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Abstract

Maximal growth rate is a basic parameter of microbial lifestyle that varies over several orders
of magnitude, with doubling times ranging from a matter of minutes to multiple days. Growth
rates are typically measured using laboratory culture experiments. Yet, we lack su�cient
understanding of the ecology and physiology of most microbes to design appropriate culture
conditions for them, severely limiting our ability to assess the global diversity of microbial
growth rates. Thus, genomic estimators of maximal growth rate provide a practical solution
to survey the distribution of microbial growth potential, regardless of cultivation status. Here,
we develop an improved maximal growth rate estimator, based on an expanded set of codon
usage statistics, and implement this estimator in an easy-to-use R package (gRodon). We show
gRodon outperforms the state-of-the-art growth estimator in multiple settings, including in a
community context where we implement a novel species abundance correction for metagenomes.
Additionally, we estimate maximal growth rates from over 200,000 genomes, metagenome-
assembled genomes, and single-cell ampli�ed genomes to survey growth potential across the
range of prokaryotic diversity. We provide these compiled maximal growth rates in a publicly-
available database (EGGO) and use this database to illustrate how culture collections show a
strong bias towards organisms capable of rapid growth. We demonstrate how this database can
be used to propagate maximal growth rate predictions to organisms for which we lack genomic
information, on the basis of 16S rRNA sequence alone. Finally, we provide a detailed discussion
and analysis of potential confounders, and observe a bias in genomic predictions of growth
for extremely slow-growing organisms, ultimately leading us to suggest a novel evolutionary
de�nition of oligotrophy based on the selective regime an organism occupies.

Microbial growth rates vary widely, with doubling times ranging from under 10 minutes for lab- 1

reared organisms [15] to several days for oligotrophic marine organisms [39, 52], and even as high as 2

many years for deep sub-surface microbes [11, 60, 67]. Even under optimal nutrient conditions and 3

in the absence of competition, species will vary in their maximal potential growth rates as a function 4

of their ability to rapidly synthesize cellular components and replicate their genome [33, 28, 72, 55]. 5

Broad lifestyle di�erences can be detected across habitats, with many oligotrophic marine systems 6

harboring slow-growing organisms relative to nutrient-rich habitats like the human gut [72, 62]. 7

Yet, optimal, or even adequate, culture conditions for the majority of prokaryotic organisms are 8

unknown [53, 25], making it di�cult to assess the true diversity of microbial maximal growth 9

rates. Although growth media for some species can be predicted based on their phylogeny [44], 10

cultivation is laborious and impractical in a high-throughput manner for many ecosystems such as 11

deep sea waters. Moreover, as we show here, even comprehensive culturing e�orts targeted at a 12

speci�c ecosystem (e.g., the human gut) tend to be biased towards fast-growing members of the 13
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community. By estimating maximal growth rates directly from environmentally-derived sequences 14

it may be possible to build a comprehensive and unbiased snapshot of growth across di�erent 15

habitats. 16

A beacon of hope, maximal growth rates predicted using genome-wide codon usage statistics 17

[72] appear to capture overall trends in the growth rates of natural communities [36]. Because the 18

genetic code is degenerate, genes may vary in their usage of alternative codons for a given amino 19

acid. Highly expressed genes demonstrate a biased usage of alternative codons, optimized to cellular 20

t-RNA pools [26, 21, 14, 24, 63, 18]. Vieira-Silva et al. [72] showed that among several possible 21

genomic indicators of growth (e.g., rRNA copy number and proximity to the origin of replication, 22

t-RNA copy number, etc.) high codon usage bias (CUB) in genes coding for ribosomal proteins and 23

other highly-expressed genes is the best predictor of high maximal growth rates, and can be used 24

to make accurate predictions even with partial genomic data. Their growthpred software leverages 25

this bias to predict maximal growth rates from genomic data [72]. 26

We extend the work of Vieira-Silva et al. [72] by assessing additional dimensions of codon usage 27

[63, 10]. In doing so we are able to substantially improve our predictive performance. Additionally, 28

we provide a correction based on species abundances to the method when applied to bulk community 29

data from metagenomes, an important but previously neglected correction. Together we provide a 30

user-friendly implementation of these methods in an R package (gRodon). Using our method, we 31

assay growth rates in over 200,000 genomes ([65, 66, 23]) and environmentally-derived metagenome- 32

assembled genomes (MAGs; [48, 69, 61, 1, 74]) and single-cell ampli�ed genomes (SAGs; [8, 46]) in 33

order to survey the natural diversity of prokaryotic growth rates. We provide this comprehensive 34

set of over 200,000 predictions as a compiled database of estimated growth rates (estimated growth 35

rates from gRodon online; EGGO). Using this large database we demonstrate how growth rate 36

predictions can be propagated to organisms for which no genomic information is available but that 37

have a close relative in EGGO. Finally, we provide guidance as to when codon-usage based growth 38

estimators are expected to fail, and when classi�cation (i.e. predicting oligotrophy vs. copiotrophy) 39

may be a wiser use of these methods than regression (i.e., prediction of exact doubling times). 40

