membrane, nucleus membrane, nucleoli, 

mitochondria, and vesicles with high RI values were distinctly visualized (regions of interest 

[ROIs] 1 and 2 in Fig. 1C) without introducing any exogenous labeling. The magnified image 

of ROI 1 showed the cells that were away from the wound boundary, or so-called lagging cells. 

Here, the cells were surrounded by other cells, which resulted in a completely different 

morphology from the leading cells in ROI 2. At z = 0 μm (the bottom of the cell), the complex 

distribution of cytoskeletons around and at the bottom of the nuclei were clearly visible. The 

cytoskeletons were also located around the nuclei at z = 1.5 μm, but at this height, they 

expanded only to the closer peripheral area of the nuclei. Formation of lamellipodia was 

observed in both cross-sections, showing wrinkled cellular membranes where the cells 

extended out to the empty wound area. A high RI (bright pixels) was usually observed around 

and inside the nuclei. These results demonstrate the validity and applicability of HT in the study 

of CCM.  
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Figure 1 Wide-field imaging of a wound healing assay using optical diffraction tomography 

(ODT). (A) The reconstruction process of ODT. Multiple holograms are acquired and 

processed to retrieve the amplitude and phase delay information of the light passing through 

the sample. The tomogram reconstruction algorithm generates a three-dimensional refractive 

index (RI) map, which provides quantitative information from the sample. Then, the stitching 

algorithm based on the correlation method generates a single wide-field RI tomogram using 

multiple single-field RI tomograms. (B) Maximum intensity projection (MIP) image of a wide-

field RI tomogram of a wound healing assay. NIH3T3 cells are collectively migrating into the 

wound area in the middle, which is an empty space generated by scratching with a pipette tip. 

(C) A lateral cross-section image of a RI tomogram shows NIH3T3 cells migrating towards the 

wounded region on the right. The lateral resolution of the imaging system is down to 110 nm, 

which allows for imaging of various subcellular organelles as shown in the region of interest 

(ROI) 1. The wound area has no cells, and the cells on the wound boundary form migrating 

structures as shown in ROI 2. The cell membrane, cytoskeletons, and subcellular organelles all 

have different morphologies and distributions for different axial positions. Image planes of two 

different heights are shown for ROI 2. 

Monitoring the thickness of the cell layer 

Optical diffraction tomography imaging allows for direct and exact examination of the z-

directional thickness of the sample based on 3D quantitative information from the RI. 2D QPI 

techniques, such as digital holography, have been used for wound healing assays. However, 2D 

QPI techniques only measure the optical thickness, a coupled parameter between the physical 

thickness and RI (26, 27), whereas ODT decouples physical thickness from a direct 

tomographic measurement and provides precise and quantitative thickness information about 

cells.  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 28, 2020. ; https://doi.org/10.1101/2020.07.24.219774doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.24.219774
http://creativecommons.org/licenses/by/4.0/


The thickness of the migrating cell monolayer was retrieved from a single tomogram as 

shown in Fig. 2A. The thickness of the region surrounded by a dotted box at multiple time 

points is shown in Fig. 2B. The lateral position describes the distance from the left end, and 

each thickness value is calculated from the YZ MIP image. The wound boundary created by 

scratching the confluent cell layer has regions with some cells that are jammed together. As 

time passes, these closely packed cells return to the ground. This overall process is shown in 

the time-lapse thickness data. There initially exists a peak on the frontmost borderline, and then 

the height gradually decreases with time. In addition, the tendency of leading cells to reach out 

to the empty wound area and start migration is illustrated by the consistently decreasing slope 

of the thickness graph line of the frontmost cell. 

 

Figure 2 Thickness of the cell monolayer changes over time. (A) Maximum intensity 

projection (MIP) images from a three-dimensional refractive index tomogram of a wound 

healing assay. The wound region without any cells is created in the center. The dotted box 

specifies the boundary region of the wound. Cells inside the dotted box are leading cells, which 

actively migrate toward the wound area. (B) Thickness value of the cell monolayer is calculated 

from the YZ MIP image at various time points. Thickness peak point corresponds to the region 

where multiple cells are jammed together when the wound was created by scratching. Peak 

value decreases and migrates forward as time passes. Slope in the frontmost region decreases 

as the cells form migrating structures in the forward direction. 

Quantification of wound healing progress using chemical treatments 

To perform 3D tomographic imaging and quantification of migrating cells upon chemical 

treatment, the physical thickness and 2D migration of individual cells were measured and 

analyzed simultaneously.  
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Quantification of wound healing progress or the amount of cell migration can be 

accomplished using the thickness distribution information of the cell layer in addition to the 

widely used 2D migration distance information. Fig. 3A shows multiple MIP images of 

tomograms taken over a time-lapse as the cells migrate towards the empty wound area, which 

in this case is the upper direction. The control and Cyto D-treated groups were wounded, and 

their recovery processes were observed. The ODTs are visualized using 2D MIP images, which 

are similar to the imaging results from other widely used imaging methods, such as bright-field 

or fluorescence imaging. In addition, ODT can provide 2D images from any point of view using 

3D tomographic data. For example, the YZ MIP images on the rightmost side in Fig. 3A 

demonstrate how the cells are migrating to heal the wound from a unique viewpoint. Based on 

these data, Fig. 3B shows the migration distance of cells from each group. As expected, the 

Cyto D-treated group showed a much slower migration speed than the control group.  

