Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Interbacterial competition and anti-predatory behavior of environmental Vibrio cholerae strains

Natália C. Drebes Dörr, View ORCID ProfileMelanie Blokesch
doi: https://doi.org/10.1101/2020.07.24.220178
Natália C. Drebes Dörr
Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Melanie Blokesch
Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Melanie Blokesch
  • For correspondence: melanie.blokesch@epfl.ch
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

Summary

Vibrio cholerae isolates responsible for cholera pandemics represent only a small portion of the diverse strains belonging to this species. Indeed, most V. cholerae are encountered in aquatic environments. To better understand the emergence of pandemic lineages, it is crucial to discern what differentiates pandemic strains from their environmental relatives. Here, we studied the interaction of environmental V. cholerae with eukaryotic predators or competing bacteria and tested the contributions of the hemolysin and the type VI secretion system (T6SS) to those interactions. Both of these molecular weapons are constitutively active in environmental isolates but subject to tight regulation in the pandemic clade. We showed that several environmental isolates resist amoebal grazing and that this anti-grazing defense relies on the strains’ T6SS and its actin-cross-linking domain (ACD)-containing tip protein. Strains lacking the ACD were unable to defend themselves against grazing amoebae but maintained high levels of T6SS-dependent interbacterial killing. We explored the latter phenotype through whole-genome sequencing of fourteen isolates, which unveiled a wide array of novel T6SS effector and (orphan) immunity proteins. By combining these in silico predictions with experimental validations, we showed that highly similar but nonidentical immunity proteins were insufficient to provide cross-immunity among those wild strains.

Originality-Significance Statement This work contributes to the understanding of phenotypic consequences that differentiate diverse Vibrio cholerae strains. We focused on the type VI secretion system (T6SS) and the pore forming toxin hemolysin, which are tightly regulated in pandemic strains but remain constitutively active in non-pandemic isolates. We unveiled diverse arrays of T6SS effector/immunity modules in a set of environmental strains by long-read whole genome sequencing and de novo assembly. These modules determine whether the strains are able to evade amoebal predation and dictate their level of compatibility or competitiveness with one another.

Competing Interest Statement

The authors have declared no competing interest.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted July 24, 2020.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Interbacterial competition and anti-predatory behavior of environmental Vibrio cholerae strains
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Interbacterial competition and anti-predatory behavior of environmental Vibrio cholerae strains
Natália C. Drebes Dörr, Melanie Blokesch
bioRxiv 2020.07.24.220178; doi: https://doi.org/10.1101/2020.07.24.220178
Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Interbacterial competition and anti-predatory behavior of environmental Vibrio cholerae strains
Natália C. Drebes Dörr, Melanie Blokesch
bioRxiv 2020.07.24.220178; doi: https://doi.org/10.1101/2020.07.24.220178

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Microbiology
Subject Areas
All Articles
  • Animal Behavior and Cognition (2410)
  • Biochemistry (4763)
  • Bioengineering (3305)
  • Bioinformatics (14595)
  • Biophysics (6593)
  • Cancer Biology (5138)
  • Cell Biology (7387)
  • Clinical Trials (138)
  • Developmental Biology (4328)
  • Ecology (6833)
  • Epidemiology (2057)
  • Evolutionary Biology (9851)
  • Genetics (7316)
  • Genomics (9475)
  • Immunology (4514)
  • Microbiology (12601)
  • Molecular Biology (4906)
  • Neuroscience (28131)
  • Paleontology (198)
  • Pathology (799)
  • Pharmacology and Toxicology (1373)
  • Physiology (1999)
  • Plant Biology (4458)
  • Scientific Communication and Education (970)
  • Synthetic Biology (1293)
  • Systems Biology (3896)
  • Zoology (718)