Results and Discussion 41

Predicting Maximal Growth Rates 42

More than one aspect of codon usage is associated with growth 43

We measured three features of codon usage: (1) the median CUB of a user-provided set of highly- 44

expressed genes relative to the codon usage pattern of all genes in a genome [63], (2) the mean of 45

the CUBs of each highly-expressed gene relative to the overall codon usage pattern of the entire 46

set of highly-expressed genes, and (3) the genome-wide codon pair bias [10]. For details of these 47

calculations see the Methods. In practice, we take the set of highly-expressed genes to be those 48

coding for ribosomal proteins because these genes are expected to be highly expressed in most 49

organisms [72]. The �rst (1) measure captures CUB in the classical sense, and the MILC metric 50

we use [63] controls for overall genome composition as well as gene length. The second (2) measure 51

captures the �consistency� of bias across highly expressed genes, with the intuition that if highly- 52

expressed genes are optimized to cellular t-RNA pools then they will share a common bias (low 53

values indicate high consistency). This quantity can be though of as the �distance� between highly 54

expressed genes in codon-usage space, where we expect these genes to be close together when they 55
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are highly optimized for growth. The third (3) measure, codon pair bias, captures associations be- 56

tween neighboring codons, which have been suggested to impact translation [22, 6, 10]. Speci�cally, 57

it has been shown that altering the frequency of di�erent codon pairs (but not the overall codon or 58

amino acid usage) can lead to lower rates of translation, and this strategy has been used to pro- 59

duce attenuated polioviruses (potentially to engineer novel vaccines; [10]). Because it is much more 60

di�cult to accurately estimate pair-bias due to the large number of possible codon pairs, we do so 61

on a genome-wide scale, calculating pair-bias over all genes rather than just for highly expressed 62

genes (our R package includes a �partial� mode for when this is not possible due to partial genomic 63

information). Consider that if there are 64 codons, the number of possible ordered pairs is 4096, 64

and accordingly far more data will be needed to reliably estimate the frequencies of all of these 65

pairs than the original set of codons. 66

We �t our model using all available completely assembled genomes in RefSeq (1415) for the 67

set of 214 species with documented maximal growth rates compiled by Vieira-Silva et al [72]. All 68

three of these measures were signi�cantly associated with growth rate in a multiple regression 69

(CUB, p = 2.2 × 10−37; consistency, p = 8.1 × 10−15; codon-pair bias, p = 5.3 × 10−6; linear 70

regression). Furthermore, comparing nested models, incorporating �rst CUB, then consistency, 71

and �nally codon-pair bias, we found that each nested model �t the data signi�cantly better than 72

the last (addition of consistency, p = 4.2 × 10−11; addition of codon-pair bias, p = 4.0 × 10−6; 73

likelihood-ratio test). 74

gRodon accurately predicts maximal growth rates 75

The gRodon model �t the available maximal growth rate data well (adjusted R2 = 0.63; Fig 1a). 76

Our model demonstrated a signi�cantly better �t to growth data than a linear model �t on the 77

output of growthpred (ANOVA, p = 1.1 × 10−8; Fig 2). Notably, gRodon provided a better �t to 78

the data than growthpred at both high and low growth rates (S1 Figure). 79

We considered the possibility of over�tting our model to the data, which would inhibit our 80

ability to apply our predictor to new datasets. Over�tting is a particularly relevant concern when 81

dealing with species data, since models may end up being �t to underlying phylogenetic structure 82

rather than real associations between variables. In addition to traditional cross-validation (Fig 2a), 83

we implemented a blocked cross validation approach, which e�ectively controls for phylogenetic 84

structure when estimating model error [54]. Under this framework, we take each phylum in our 85

dataset as a fold to hold out for independent error estimation rather than holding out random 86

subsets of our data as in traditional cross validation. We found that even when predicting growth 87

rates for each phylum in this way (extrapolating from our model �t to all other phyla, but excluding 88

the test phylum), we outperformed growthpred's predictions for the large majority of phyla (Fig 89

2b). Importantly, for this comparison growthpred's predictions were based on it's �t to the entire 90

dataset (including the test phylum), meaning that gRodon was able to outperform growthpred even 91

when given an unfair disadvantage. 92

We examined a number of confounding variables that could a�ect model performance. Observed 93

codon statistics are the result of several interacting evolutionary forces. Selection for rapid growth 94

drives the signal we exploit here, but the e�ective population size (Ne) and the rate of recombination 95

will determine how e�ciently selection acts on a given population [12]. We found that Ne is 96

correlated with maximal growth rate (as might be expected; [3]), as well as our model residuals 97

(S2 Figure), though the e�ect is rather weak. For populations with extremely atypical e�ective 98

population sizes (e.g., intracellular symbionts), we caution that Ne is likely to confound genomic 99
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Figure 1: Predictions from gRodon accurately re�ect prokaryotic growth rates, with the caveat that
(a) gRodon underestimates doubling times when growth is very slow due to (b) a �oor on CUB
reached in slow-growth regimes. Vertical dashed red line at 5 hours indicates where the CUB vs.
doubling time relationship appears to �atten. The black dashed line in (a) is the x = y reference
line.

