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Abstract

Analysis of genetic sequences is usually based on
finding similar parts of sequences, e.g. DNA reads
and/or genomes. For big data, this is typically done
via “seeds”: simple similarities (e.g. exact matches)
that can be found quickly. For huge data, sparse
seeding is useful, where we only consider seeds at a
subset of positions in a sequence.

Here we study a simple sparse-seeding method:
using seeds at positions of certain “words” (e.g. ac,
at, gc, or gt). Sensitivity is maximized by using
words with minimal overlaps. That is because, in
a random sequence, minimally-overlapping words
are anti-clumped. We provide evidence that this
is often superior to acclaimed “minimizer” sparse-
seeding methods. Our approach can be unified with
design of inexact (spaced and subset) seeds, further
boosting sensitivity. Thus, we present a promising
approach to sequence similarity search, with open
questions on how to optimize it.

1 Introduction

1.1 Seeds

Finding similar sequences, in large data, is typically
done via “seeds”: simple similarities that can be
found quickly. The simplest type of seed is exact
matches of a given length, e.g. 10 letters for DNA.
The seed length affects the sensitivity and run time:
shorter seeds are more sensitive, but find more hits

that must then be checked. By lengthening the
seeds, we can arbitrarily reduce the run time of the
downstream steps, but not the time and memory
usage for finding the seeds.

1.2 Sparse seeds

An alternative way to reduce time and/or memory
use is sparse seeding. The simplest way is to only
use seeds starting at every nth position in one of
the two sequences being compared.

Note that, if we only use seeds at every nth posi-
tion in both sequences, the sensitivity will be poor.
E.g. if there are long similar segments, without in-
sertions or deletions, starting at coordinate x in the
first sequence and coordinate x + 1 in the second
sequence, they are never hit if n > 1.

Sparse seeding reduces sensitivity, but we could
then increase the sensitivity by shortening the seeds.
This raises the prospect of reducing run time and/or
memory use without loss of sensitivity.

1.3 Sparsity via words

An intriguing idea is to achieve sparsity by selecting
seeds starting at positions of certain words. For
example, if we only use seeds starting with a (Paul
Horton, personal communication), we achieve 4-fold
sparsity in both sequences without huge loss of sen-
sitivity. We can imagine more complex variants,
e.g. use seeds starting with any of these words: ac,
at, gc, gt. Surprisingly, it makes a difference: it
is better to use words that have minimal chance
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of overlapping. That is because, in a random se-
quence, minimally-overlapping words occur with
more uniform spacing, i.e. they are anti-clumped
or under-dispersed; equivalently, their number of
occurrences has lower variance.

1.4 Minimizers

A related idea is minimizers [SWA03, RHH+04].
This method only uses seeds starting at positions
that are “minimum” in any window of w consecutive
positions (e.g. w = 7). Various definitions of “min-
imum” can be used; the simplest is: the sequence
(i.e. suffix) starting at this position is alphabetically
minimum. This is somewhat like using seeds start-
ing with a. More complex orderings can be used, e.g.
compare two suffixes using order c<a<t<g at odd-
numbered bases and g<t<a<c at even-numbered
bases, so that cgcg. . . is the minimum possible suffix
[RHH+04].

The resulting degree of sparsity is not obvious,
and it depends on the ordering [MPB+17]. Typi-
cally, a fraction 2/(w + 1) of positions is selected
[SWA03].

Another related idea is universal k-mer hitting
sets [OPM+17]. This means a set of length-k words,
such that every possible length-L sequence contains
at least one of the words. Recent studies have
defined minimizer orderings based on universal k-
mer hitting sets, resulting in high sparsity for a
given w [OPM+17, MPB+17, MDK18].

Minimizers have been described as “a central
recent paradigm” [OPM+17]: they have been
widely used for sparse seeding (e.g. [Li18, JKD+18])
and other applications (e.g. [LKH+13, WS14,
DKGDG15]).