The thickness values were also calculated, and their distributions were studied over time. 

The average thickness values of the points at the same lateral positions are represented by the 

solid line and the standard deviation as the shaded area. Thus, the effect of some empty areas 

between the cells can be reduced and allows for examination of the overall trend of thickness 

change over time. The standard deviation of all thickness values of each pixel point reflects 

how much the cells migrate and fill the empty spaces between the cells as well as how much 

the cells change their shape and become attached to the ground. Over time, the value tends to 

decrease as shown in Fig. 3D, and the slope is much steeper in the control group compared to 

the Cyto D-treated group. 
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Figure 3 Wound healing process analysis in terms of three-dimensional morphology. (A) 

Wound healing progress shown in a refractive index tomogram for each control and 

Cytochalasin D (Cyto D)-treated group of cells. (B) Migration distance is compared for the 

control and Cyto D-treated cells. (C) Thickness values are calculated and compared. The 

shaded area represents the standard deviation of the thickness values of the points in the same 

lateral position. Thickness values in each lateral position do not significantly change after Cyto 

D treatment. (D) Change in the total standard deviation of thickness values is much smaller for 

Cyto D-treated cells. Cyto D not only slows the migration speed down, but restricts the 

thickness variation of the cell layer. 

Nuclei of leading and lagging cells exhibit different RI distributions 

Several previous studies have been conducted regarding changes in nuclear structure during 

cell migration. A number of them have revealed that directed cell migration is closely related 

to the condensation of chromatin fibers and shape of the nucleus (28-30). In addition, it has 

been determined that the ratio of euchromatin to heterochromatin is a factor in determining 

nuclear stiffness and affects cell migration, which requires further investigation (31-33). Other 

studies identified a link between the nucleoli and the extracellular force applied to the cell (34) 

as well as the role of A-type lamin for sustaining directed cell migration (35) 

To demonstrate the capability of the present method, the nuclei of leading cells actively 

migrating towards the wound boundary and lagging cells surrounded by other cells far behind 

the wound boundary were compared. In Fig. 4A, representative images of lagging and leading 

cell nuclei are shown as yellow solid circles and red dotted circles, respectively. The RI of a 

cell and its nuclei are strongly inhomogeneous (Fig. 4B). Higher RIs exist mainly inside or 

near the nucleus of a cell. For further investigation, multimodal ODT and fluorescence imaging 

were conducted to confirm the range of the RI distributions, which correlated well with some 

of the well-known molecular contents inside the nucleus. Hoechst dye, a blue fluorescent dye 

widely used for labeling DNA (36), showed a good correlation with the RI values from 1.364 

to 1.373.  

For systematic comparison, the RI histograms inside the 3D volume of nuclei in lagging 

and leading cells were compared (Fig. 4C1). The lagging and leading cells had opposite 

dominance in the low and high RI regions inside their nuclei (Fig. 4C2). The results showed 

that a higher RI range was included in the RI range that showed a good correlation with the 

Hoechst signal (1.364-1.373). The data demonstrated that the leading cells had more regions 

in their nuclei with higher RI values, which correlated well with the fluorescence signal 

labeling DNA. The RI values provide quantitative information on how optically densely the 

molecules are packed together. The dry mass, which is the total amount of molecules that exist 

inside each cell, and the volume of each cell revealed a negligible difference in the groups as 

shown in Fig. 4C3. This data implies that leading cells have more densely packed DNA in their 

nuclei than lagging cells. 

Overall, the aforementioned results suggest that the leading cells in directed migration 

motion have more condensed contents, including DNA, which constitute the higher RI regions 

inside their nuclei. This is further evidence that environmental cues alter the morphology of the 

nuclei and are related to the way cells react to them. Although RI tomograms do not generally 

have molecular specificity when compared to fluorescence or other labeling methods, they 

provide quantitative information about the whole nuclei without missing other unlabeled 

molecules. In addition, the RI values directly relate to how densely molecules are packed 

compared to previous studies that were necessary to find a quantity that indirectly represents 
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the level of condensation of certain molecules. Some studies have proposed indices that are 

calculated indirectly based on thresholding or edge detection in the fluorescence image, but 

they fundamentally depend on the intensity of the fluorescence signals in the image (37, 38). 