growth rate estimates. Recombination locally increases the e�ciency of selection, and can lead 100

to weak but signi�cant patterns in GC content along the genome [2, 73]. We found no apparent 101

di�erences in codon usage bias between genes with or without a signal of recombination, both looking 102

at all genes in a genome (S3 Figure) and just the ribosomal proteins (S4 Figure). Finally, especially 103

in oligotrophic marine environments, many microbes experience selection for genome streamlining 104

(high percent coding sequence) alongside selection for low genomic GC content [64, 20]. While our 105

measures of codon usage should correct for genome nucleotide composition, we wanted to be sure 106

our model's performance was not a�ected by these other targets of selection. While percent coding 107

sequence does appear to have some non-linear association with growth rate, our model residuals 108

were not a�ected by either percent coding sequence or GC content (S5 Figure). This is consistent 109

with previous work showing that CUB-based approaches can predict growth rates in low-nutrient 110

marine microcosms [36]. 111

Finally, we assessed the impact of our training set on gRodon's predictions. The original set of 112

minimal doubling times from Vieira-Silva et al. [72] was a carefully hand-curated dataset compiled 113

speci�cally for this application, but includes only a subset of available recorded doubling time 114

estimates for cultured microbes. Unfortunately, there is no single database describing all known 115

microbial growth rates, but recent work has attempted to compile all available microbial phenotypic 116

data [38], including data on growth rates. We re-trained gRodon on the growth rates associated 117

with microbes with completely assembled genomes in the Madin et al. [38] database (464 species 118

with 8287 genomes). The re-trained model yields very similar results to the original gRodon model 119

(S6 and S7 Figures), despite the two training datasets disagreeing on the maximal growth rates 120

of several species (S6 Figure). The automated approach of Madin et al. [38] compiles entries 121

from a variety of other databases, and due to the scale of the dataset was not validated by hand, 122
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Figure 2: Predictions from gRodon are more accurate that those from growthpred. (a) Under
10-fold cross-validation (CV; repeated 100 times) gRodon outperforms growthpred (in terms of
mean squared error, MSE). (b) Even extrapolating across phyla gRodon typically outperforms
growthpred. Each point represents error extrapolating to a given phylum, with the point size
representing the number of species assigned to that phylum in our dataset. The black dashed line is
the x = y reference line. Note that in both (a,b) the growthpred values shown are not cross-validated
(since growthpred's model has already been �t on the full dataset), but performance values were
calculated on each fold, giving growthpred an advantage (though gRodon still demonstrates higher
accuracy despite the unfair comparison).
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meaning that this dataset likely includes more erroneous datapoints, but the gRodon approach 123

seems relatively robust to these potential errors. We include this alternative model in the gRodon 124

package alongside the default model. 125

The problem of slow-growers 126

For very long doubling times, while gRodon outperforms growthpred it still tends to underestimate 127

the actual doubling time (Fig 1a and Fig 2a). In populations of very slow growing microbes, 128

selection to optimize transcription of ribosomal proteins is likely quite low, and once the selective 129

coe�cient is low enough, drift will dominate the evolutionary process. This expectation is consistent 130

with the pattern seen in Fig 1b where CUB of the ribosomal proteins reaches a �oor at very high 131

doubling times. Importantly, this �oor will likely be a problem for all genomic predictors of maximal 132

growth rate. Drift will be the primary evolutionary force in�uencing any genomic feature when 133

selection coe�cients approach zero, as we expect for genomic features associated with rapid growth 134

in extremely slow-growing organisms. 135

What can be done in such a scenario? While gRodon cannot accurately di�erentiate between a 136

doubling time of 10 or 100 hours, it can reliably tell us if a doubling time is greater than 5 hours 137

long (the threshold at which CUB �attens in Fig 1b, see S8 Fig). In fact, this threshold suggests 138

a natural de�nition of an oligotroph as an organism for which selection for rapid maximal growth 139

is low enough so that no signal of growth optimization (e.g., CUB) is observed. Importantly, this 140

standard rede�nes oligotrophy in evolutionary terms, as a speci�c selective regime that a microbe 141

can occupy, and therefore the threshold for oligotrophy will depend on the Ne of a species (as 142

illustrated by the e�ects of Ne on our model residuals above). From our data, it appears that at 143

typical Ne values for microbes (∼ 108; [3], S2 Fig), codon optimization is undetectable for maximal 144

doubling times greater than 5 hours (Fig 1b and S8 Fig). Even for Prochlorococcus marinus, which 145

may have very large e�ective population sizes (> 1013 [27] over a well-mixed marine region, though 146

some estimates of Prochlorococcus Ne are much lower at ∼ 108 [3]), growth rates were severely 147