1.5 Spaced and subset seeds

So far we have considered exact-match seeds, but
inexact seeds are also used. One variant is spaced
seeds, which allow mismatches at some fixed po-
sitions in the seed (e.g. positions 3 and 5 out of
9). Spaced seeds are often superior to exact seeds
[MTL02], because their hits are less concentrated in
overlapping clumps. Thus, spaced seeds have been
designed by minimizing their “overlap complexity”
[II07], which is similar to minimizing the variance
in number of hits [HLO+16].

Subset seeds are a further generalization: they al-
low some mismatches (e.g. a↔g and c↔t) at fixed
positions [NK04]. This is useful for DNA, because
a↔g and c↔t substitutions (termed “transitions”)
are often more frequent than the other types of sub-
stitution (“transversions”). Transition seeds have
also been designed for use with every-nth sparsity
[FN14].

1.6 Repeats

Natural DNA has many repeats, which are the main
difficulty for similarity search. For example, a pri-
mate genome may have a million Alu elements, so
naive comparison of such genomes yields an unman-
ageable 1012 significant similarities. Our practical
aim cannot be to find all significant similarities, but
rather orthologs and/or strongest similarities. In
any case, a seeding method must avoid getting too
many repetitive seeds. One solution is to omit high-
frequency seeds, another is to use variable-length
seeds that are made longer until they are sufficiently
rare [Csű04, KWS+11].

1.7 Non-overlapping words

Since we are interested in minimally-overlapping
words, let us consider non-overlapping words. A
basic question is: what is the maximum possible
number of non-overlapping words of some length k?
That is, given an alphabet of size a (so there are
ak possible words), what is the maximum possible
number of words where no proper prefix of any word
equals a proper suffix of any word? This seems hard
to answer in general [Bla15].

The following construction has been suggested
for getting a large number of non-overlapping words
[Bla15]. Divide the alphabet into two subsets, e.g.
{a} and {c, g, t}, and choose a prefix length j (0 <
j < k). These words have no overlaps: words whose
first j letters are from the 1st subset, whose (j+1)th
and kth letters are from the 2nd subset, and whose
letters between j + 1 and k have no run of ≥ j
letters from the 1st subset.

2 Methods

The methods are available at: https://gitlab.

com/mcfrith/noverlap
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2.1 Mean and variance

Given a set of length-k words, let us consider their
occurrence in a random i.i.d. length-s sequence. The
expected number of total occurrences is:

E[X] = (s− k + 1)p , (1)

where p is the total probability of any of the words
occurring at a given position. The variance in oc-
currence number is:

Var[X] = E[X2]− E[X]2 . (2)

To calculate this, let us define index variables Ij as
1 if any of the words occurs at position j, else 0. So:

E[X2] = E[(I1 + I2 + · · ·+ Is−k+1)2] (3)

=
∑

i,j
E[IiIj ] . (4)

If we define l = |i− j|, then

E[IiIj ] =


p if l = 0∑

V,W Bk−l
V WP l

V P
k
W if 0 < l < k

p2 if l ≥ k ,
(5)

where Bm
VW is defined to be 1 if the length-m suffix

of word V equals the length-m prefix of word W ,
else 0. Also, Pn

W is the product of probabilities of
the first n letters in word W . Thus, assuming that
s ≥ 2k − 2 (see the Supplement):

Var[X] = (s− k + 1)p

+ 2
∑
V,W

k−1∑
l=1

[(s− k + 1− l)Bk−l
V WP l

V P
k
W ]

− [(2k − 1)s− (3k − 1)(k − 1)]p2 (6)

For circular sequences, the formulas are simpler
(assuming s ≥ 2k − 1):

E[X] = sp (7)

Var[X] = s
[
p− (2k − 1)p2

+ 2
∑
V,W

k−1∑
l=1

(Bk−l
V WP l

V P
k
W )

]
(8)

These formulas also apply to linear sequences when
s� k. With these formulas, the variance-to-mean
ratio, also called index of dispersion, is independent
of the sequence length. The formulas also simplify