 

Figure 4 Refractive index (RI) distribution inside the nuclei of cells near and away from the 

wound boundary. (A) Yellow solid circles represent the nuclei of lagging cells, whereas red 

dotted circles represent the nuclei of leading cells. The nuclear membrane is visible as a bright, 

thin circular shape in each cell. (B) RI tomogram visualization using different-colored voxels 

within certain RI ranges. The regions with RI values from 1.364 to 1.373 and the Hoechst 

fluorescence signal distributions overlap. (C1) RI histogram inside the volume of each nucleus 

within lagging and leading cells. (C2) Lagging cells have a higher portion of RI values in the 

low RI region than leading cells. On the contrary, leading cells have a higher portion of RI 

values in the high RI region than lagging cells. (C3) Cellular dry mass and cellular volume 

were calculated and compared between the lagging and leading cells. There is no meaningful 

difference between the two groups. 
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Multilayer particle image velocimetry  

To further demonstrate the potential of the present approach, we analyzed the collective 

motions of cells at various axial positions using PIV (Fig. 5). The boundary where the cells 

protrude from their original position to the empty area was examined at various depths. Fig. 

5A shows the results in which the green vectors indicate the migration velocity at each grid 

point and the yellow lines are the streamlines. From 0.5-1 h after scratching, most of the cells 

remained, except for the leading cells. The leading cells clearly showed the largest migration 

velocity, and their movement was larger near the bottom coverslip surface. The migration 

velocity and its directionality toward the wound area become larger as time passed, making the 

streamline perpendicular to the wound edge. Fig. 5B represents the average map of all velocity 

vector map results at different time steps on the plane with a height of z = 2.34 m. The point 

where all of the average streamlines start was where the highest number of cells per volume 

was located. This illustrated the pushing forces in the compact region between adjacent cells 

in addition to the different dynamics of leading and lagging cells. The migration velocity 

vectors (Fig. 5C) demonstrated an asymmetric distribution concerning the origin pointing 

toward the migration direction. 

 

Figure 5 Particle image velocimetry (PIV) analysis on cell migration using optical diffraction 

tomography. (A) PIV analysis of different planes of tomograms at various timepoints. Each 

green arrow shows the migration velocity at each grid point, and the yellow lines are the 

streamlines. They differ both temporally and spatially. Velocity magnitudes are generally larger 

in the lower part of the cells that are nearer to the wound boundary. The streamlines are initially 

aligned orthogonal to the migration direction but gradually become parallel over time in all 

planes. (B) Average velocity map and average streamline for all timepoints at z = 2.34 μm. The 

leader cell is characterized as the cell with the largest velocity magnitudes on the map. (C) The 

velocity vectors are plotted in a single graph. The vertical velocity distribution is asymmetric 

with respect to zero, showing that the cells are migrating toward the wound area in total. 

CONCLUSION 

To perform 3D label-free imaging and quantification of a wound healing assay, ODT imaging, 

synchronization of a motorized sample stage, and a stitching algorithm were combined. With 

the present approach, we investigated the wound healing mechanism in confluent monolayer 
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NIH3T3 cells. This method enables the measurement of various biophysical parameters in a 

wound healing assay, which are inaccessible or challenging to access with conventional 

methods. We visualized and quantified individual migrating cells and their subcellular 

organelles. The physical thicknesses were directly retrieved from the tomographic 

measurements. Migration of cells at multiple depth positions was proven, which clearly 

demonstrates that cellular migration and associated subcellular movements in a wound healing 

model exhibit 3D characteristics, even for monolayered cells. Furthermore, the time-lapse 

measurement of the thickness of a confluent monolayer from the 3D tomogram data showed 

the effects of Cyto D treatment. Finally, the RIs inside the nuclei were distributed differently 

in leading cells compared to lagging cells.  

Thus far, 2D QPI techniques, such as digital holographic microscopy, have been applied to 

the study of cell migration or wound healing assays (39-42). Although the use of 2D QPI 

techniques has included label-free and quantitative imaging capabilities, only limited 2D 

optical thickness information can be measured, and the 3D morphology of individual cells and 

subcellular structures is not accessible.  

In this study, we presented label-free tomographic imaging and quantification of a wound 

healing assay and illustrated the migration of NIH3T3 cells. We also demonstrated the proof of 

principle and expect that the current approach can be further exploited in various biophysical 

studies to stimulate new research approaches. For example, tomographic subcellular 

information in a migration assay will also promote the development of the theoretical modeling 

of wound healing (43). In addition, as scientists’ interest in the cell nucleus rotation or its 

morphology during cell migration increases, further examination of the RI inside the nuclei 

and other analyses become possible using the ODT wound healing data accompanied by 

quantitative analysis using the dry mass calculation from the raw data. Furthermore, our work 

was limited to 2D wound healing assays, but 2.5D or 3D wound healing models are readily 

accessible for examination using ODT. How cells migrate in a 3D extracellular matrix can be 

directly imaged without labeling for a very long period. Finally, 3D PIV analysis combined 

with a 3D phase correlation algorithm would allow direct visualization of how leading cells 

protrude their pseudopods and move towards the empty area. 

Our method would also be of particular interest to the pharmaceutical industry for drug 

discovery. It has a unique ability to examine 3D dynamics over a wide FoV for a long period 

of time and without any labeling. This provides an opportunity to study and analyze wound 

healing mechanisms using a new viewpoint. Studying wound healing models in a 3D 

environment by applying this technology will allow for a better and more systematic 

understanding of CCM as well as the wound healing mechanism. 
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