underestimated, though still above our 5 hour threshold (predicted doubling time of 6.2 hours 148

versus an actual doubling time of 17 hours for strain CCMP1375). Thus, gRodon can be used as 149

an accurate classi�er for oligotrophy/copiotrophy by simply de�ning microbes predicted to have 150

maximal doubling times greater than 5 hours as oligotrophs (S8 Fig). Obviously this threshold 151

will vary to some degree across species and populations (e.g, as local population size, population 152

structure, selective regimes, recombination rates, etc. vary), but our predictor appears to be largely 153

robust to most confounders (S2, S3, S4, and S5 Figures), and without additional information 5 hours 154

serves well as a pragmatic default. 155

Predicting the mean growth rate of a community using metagenomes 156

We cannot resolve the genomes of the majority of organisms described by a typical metagenomic 157

sample. Yet, often we wish to look for changes in community-scale characteristics over space 158

and time. Given a nearly complete set of coding sequences from a community, is it possible to 159

estimate community-wide growth potential even when we do not know which organisms make up 160

that community? Vieira-Silva et al. [72] found di�erences in the CUB across habitats and during 161

ecological succession in the infant gut, interpreting this as community-level di�erences in the average 162

maximal growth rate. This approach is supported by the fact that codon usage patterns and t-RNA 163

copy numbers tend to be shared by members of a community [72, 68, 56], where di�erent species 164

within an environment tend to have more similar codon usage patterns than the same species in 165
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di�erent environments [56]. Thus, comparing the set of all highly expressed genes (e.g., all genes 166

coding for ribosomal proteins) to the full set of genes in a metagenome should give a rough estimate 167

of the mean community-wide growth rate. 168

Importantly, the growthpred approach makes a major omission in that it does not account for 169

the relative abundances of di�erent organisms in the sample. All assembled genes are treated as 170

equal, thus biasing the growth estimate towards the rarer members of a community. To correct 171

for this, we incorporated read coverage of genes into our gRodon calculation, thus producing a 172

community-wide maximal growth rate estimate that re�ects the taxonomic distribution of a com- 173

munity. Our approach is simple � in gRodon's metagenome mode (which only takes CUB into 174

account, not consistency or pair-bias) we calculate the weighted median of the CUB of highly ex- 175

pressed genes, with weights corresponding to the mean depth of coverage of these genes, rather than 176

an unweighted median as in the default gRodon calculation. Thus, the highly expressed genes of 177

abundant organisms are accounted for proportionally to their relative abundance. For comparison, 178

we also implemented an unweighted version of metagenome mode in gRodon. 179

In practice, it is not easy to benchmark such a method on a natural community since we do not 180

typically know the actual maximal growth rates of all members of any given community. Neverthe- 181

less, our approach can be validated by nutrient enrichment experiments where nutrients are added 182

to an initially oligotrophic community leading to a rise in copiotrophs. If gRodon truly captures 183

changes in community-wide growth potential, we should see our community-level maximal growth 184

rate predictions increase under this nutrient enrichment regime. While many such experiments have 185

been carried out, very few are accompanied by shotgun metagenomic sequencing. Recently, Okie 186

et al. [45] performed a controlled nutrient enrichment experiment in a highly oligotrophic pond 187

system that included replicated metagenomic samples from the treatment and control conditions. 188

Despite a small number of samples overall (n = 10), gRodon's weighted metagenome mode detected 189

a signi�cantly higher community-level average maximal growth rate in the enrichment condition 190

(p = 0.032, Mann-Whitney test; S10 Fig). Importantly, no di�erence was detected when using 191

gRodon's unweighted metagenome mode (p = 0.15, Mann-Whitney test; S10 Fig). Okie et al. [45] 192

excluded several samples from their �nal analyses on the basis of low read counts, doing the same 193

su�ciently reduces our sample size (n = 7) so that no signi�cant change is detected (p = 0.057, 194

Mann-Whitney test), though all enriched treatments have higher predicted maximal growth rates 195

than all control treatments (S11 Fig). In a recent time-series study, Coella-Camba et al. [9] applied 196

multiple nutrient treatments to mesocosms in oligotrophic marine waters and tracked their change 197

over time with shotgun metagenomes. In several experiments a large cyanobacterial bloom was 198

observed within the �rst 7 days of the experiment followed by a crash [9], which both gRodon's 199

weighted and unweighted metagenome modes were able to capture as a steep increase in growth 200

rate before a return to baseline (S12 Fig), though the un-corrected, unweighted metagenome mode 201

systematically underestimated average community maximal growth rates (S13 Fig). As sequencing 202

costs continue to decline it will become easier to benchmark community-wide maximal growth es- 203

timates, though even from our limited example we emphasize that it is important to take relative 204

abundances into account when making these estimates. 205

The EGGO Database 206

We constructed a database (EGGO; Table 1) of predicted growth rates from 217,074 publicly 207

available genomes, metagenome-assembled genomes (MAGs), and single-cell ampli�ed genomes 208