Table 1: Parameters of the T92 DNA model

PAM κ %g+c %identity transitions per
transversion

20 1 50 82 0.5
50 1 50 64 0.5
20 3 50 83 1.4

for linear sequences with s = 2k − 1 (the smallest s
where all kinds of pairwise overlap contribute):

E[X] = kp (9)

Var[X] = kp− k2p2

+ 2
∑
V,W

k−1∑
l=1

[(k − l)Bk−l
V WP l

V P
k
W ] (10)

2.2 Simulated sequences

To test homology detection, DNA sequences were
simulated with the T92 model of evolution [Tam92].
This model has three input parameters: gc-content,
transition/transversion rate ratio κ, and PAM sub-
stitution distance (Table 1).

For each test, 100 000 pairs of DNA sequences
were simulated. The default parameters, unless
specified otherwise, are: %g+c = 50, κ = 1 (unbi-
ased), PAM = 20, sequence length = 100. A seeding
method was deemed to find a pair of sequences if it
found at least one match at identical coordinates of
the pair.

To test specificity, two unrelated length-106 se-
quences were generated, and the number of seed
pair matches counted. This is a proxy for the com-
putational cost of checking all the seed hits.

3 Results

3.1 Non-overlapping DNA words

The maximum possible number of non-overlapping
DNA words, for word length k = 2–6 (Table 2),
was found by brute force clique search [KJ07]. For
k < 6, Blackburn’s construction [Bla15] achieves
this maximum. For k = 2, a maximum set is ry (r
= a or g, y = c or t). In general, abb. . . (b = any
base except a) is a good way to get non-overlapping
words, and a nice generalization of Horton’s idea.
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Figure 1: Sensitivity (y-axis) and spurious hit count (x-axis) for exact-match seeds with every-nth sparsity.
Sensitivity was measured on sequence pairs with PAM distance 20 (left panel) or 50 (right panel). Seed
lengths 5–14 were tested, shown in gray in the left panel.

Table 2: Non-overlapping DNA words. r = {a, g};
y = {c, t}; b = {c, g, t}.

word constructed maximum
length words number number

2 ry 4 4
3 abb 9 9
4 abbb 27 27
5 abbbb 81 81
6 abbbbb 243 251

3.2 Every nth sparsity

We first tested every-nth sparsity (only using seeds
starting at every nth position in one of the two
sequences being compared), with exact-match seeds.
We defined “sensitivity” as % of sequence pairs
with ≥ 1 seed match at homologous positions. As
expected, if we increase sparsity without changing
the seed length, both sensitivity and random hit
count decrease (Figure 1). If we then shorten the
seeds, the sensitivity and random hit count increase.
The important result is that higher sparsity has
lower sensitivity for a given random hit count. The
exception is n = 2, which is no worse than n = 1,

indeed giving us something for nothing: sparsity at
no cost.

A plausible explanation for why n = 1 is not
better than n = 2 is that highly-overlapping seeds
provide little independent information. This is also
why spaced seeds are better than exact-match seeds.
Thus, it would be interesting to compare n = 1 to
n = 2 using optimized spaced/subset seed patterns:
this was done previously, and n = 2 was worse
[FN14].

3.3 Sparsity via words

Let us now see how seeds starting with a compare to
every-4th seeding. For a given seed length, the ran-
dom hit counts are the same (as expected), but seeds
starting with a have lower sensitivity (Figure 2A).
This is not too surprising, because every-4th seeding
is sparse in just one sequence, but seeds starting
with a are sparse in both sequences. Seeds starting
with ry also have the same random hit counts, and
their sensitivity is closer to (but still less than) that
of every-4th seeds. On the other hand, seeds start-
ing with rr have worse sensitivity. This supports
the idea that non-overlapping words are good and
highly-overlapping words are bad.
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Figure 2: Sensitivity (y-axis) and spurious hit count (x-axis) for exact-match seeds with every-nth or
word-based sparsity. Sensitivity was measured on sequence pairs with PAM distance 20. Seed lengths 5–14
were tested, as shown in panel A.
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Table 3: Variance-to-mean ratios. Bold values
are known to be the minimum possible, for that
sparsity and word length.