(SAGs). Of these, the majority corresponded to RefSeq genome assemblies (184,907; [65, 66]). 209
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Source Type Number of Genomes Environment

RefSeq Assemblies [65] Isolate 184907 -
Parks et al. [48] MAG 7287 -

GORG-tropics [46] SAG 7214 Marine Surface
Tully et al. [69] MAG 2266 Marine

Delmont et al. [13] MAG 809 Marine
MarRef [29] Isolate 725 Marine

Pasolli et al. [49] MAG 4431 Human Microbiome
Nayfach et al. [41] MAG 4483 Human Gut
Poyet et al. [50] Isolate 3459 Human Gut
Zou et al. [75] Isolate 1493 Human Gut

Table 1: Summary of EGGO database

The distribution of growth rates across RefSeq was roughly bi-modal, with the split between peaks 210

corresponding to the 5 hour doubling-time cuto� we proposed above for classifying oligotrophs (Fig 211

3a). Additionally, phyla tended to broadly group together in terms of growth rate, and the 5 hour 212

divide separated fast- and slow-growing phyla (Fig 3b-c). Using a Gaussian mixture model we 213

obtained two large clusters of microbes, with mean doubling times of 2.7 and 7.9 hours respectively, 214

roughly corresponding to our proposed copiotroph/oligotroph divide (Fig 3a). We also obtained a 215

third, very small and slow growing cluster, accounting for 0.4% of observations with a mean minimal 216

doubling time of 99 hours (too small to plot in Fig 3a). 217

MAGs and SAGs make up a sizable portion of our overall database (26,490) and provide impor- 218

tant information about the distribution of growth rates of uncultured organisms. A basic expecta- 219

tion is that cultured microbes from an environment will on average have higher maximal growth 220

rates than the true average across that environment, since culturing slow-growing species will in 221

general be more di�cult [53, 70]. This pattern can be clearly seen in both marine (Fig 4) and host- 222

associated (Fig 5a-b) environments, with isolate collections showing much lower predicted doubling 223

times than MAGs and SAGs from the same environments. Even in sets of isolates meant to capture 224

the complete taxonomic diversity in an environment [75, 50], we see that they fail to capture the 225

most slowly-growing members of the community (Fig 5a-b). Illustrating this gap is important, as it 226

shows how existing culture collections are not only incomplete, but also biased. These patterns are 227

most apparent when looking within an environment, and largely disappear when comparing against 228

MAGs from diverse environments (S14 Fig; [48]). 229

Finally, we note that there are many potential use-cases for gRodon and the EGGO database, 230

especially when studying subsets of microbes for which additional metadata is available. For exam- 231

ple, microbes associated with �non-westernized� human gut microbiota have a signi�cantly shorter 232

doubling time on average than the gut microbiome as a whole (t-test, p = 4.1 × 10−6; Fig 5c; 233

classi�cation of �non-westernized� taxa from [49]; we note that this terminology centers a mythic 234

monolithic �West� as a reference against which all other groups are to be compared, and should 235

be revised [32]), perhaps indicating that they are primarily infrequent but fast-growing community 236

members caught during a bloom. As another example, the very largest cells in marine samples 237

seem to also be those with the highest maximal growth rates (Fisher's exact test, p = 2.2× 10−15; 238

S15 Fig). This is consistent with the �nutrient growth law� coined by Schaechter et al [57], which 239

describes a simple exponential relationship between bacterial cell volumes and their growth rates. 240
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Figure 3: Prokaryotes with sequenced genomes span a broad range of predicted growth rates. (a)
Predicted growth rates for assemblies in NCBI's RefSeq database. Growth rates were averaged over
genera to produce this distribution, since the sampling of taxa in RefSeq is highly uneven (see S9
Fig for full distribution; a small number of genera had inferred doubling times over 100 hours, 6
out of 2984). Clusters correspond the components of a Gaussian mixture model, with area under
each curve scaled to the relative likelihood of an observation being drawn from that cluster. (b-c)
Growth rate distributions for individual (b) fast- and (c) slow-growing phyla (only showing phyla
with ≥ 30 genera represented in RefSeq). Vertical dashed red line in (a-c) at 5 hours for reference.
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Figure 4: Predicted maximal growth rates in marine environments. Observe that (a-b) genomes
from isolates have shorter predicted doubling times on average than MAGs and SAGs, and fail to
capture the slow-growing fraction of the community. Additionally, SAGs showed a lower overall
growth rate than MAGs, with very few doubling times predicted to be under 5 hours. This may be
due in part to how SAGs were sampled (only at the ocean surface, rather than at multiple depths),
or to some systematic bias in how MAGs are assembled and binned. MAGs generated by distinct
research groups showed surprisingly consistent maximal growth rate distributions. Vertical dashed
red line in (a) at 5 hours for reference.
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Figure 5: Predicted maximal growth rates in the human gut. Observe that (a-b) genomes from
isolates have shorter predicted doubling times on average than MAGs, and fail to capture the slow-
growing fraction of the community. Notably, growth-rate distributions are consistent across MAG
datasets (S18 Fig) in the gut, though they vary across body sites (S19 Fig). We also found that (c)
gut microbes associated with non-westernized microbiomes had slightly higher growth rates than
gut microbes in general. Vertical dashed red line in (a) at 5 hours for reference.
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Because maximal growth rate is a basic parameter of microbial lifestyle [55], gRodon and EGGO 241

allow us to build better large-scale comparative studies linking speci�c traits and habitats to par- 242

ticular microbial life-histories. 243

Using EGGO to predict growth using only 16S rRNA 244

There are many organisms for which we do not have genomic information, but for which we have the 245

genomic information of a close relative. Vieira-Silva et al. [72] observed conservation of growth rate 246

below the genus level. We leverage these phylogenetic relationships alongside our comprehensive 247

EGGO database to drastically expand the set of organisms whose growth rates we can predict. 248

The growth rates of species pairs within a genus are strongly associated. This is true looking 249

at actual maximal growth rates (linear regression, p = 2.4 × 10−4, R2 = 0.39, despite a small 250

number of datapoints n = 25), but becomes more apparent when we examine the large number of 251

inferred growth rates in EGGO (linear regression, p < 2.2 × 10−16, R2 = 0.42; S16 Fig). In order 252

to assess how closely two organisms must be related to reliably extrapolate maximal growth rate, 253

we built a phylogeny of 16S rRNA sequences with corresponding records in EGGO. We predicted 254

maximal growth rate as the weighted geometric mean of an organism's nearest 5 relatives on the tree 255

(weighted by inverse patristic distance, see Methods). Comparing an organism's entry in EGGO 256

to values extrapolated from closely related relatives, we found that the two quantities were highly 257

correlated (Pearson correlation of log-transformed doubling times ρ = 0.78, p < 2.2 × 10−16; Fig 258

6a). Prediction error was relatively insensitive to how distant these neighbors were up to a patristic 259

distance of ∼ 0.2 (Fig 6b; consistent with previous observations [72]). We obtained similar results 260

when predicting only on the basis of the closest relative (Pearson correlation of log-transformed 261

doubling times ρ = 0.60, p < 2.2 × 10−16; S17 Fig). Importantly, prediction using a 16S tree 262

relies on a large database of pre-predicted maximal growth rates (i.e., EGGO), meaning that errors 263

are compounded over multiple rounds of prediction. We thus caution against over-interpretation of 264

phylogenetic predictions, though these predictions can o�er a useful baseline estimate for organisms 265

for which we have very little life-history information. One option for the conservative microbiologist 266

is to use phylogeny to predict whether an organism is a copiotroph or oligotroph (following our 267

earlier cuto� of a 5 hour doubling time), as classi�cation is generally an easier task than regression. 268

Our approach to phylogeny-based prediction did well when applied for classi�cation of oligotrophs 269

(i.e., whether an organism had a doubling time > 5 hours; accuracy= 0.98, Cohen's κ = 0.61). We 270

include a blast database of 16S sequences for organisms with records in EGGO alongside the online 271

database so that users may search their own 16S sequences to predict growth. 272

Conclusions 273

We produced a community resource in the form of an easy-to-use and well documented R package 274

(gRodon) and comprehensive database (EGGO) for predicting and compiling maximal growth rates 275

across prokaryotes. Using these tools we show how existing cultured isolates do not fully capture 276

the diversity of prokaryotic lifestyles. We are unlikely to overcome these biases easily, as the slow- 277

growing microbes missing from our culture collections are precisely the ones we expect to be most 278

di�cult (and time-consuming) to grow in the laboratory. Yet, we have their genomes, and may 279

be able to extrapolate their traits from microbes that are more easily cultivable. Growth rate is 280

one example where inference of traits from genomes has clear utility, though we emphasize that 281
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Figure 6: Closely related organisms have similar predicted maximal growth rates. (a) We predicted
the growth rate of an organism based on closely related organisms in EGGO and found good
correspondence to that organism's entry in EGGO. Dashed line denotes the x = y line. (b) Pairs of
randomly sampled organisms have similar growth rate entries in EGGO as long as they are closely
related (vertical dashed blue line at a patristic distance of 0.2, the same threshold found in [72]).
Horizontal gray line at d = 0.5 hours for reference. (a-b) Points shaded relative to number of nearby
neighbors in order to visualize density (ggpointdensity R package https://github.com/LKremer/
ggpointdensity).

genome-wide signals may be confounded by other evolutionary and/or demographic processes and 282

that it is important to assess their robustness and limitations, as we have done here. 283

Finally, we emphasize that the relationship of the in situ growth rate and the maximal growth 284

rate of an organism is not clear given the cryptic in�uence of top-down and bottom-up controls 285

at the sampling time. There are any number of reasons why an organism may not reproduce at 286

its physiological maximal rate (e.g., �uctuating habitat quality, dispersal to sub-optimal habitats, 287

etc.). Nevertheless, it is encouraging that recent work using natural communities has shown that 288