words VMR1 VMR2

sparsity 4
ry 0.25 0.5
ryn 0.25 0.417
rynn 0.25 0.375
rrry,ryrr,ryyr,yyyr 0.25 0.344

rrrry,rryrr,ryryr,ryyrr,
ryyry,ryyyy,yyyrr,yyyry 0.125 0.25

rrrrry,rryrry,rryryy,ryrrrr,
ryrrry,ryryry,ryyrrr,ryyrry,
ryyryr,ryyryy,ryyyry,ryyyyy,
yryrry,yyyrrr,yyyrry,yyyyry 0.0938 0.188

sparsity 8
ryy 0.375 0.625
rrrry,yrrry,yrryy,yryyy 0.25 0.45

rrrrry,yrrrry,yrrryr,yrrryy,
yrryry,yrryyy,yyryry,yyryyy 0.188 0.372

rrryrrr,rrryryr,rryrryr,rryyrrr,
rryyrry,rryyryr,rryyyrr,rryyyyr,
ryryyrr,ryyyryr,ryyyyyr,ryyyyyy,
yryyryr,yryyyrr,yryyyyr,yyryyrr 0.176 0.329

sparsity 16
rryny 0.438 0.688
rryryy,rryyry,rryyyr,rryyyy 0.375 0.635

rryryry,rryryyr,rryryyy,rryyryr,
rryyryy,rryyyry,rryyyyr,rryyyyy 0.281 0.576

Seeds starting with abb have a sparsity factor of
43/32 ≈ 7.1, and they perform slightly worse than
every-8th seeds (Figure 2B). On the other hand,
they perform better than seeds starting with avv

(v = any base except t). Seeds starting with abbb

(sparsity 9.5) or abbbb (sparsity 12.6) show similar
results (Figure 2C–D), confirming the advantage of
non-overlapping words.

3.4 Minimal-variance words

We can perhaps do better by using longer words
with some overlap. Seeds starting with ry are the
same as seeds starting with ryn (where n is any
base), so it may be better to replace ryn with a
less-overlapping set of length-3 words.

It is not obvious how best to quantify “amount

of overlap”, but one idea is to use variance of oc-
currence number in random sequences. Let us try
these two measures of overlap: VMR1 (variance-to-
mean ratio from Equations 7,8) and VMR2 (from
Equations 9,10).

It is also unclear how to find a set of words that
minimizes VMR1 or VMR2, because the number
of possible sets is enormous. Brute-force search
is feasible if we restrict ourselves to a 2-letter ry

alphabet.
Such words can indeed boost sensitivity. For ex-

ample, the words rrry,ryrr,ryyr,yyyr have lower
VMR2 than rynn (Table 3), and seeds starting at
these words have better sensitivity (Figure 3A). We
can do better still with eight length-5 words (Ta-
ble 3, Figure 3A).

For even longer words, our brute-force search was
too slow, so we switched to a heuristic search method
(simulated annealing) that does not guarantee to
find the minimum possible VMR. This found a set
of sixteen length-6 words (Table 3), with even better
sensitivity (Figure 3A).

On the other hand, we also found cases where
words with lower VMR1 and VMR2 have worse
sensitivity (see the Supplement). Thus, a better
criterion for choosing a set of words is still to be
designed.

Figure 3B–C shows other examples where longer
minimum-variance words (from Table 3) improve
sensitivity, with no change in sparsity or random
hit rate. However, the longer words perform badly
when they exceed the seed length (e.g. blue and red
points at the right of Figure 3C), showing a danger
of too-long words.

3.5 Minimizers

We next tested minimizers, with three orderings:
• Alphabetic order.
• cg-order, where cgcg. . . is the minimum se-

quence. This is representative of methods that
have been used in practice [MPB+17].
• abb-order. This is a novel ordering, inspired by

non-overlapping abb. . . words. It compares two
suffixes using order a<c<g<t at the first posi-
tion and t=g=c<a at all subsequent positions.