CUB-based estimators do a reasonably good job of predicting observed instantaneous growth rates 289

in marine systems [36], even as peak-to-trough [30, 4, 19, 17] methods of estimating growth have 290

been reported to work poorly for marine plankton, with the exception of the most highly abun- 291

dant copiotrophs [36]. Thus, taken together with our benchmarking against nutrient-enrichment 292

experiments, the data suggest that CUB-based estimators of maximal growth rate tend to also 293

recapitulate the instantaneous growth rate of a community. 294

Methods 295

All scripts used to generate �gures and analysis, as well as predicted growth rates for various genomic 296

datasets and the full EGGO database, are available at https://github.com/jlw-ecoevo/eggo. 297

The gRodon package, including documentation and a vignette can be downloaded at https:// 298

github.com/jlw-ecoevo/gRodon. 299
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Model Fitting 300

For each species with a growth rate listed in the original Vieira-Silva dataset (214; [72]) we down- 301

loaded all available complete genome assemblies from NCBI's RefSeq database (1415; [65, 66, 23]). 302

For each species we calculated the mean of each of our three codon usage statistics across all 303

genomes corresponding to that species. Ribosomal protein annotations were taken directly from 304

the annotations generated by NCBI's default prokaryotic annotation pipeline, and these were the 305

ribosomes passed to both growthpred and gRodon. Importantly, growthpred can also search for 306

ribosomal proteins using a provided database, though we did not use this feature so as to make 307

sure the two prediction methods were compared on identical datasets. For initial model �tting, we 308

excluded thermophiles and psychrophiles from the dataset (31) as these organisms systematically 309

di�er in their codon usage patterns [72]. Similar to growthpred, we include a temperature option �t 310

using these microbes in the �nal gRodon package that accounts for optimal growth temperature in 311

the �nal model, though given the few extremophiles used to �t this model we caution users against 312

drawing strong conclusions when it is applied to extremophiles (by default temperature is not used 313

for prediction). 314

We then �t a linear model to box-cox transformed doubling times (optimal λ chosen using the 315

MASS package [71]) using our three codon usage measures as predictors. Similarly we �t models for 316

gRodon's �partial� (excluding pair-bias) and �metagenome� (excluding pair-bias and consistency) 317

modes. 318

For �tting on the Madin et al. [38] training set we used the same model �tting procedure. We 319

took the minimal recorded doubling time from each species in the �condensed_traits_NCBI.csv� 320

supplementary �le (https://doi.org/10.6084/m9.figshare.c.4843290.v1), and where possible 321

obtained all completely assembled genomes associated with that species from RefSeq. This yielded 322

our training set with 464 species matched to 8287 genomes. Notably, 130 of these species were 323

either thermophiles or psychrophiles, perhaps making this training set preferable when dealing 324

with extremophiles. 325

The Gaussian-mixture model in Fig 3 was �t using the Mclust() function in the mclust package 326

with default settings [58]. Mclust chooses the optimal mixture of Gaussian based on BIC and �nds 327

this optimum (for mean and variance) using an expectation-maximization algorithm. 328

Metagenomic Data 329

The raw sequencing data for the metagenomic water samples taken at the end of the Okie et al. 330

[45] experiments were obtained from NCBI under BioProject PRJEB22811. Raw sequencing data 331

for the time-series samples taken by Coella-Camba et al. [9] were obtained from NCBI under 332

BioProject PRJNA395437. Adapters and low quality reads were trimmed using fastp v0.21.0 [7] 333

with default parameters and only reads longer than 30 bp were kept for further analysis. Okie et al. 334

[45] samples were assembled individually using metaSPAdes v3.10.1 [43]. Coello-Camba et al. [9] 335

samples were assembled individually using megahit v1.2.9 [34] with default parameters. We called 336

and annotated ORFs from assemblies using prokka [59] (with options �--metagenome --compliant -- 337

fast�). Reads were mapped to ORFs using bwa 0.7.12 [35], and the number of reads aligned to each 338

ORF were counted using bamcov v0.1.1 (available at https://github.com/fbreitwieser/bamcov). 339

We ran gRodon in weighted and unweighted metagenome mode on each sample, with weights 340

corresponding to mean coverage depth (corrected for gene length). In weighted metagenome mode 341

the median CUB of the highly expressed genes is taken as a weighed median (weightedMedian in 342

matrixStats R package), with weights corresponding to mean depth of coverage for that gene. One 343
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sample from Coella-Camba et al. [9] had a very atypical estimated average minimal doubling time 344

over twice as long as any other estimated doubling time from this dataset (MG078 at 3.1 hours, 345

as compared to the second longest doubling time in MG002 at 1.4 hours), and strongly disagreeing 346

with a replicate sample from the same experiment and timepoint (MG073 at 0.35 hours). Upon 347

closer inspection, this sample had far fewer bases than the rest (133M bases vs > 1G bases) and 348

only a little over 400 genes were detected in the assembly, far too few for accurate assessment of 349

community-wide growth rate, leading us to omit this sample from further analyses. 350