Let us first see the sparsity (average distance be-
tween seed start coordinates) of these orderings. Al-
phabetic minimizers have the lowest sparsity (high-
est density) for a given window length w, and cg

6

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 25, 2020. ; https://doi.org/10.1101/2020.07.24.220616doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.24.220616
http://creativecommons.org/licenses/by/4.0/


1e+02 1e+04 1e+06 1e+08

0.
92

0.
94

0.
96

0.
98

1.
00

A

se
ns

iti
vi

ty
 r

el
at

iv
e 

to
 e

ve
ry

−
4t

h 
se

ed
in

g

●●
●

●

●

●

●

●

●

●

●

sparsity 4

ry
rrry,ryrr,ryyr,yyyr
eight 5−mers
sixteen 6−mers

1e+02 1e+04 1e+06 1e+08

0.
92

0.
94

0.
96

0.
98

1.
00

B

se
ns

iti
vi

ty
 r

el
at

iv
e 

to
 e

ve
ry

−
8t

h 
se

ed
in

g

●

●

●

●

●

●

●

●

●

●

●

sparsity 8

ryy
four 5−mers
eight 6−mers
sixteen 7−mers

1e+02 1e+04 1e+06 1e+08

0.
92

0.
94

0.
96

0.
98

1.
00

C

se
ns

iti
vi

ty
 r

el
at

iv
e 

to
 e

ve
ry

−
16

th
 s

ee
di

ng

●
●

●
●

●

●

●

●

●
●

5678
91011

12
13

14

●

sparsity 16

rryny
four 6−mers
eight 7−mers

number of seed hits between unrelated random sequences

Figure 3: Sensitivity (y-axis) and spurious hit count (x-axis) for exact-match seeds with word-based sparsity.
Sensitivity was measured on sequence pairs with PAM distance 20. Seed lengths 5–14 were tested, as shown
in panel C. In this figure, the sensitivity is shown relative to every-nth sparsity: (% of related sequence pairs
found by word-restricted seeds) / (% of related sequence pairs found by every-nth seeds).

5 10 15 20

2
4

6
8

10
12

A

minimizer window length

av
er

ag
e 

di
st

an
ce

 b
et

w
ee

n 
se

ed
 p

os
iti

on
s

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

minimizers: alphabetic
minimizers: cg
minimizers: abb
words: abb
words: abbb

0 10 20 30 40 50 60

0.
90

0.
95

1.
00

1.
05

1.
10

1.
15

B

minimizer window length

av
g 

di
st

an
ce

 b
et

w
ee

n 
se

ed
 p

os
iti

on
s:

 o
bs

er
ve

d 
/ e

xp
ec

te
d

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●●●●●●●
●●●

●●●●
●

●
●●●●

●
●●

●●
●●

●●●●●
●●●●

●
●

●●●●●
●

●

Figure 4: Sparsity of minimizers, with three orderings. The diagonal gray line in A, and the horizontal
gray line in B, show the expected minimizer sparsity (w + 1)/2.

7

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 25, 2020. ; https://doi.org/10.1101/2020.07.24.220616doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.24.220616
http://creativecommons.org/licenses/by/4.0/


1e+02 1e+04 1e+06 1e+08

0
20

40
60

80
10

0

number of seed hits between unrelated random sequences

%
 o

f r
el

at
ed

 s
eq

ue
nc

e 
pa

irs
 fo

un
d

PAM 20

5
6

7

8

9

10

11

12

13

14

w=7, alphabetic
w=20, alphabetic
w=6, cg
w=16, abb

1e+02 1e+04 1e+06 1e+08

0
20

40
60

80
10

0

number of seed hits between unrelated random sequences

%
 o

f r
el

at
ed

 s
eq

ue
nc

e 
pa

irs
 fo

un
d

PAM 50

w=7, alphabetic
w=20, alphabetic
w=6, cg
w=16, abb

Figure 5: Sensitivity (y-axis) and spurious hit count (x-axis) for exact-match seeds at minimizer positions.
“w” means window length. Seed lengths 5–14 were tested, shown in gray in the left panel.

minimizers have higher sparsity (Figure 4), as re-
ported previously [MPB+17]. Interestingly, abb

minimizers have even higher sparsity for w > 10.
Now let us see the sensitivity of these minimizers.

Taking alphabetic minimizers as an example, if we
increase the window size w without changing the
seed length, the sensitivity and random hit rate
both decrease (Figure 5), as expected. If we then
shorten the seeds, the sensitivity and random hit
rate increase. Overall, higher w results in lower
sensitivity for a given random hit count.

To fairly compare the three kinds of minimizer, we
should compare them using different window sizes
that achieve the same sparsity. Based on Figure 4A,
alphabetic minimizers with w = 7 are comparable to
cg minimizers with w = 6, and alphabetic minimiz-
ers with w = 20 are comparable to abb minimizers
with w = 16. Comparing them thus, cg and abb

minimizers are better than alphabetic minimizers
(Figure 5). This supports the idea that higher spar-
sity for a given w improves homology search, which
does not seem to have been clearly shown before.

3.6 Minimizers versus words

To fairly compare minimizers with words, we should
use minimizer window sizes that produce the same

sparsity as the words. Figure 6A,B compares words
to minimizers with slightly lower sparsity (higher
density), giving an unfair advantage to the minimiz-
ers. Seeds starting with a perform worse than alpha-
betic minimizers for PAM distance 20 (Figure 6A),
but better for PAM distance 50 (Figure 6B). On the
other hand, seeds starting at non-overlapping (ry)
or minimum-variance words perform better than al-
phabetic or cg minimizers, at both PAM distances.

Figure 6C,D compares words to minimizers with
about the same sparsity. Seeds at positions of abbb
perform slightly better than alphabetic or abb min-
imizers. In more detail: for a given seed length, the
minimizers have worse sensitivity but slightly better
specificity.

Next, we compared word-based seeding to the
minimizer scheme of the minimap2 software [Li18].
This scheme uses exact-match seeds of length 15,
with minimizer window w = 10, and an ordering
from a particular hash function applied to each 15-
mer. The expected density is 2/(w + 1) = 0.1818,
but we empirically found a slightly higher density,
0.185–0.188, in both random and real sequences. We
compared this to twelve length-6 ry words (density
12/26 = 0.1875) that minimize VMR2: rrrrry,
rryrrr, rryrry, rryyrr, rryyry, ryryrr, ryyyrr,
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Figure 6: Sensitivity (y-axis) and spurious hit count (x-axis) for exact-match seeds at either word positions
or minimizer positions. Seed lengths 5–14 were tested. Sensitivity was measured on sequence pairs with
PAM distance 20 (A, C) or 50 (B, D).
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ryyyry, ryyyyr, yryyrr, yryyry, yyyyyr.

For this test, random fragments of size 1000 were
drawn from human (GRCh38) chromosome 22, then
mutated by the PAM process, and the number of
conserved 15-mer seeds was counted. At PAM dis-
tance 0, minimap has more seeds, i.e. higher density
(Figure 7). Nevertheless, at PAM distance ≥ 1,
minimap has fewer conserved seeds.

3.7 Unification with subset seeds

A straightforward generalization of subset seeds
incorporates word-restricted seeding. Recall that
subset seeds allow some mismatches (e.g. a↔g and
c↔t) at fixed positions. More generally, we can
allow any subset of the 16 possible types of match
and mismatch.

An example of such a generalized subset seed pat-
tern is: ANNRYrn@y. This specifies seeds of length 9.
Positions with A (in this case, the 1st position) al-
low a:a matches only. Positions with N allow any
match. Positions with n allow any match or mis-
match. Positions with R allow purine matches only:
a:a or g:g. Positions with r allow purine matches
or mismatches: a:a, g:g, a:g, g:a. Positions with

Y or y likewise allow pyrimidines (c and t). Finally,
positions with @ allow any match or transition.