EGGO Datasets 351

We downloaded all prokaryotic assemblies from RefSeq [65, 66], as well as several collections of 352

isolate genomes [29, 50, 75], MAGs [69, 49, 41], and SAGs [46]. Where possible, we used per- 353

existing gene annotations provided by NCBI. For the Pasolli et al. [49] and Nayfach et al. [41] 354

MAGs gene predictions were not available and we used prokka to predict ORFs and annotate 355

ribosomal proteins [59]. Note that for both of these MAG datasets we used a subset of all MAGs 356

designated as being representatives of species clusters by the authors. We then ran gRodon on 357

each genome, using partial mode for MAGs and SAGs (which vary in their completeness). Finally, 358

we �ltered results from genomes with few ribosomal proteins. Similar to Vieira-Silva et al [72], 359

we found that growth rates were biased when <10 highly expressed genes were used for prediction 360

(S20 Fig), and we used this cuto� for our MAGs and SAGs. For our isolate genomes this generally 361

was not an issue, with over 99% of genomes in RefSeq having between 50-70 annotated ribosomal 362

proteins. We �ltered all genomes outside this range to remove a very small set of obvious problem 363

cases (e.g., one Bacillus genome that had over 1000 annotated ribosomal proteins). The numbers 364

in Table 1 correspond to post-�ltering genome counts. 365

Measuring Bias 366

We use the MILC measure of codon usage bias [63] implemented in the coRdon R package [16]. 367

This bias measure behaves slightly better than the ENC' measure used by Vieira-Silva et al [42, 72], 368

and automatically accounts for the CUB of genomic background in its calculation (by taking the 369

genome-wide distribution of codons as its expected distribution; [63, 16]). As recommended in 370

the coRdon documentation, genes with fewer than 80 codons were omitted from our calculations. 371

Importantly, we calculate the MILC statistic on a per-gene basis rather than concatenating all 372

of our genes. The contribution (Ma) of each amino acid (a) to the MILC statistic for a gene is 373

calculated as: 374

Ma =
∑
c∈C

Oc log
Oc

Ec
(1)

where C is the set of codons coding for a, Oc is the observed count of codon c, and Ec is the 375

expected count of codon c (See the original paper for the full calculation of the MILC statistic; 376

[63]). Typically, Ec for a given gene is estimated using the genome-wide frequency of that codon 377

c. This is what we mean when we say that for our CUB measurement the bias of highly expressed 378

genes is calculated �relative to the genomic background�. 379

For our consistency calculation MILC was also used, but was calculated using the highly ex- 380

pressed proteins as the expected background (using the �subset� option in coRdon). In other 381

words, we estimated the expected count of a codon, Ec, using the frequency of that codon in 382

highly-expressed genes only, rather than the genome-wide frequency. 383
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For codon-pair bias we implemented the calculation by Coleman et al. [10] that controls for 384

background amino acid and codon usage when estimating the over/under representation of codon 385

pairs (see their S1 Fig for relevant equation). 386

Population Parameters 387

We obtained estimates of Ne from [3], which are based on dN/dS ratios (the intuition being that 388

selection acts more e�ciently in large populations). Gene-speci�c recombination rates were obtained 389

by applying the PhiPack [5] program for detecting recombination to the ATGC database of closely- 390

related genome clusters [31], as described in Weissman et al. [73]. 391

Extrapolating Between Closely Related Taxa 392

For all genomes used to build EGGO we extracted all annotated 16S rRNA genes and then aligned 393

these sequences and removed poorly-aligned columns using ssu-align and ssu-mask (default settings; 394

[40]). We then �ltered sequences for which less than 80% of positions were accounted for (i.e., were 395

gaps). We ran fasttree on the resulting alignment (with -fastest, -nt, and -gtr options; [51]) to 396

obtain a phylogeny with 192,195 tips representing 60,421 organisms. For phylogenetic prediction of 397

maximal growth rate we then omitted any tips with EGGO entries where d > 100 hours (13 tips) 398

to minimize the in�uence of outliers. 399

To predict growth rate we �rst randomly sampled one tip per organism in our tree (to avoid 400

predicting an organisms growth rate from itself). We then iteratively found the �ve closest tips to 401

each tip in the tree, and took the weighted geometric mean of the growth rates associated with these 402

tips. This gave us our predicted maximal growth rate on the basis of 16S rRNA in Fig 6a. Weights 403

were calculated as inverse patristic distance, with a small constant added for when organisms had 404

identical 16S sequences (e.g., multiple genomes in EGGO for the same species): 405

w =
1

distance+ 10−8
. (2)

For S17 Fig, the predicted rate was simply taken as the rate associated with the closest tip on the 406

tree. We identi�ed the closest tips using the castor R package [37]. 407

To produce Fig 6b we sampled 10,000 tips from our tree and calculated all pairwise distances 408

between tips using the cophenetic.phylo() function in the ape R package [47]. 409
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