Such a seed pattern has two important proper-
ties: sparsity and weight. Sparsity means rarity of
compatible positions in a single random sequence.
Weight indicates unlikelihood of a chance match to
a compatible position: for example, weight 5 means
the same unlikelihood as a length-5 exact match.

The hard problem is to design good seed patterns
for finding sequences related by a given PAM dis-
tance, transition/transversion bias, etc. Fortunately,
the seed design software Iedera already allowed this
kind of generalized subset seed [KNR06]. Here,
we used it to design seeds for PAM=20 and κ=3.
To constrain the search space in this preliminary
study, we only considered patterns based on ry,
i.e. having one R or r and one Y or y, and likewise
patterns based on ryy. The only other pattern sym-
bols allowed were N, @, and up to 5 ns. Up to 10
transition-tolerant positions other than n were al-
lowed. The resulting patterns are in Table 4. Many
other patterns are equally good; we broke ties by
preferring ones that start with RY or RYY.

One notable result is that n positions are useful
in the ry-based seeds, but not the ryy-based seeds.
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Table 4: Seed patterns designed by Iedera for
PAM 20, κ = 3, alignment length 64.

weight pattern

ry-based seeds: sparsity 4
5 RYNN@@

6 RY@@@@NN

7 RYN@@@@NN

8 RYN@@@@NNN

9 RYN@@@@@@NNN

10 RYN@@@nnNN@@@NN

11 RYN@@@nnNN@@@NNN

12 RYN@@@@NNnn@@@@NNN

13 RYN@@@@NN@nn@@@NNNN

14 RYN@@@@NN@nn@@@@NNNN@

ryy-based seeds: sparsity 8
5 RYY@@@@

6 RYYN@@@@

7 RYYN@@@@@@

8 RYYNN@@@@@@

9 RYY@@@@@@@@NN

10 RYY@@@@@@@@NNN

11 RYYN@@@@@@@@NNN

12 RYYN@@@@@@@@@@NNN

13 RYYN@@@@@@@@@@NNNN

14 RYYN@@@@@@@@@@NNNNN

This is presumably because n positions make over-
lapping seeds more independent, but sparser seeds
have fewer overlaps.

As expected, these seed patterns are good for
finding sequences that are related by PAM=20 and
κ = 3 (Figure 8).

4 Discussion

4.1 When to use sparsity

The aim of seeding methods is to maximize sensi-
tivity while minimizing computational cost (time
and memory). Computational cost has two parts:
the cost of finding seed matches (c1) and the cost
of processing them (c2). Sparsity need not reduce
sensitivity, if the seeds are shortened, but it usu-
ally increases random seed hits (i.e. c2) for a given
sensitivity (Figure 1). A notable exception is exact-
match seeds and every-nth sparsity with small n
(e.g. n = 2), which does not increase random hits for

a given sensitivity (Figure 1). Typically, however,
sparsity is beneficial only when long (or rare) seeds
do not sufficiently reduce the computational cost.

4.2 When to use every-nth sparsity

Every-nth sparsity has better sensitivity per random
hits (c2) than either minimizers or word-restricted
seeds, see also [AT18]. So it should be preferred
unless its c1 is significantly worse. It achieves spar-
sity in just one of the two sequence datasets being
compared, which is appropriate for comparing a
huge dataset to a moderate-size dataset, e.g. many
DNA reads to a moderate-size genome. It might be
appropriate for comparing DNA reads to a human
genome.

Sparsity in both datasets, with minimizers or
word-restricted seeds, is appropriate for “huge-
versus-huge” comparisons. A typical example is
aligning DNA reads to each other in order to assem-
ble them, which was a major motivation for min-
imizers [RHH+04]. Other examples are searching
DNA sequences from unknown organisms against
a multi-genome database, or checking if DNA data
has contamination from other organisms [SS20].

4.3 Words versus minimizers

This study indicates that seeding at minimally-
overlapping words is superior to minimizers. One
caveat – bias due to reduced minimizer density at
sequence edges – is addressed in the Supplement,
and does not change this conclusion. It is impor-
tant to note, however, that minimizer schemes are
still being optimized [MPB+17, MDK18]. On the
other hand, we have barely begun to optimize word-
restricted seeding.

Compared to word-restricted seeds, a minimizer
seed match has an extra contextual requirement.
A seed match can be destroyed by a mutation in-
side the seed: this applies equally to both methods.
However, minimizers experience an additional ef-
fect: a mutation outside the seed can make that
seed position no longer a minimizer. This reduces
the sensitivity of minimizers, but increases their
specificity, which fits our observations.

Our word-restricted seeding has a potential dis-
advantage: there is no upper bound on distance
between words. The probability of longer distance
decreases exponentially in complex sequence, but
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Figure 8: Sensitivity (y-axis) and random hit count (x-axis) of seeding methods, for sequences with
transition/transversion bias (κ = 3) and PAM distance 20. Seed weights 5–14 were tested. “Transition seeds”
allow transition substitutions at all positions.

not in simple sequence such as polypurine tracts or
short-period tandem repeats. Pure simple-sequence
similarities are typically not wanted, because their
significance is hard to assess and they do not reliably
indicate homology.

4.4 Further advantages of words

Word-restricted seeding has further advantages over
minimizers. Firstly, it can be co-designed with
subset seeds. Secondly, it seems likely that word
positions can be found faster than minimizer po-
sitions. Thirdly, word-restricted seeding is more
conducive to efficient indexes. Seed matches are
usually found with an index data-structure. There
are various kinds of index, but they often include a
lookup table for any possible DNA sequence of some
length d. This table can be reduced (or d increased)
with word-restricted seeding, because only a subset
of length-d words are ever considered.

4.5 Co-designed seed patterns

The sensitivity benefit of spaced and subset seeds
can be enhanced by using, instead of one seed pat-
tern, several co-designed patterns [BKS03, SB06].

Each pattern tends to find similarities that tend
to be missed by the other patterns. This idea
could be combined with word-restricted seeding.
For example, we could use four different patterns,
each starting with one of the minimally-overlapping
words RRRY, RYRR, RYYR, YYYR (Table 3). Most in-
terestingly, the best set of words may then not be
minimally-overlapping ones, but rather words whose
overlaps complement the seed patterns.

4.6 Open questions

Our study provides a new motivation for the prob-
lem of maximizing the number of non-overlapping
words. For our purposes, minimally-overlapping
words are especially useful, but we remain unsure
how best to quantify overlap. Another challenge is
how to search a large number of possible word sets
for one with low overlap. More generally, we would
like to design a set of word-restricted subset-seed
patterns.

A further difficulty is how to optimize word-
restricted seeding when the letter frequencies are
unequal. In this case, we cannot simply seek an op-
timal set of n length-k words, because the sparsity
is not constant. It is notable, however, that most
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natural DNA has near-equal frequencies of r and y.
Going further in the direction of empirical data,

it might be useful to optimize word-restricted seed-
ing for a particular sequence set (e.g. a genome).
Presumably, it is beneficial to use words that are
anti-clumped while tending to avoid repetitive se-
quence. Minimally-overlapping words avoid some
kinds of repeat, e.g. homopolymers. Previously,
minimizer ordering was defined by frequency in a
particular sequence set [CLJ+14].

Word-restricted seeding requires fast word-finding.
Perhaps some word sets are conducive to fast detec-
tion, e.g. the words in the last row of Table 3 share
a common prefix.

When we use increasingly long minimum-variance
words, with fixed sparsity n, the sensitivity might
approach that of every-nth seeding (Figure 2, 3).
The seed count of every-nth seeding has zero vari-
ance: can the words achieve arbitrarily-low vari-
ance? If so, they become arbitrarily close to a
universal k-mer hitting set. Perhaps optimized min-
imizers, minimally-overlapping words, and universal
k-mer hitting sets will converge.
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