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Abstract9

Mucus is a fluid that protects animals against pathogens while promoting interactions10

with commensal microbes. Changes in the diffusivity of particles in mucus alter viruses’11

infectivity, the efficiency of bacterial pathogens to invade a host, and the effectivity of drug12

delivery. Multiple physicochemical properties modulate the diffusion of microscopic particles13

in mucus, but their combined effect is unclear. Here, we analyzed the impact of particle size,14

charge, chemistry, anomalous diffusion exponent, and mucus composition in the diffusivity of15

particles from 106 published experiments. We used a time window sampling of one second16

to define a consistent, effective diffusion across experiments. The effective diffusion spanned17

seven orders of magnitude from 10−5 to 102 µm2/s. The anomalous exponent was the strongest18

predictor among all variables tested. It displayed an exponential relationship with the effective19

diffusion that explained 90% of the empirical data variance. We showed that the relationship20

and dominance of the anomalous diffusion exponent resulted from a general mathematical21

relationship obtained from first-principles for any subdiffusion mechanism. Our derivation22

demonstrated that the generalized diffusion coefficient is not a measurable physical quantity23

and must be replaced by the length and time scales associated with the underlying mobility24

mechanisms. This led us to a fundamental reformulation of the classic subdiffusion equation,25

which calls for a reinterpretation of anomalous diffusion in physical systems. We also discussed26

how our results impact the characterization of microscopic particle diffusion in mucus and other27

hydrogels.28

Mucus is a complex fluid secreted by animals. It protects organs against the invasion of29

pathogens and promotes the interaction with commensal microbes (Bäckhed et al. 2005; Bakshani30

et al. 2018; Silveira and Rohwer 2016). Mucins—a characteristic component of mucus—are glyco-31

proteins that form a polymeric mesh in mucus (Spagnolie 2015). Changes in the mucin network32

alter the diffusion of microscopic particles in mucus with disparate outcomes for the animal host.33

Low pH thickens mucus, reducing, for example, the diffusion and infection rate of viruses like HIV34

(Lai et al. 2009). Interaction with mucins also alters the diffusivity of particles in mucus. Com-35

mensal viruses that infect bacteria and reside in the gut, for instance, display immunoglobulin-like36

domains that are attracted to mucins, which reduces their diffusivity and increase their infectivity37

against bacteria (Barr et al. 2013, 2015). The regulation of particle diffusion in mucus is thus38

paramount for animal health, and the enhancement of diffusivity is also key for the delivery of39

medical drugs in the body (Cone 2009). The combined effect of these different physicochemical40

factors, however, remains puzzling.41
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Small biomelecules and biomolecular complexes tend to diffuse more readily through mucus,42

while larger particles are caught in the mucin network (Amsden and Turner 1999; Cone 2009). On43

the other hand, non-adhesive polystyrene particles with a diameter of 500 nm diffuse faster than44

smaller particles (200 nm) of the same type (Lai et al. 2007). Therefore, parameters other than45

particle size must play a role. Neutrally charged particles, for instance, display higher diffusivity46

than negatively and positively charged particles of the same size in mucus with a net negative47

charge (Abdulkarim et al. 2015; Arends et al. 2013; Hansing et al. 2016; Lieleg et al. 2010; Li et al.48

2013). Increase of salt concentration shields charged particles, leading to diffusivities similar to49

neutrally charged particles (Arends et al. 2013; Lieleg et al. 2010; Hansing et al. 2016). Instead,50

low pH increases the distribution of negative charges in mucins altering the electrostatics as well51

as viscoelasticity of mucus, reducing diffusivity for most particles (Celli et al. 2009; Lai et al. 2009;52

Lieleg et al. 2010; Spagnolie 2015; Suk et al. 2011). Each of these studies show how different53

physical properties can controll the diffusion of microscopic particles in mucus, but the emerging54

picture is complex, and it is unclear if any of these physical factors is more dominant than others.55

To assess the combined impact of each factor, we studied twenty-three published articles mea-

suring the diffusion of particles in mucus or mucus-like hydrogels. Ten studies contained diffusion

data that could be compared at the same time scale for spherical nanoparticles (Abdulkarim et al.

2015; Barr et al. 2015; Lai et al. 2007, 2009; Lieleg et al. 2010; Olmsted et al. 2001; Newby et al.

2017; S.Schuster et al. 2013; Suk et al. 2011; Yildiz et al. 2015). Using WebPlotDigitizer (Rohatgi

2019), we extracted 106 measurements of effective diffusion, measured at a window time of one

second, that is,

Deff =
〈MSD〉
2k∆teff

. (1)

Here 〈MSD〉 was the ensamble mean squared displacement for each particle tracking experiment,

k was the dimensions of the particle diffusivity, and ∆teff = 1 sec was the effective sampling time

window (Huang et al. 2013). In all measurements, we estimated particle hydrodynamic diameter,

particle type, mucus source, dominant mucin expression, and temperature. When possible, we

extracted or derived the anomalous diffusion exponent (α), particle charge, mucus pH, mucus salt

concentration, and mucin concentration. The anomalous exponent was obtained from the classic

subdiffusion equation:

〈MSD(∆t)〉 = 2kDα∆tα , (2)

Here Dα is the generalized diffusion constant and ∆t is the sampling time window (Metzler et al.56

2014).57

Table 1 displays the ranges obtained for each physical parameter, and Table S.1 contains the58

full data set. The effective diffusions spanned seven orders of magnitude, from ∼ 10−2 µm2/s to59
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105 µm2/s. Particle diameter (d) spanned three orders of magnitude, from 1 nm to 1,300 nm;60

three quarters of the particles (n=80, 75%) had diameters greater than 100 nm. The anomalous61

exponent (α) ranged from strongly subdiffusive (α ≈ 0.1) to purely diffusive (α ≈ 1), but it was62

obtained only for a third of the dataset (n = 33, 30%). The zeta potential (ζ) measured the63

effective surface charge of particles in solution (Kumar and Dixit 2017). The values ranged from64

−70 mV to +40 mV and were obtained for half of the dataset (n = 57, 52%). The temperature65

ranged was narrow, 295 K to 310 K. The pH ranged from mildly acidic (pH = 3.0) to slightly66

alkaline (pH = 7.4). Mucus experiments were associated to cell lines from four sources: human67

respiratory, human cervix, pig gastric, pig intestines. The dominant mucins were MUC5B, MUC2,68

and MUC5C. A third of the experiments were conducted in artificial mucus-like hydrogels.69

The non-parametric statistical method random forest was applied to identify the most relevant70

variables impacting the effective diffusion. The variables pH, mucus concentration, salt concen-71

tration, and MUC5B were omitted because they were missing for most data in the multivariate72

analysis. The selection of variables was obtained in two rounds, discarding not statistically sig-73

nificant variables (p-value > 0.05) in each round. This led to five significant variables (Figure 1).74

The anomalous diffusion exponent (α) was the most dominant variable with an average percentage75

increase in mean square error (%MSE) of 22.4(±3.2)% (S.D.) (p-value = 0.0099). The second76

most dominant variable was particle type, followed by zeta potential, mucus source, and dominant77

mucin.78

When analyzing the selected variables individually, the anomalous diffusion exponent displayed79

by far the strongest correlation with the effective diffusion (non-parametric Spearman correlation80

ρ = 0.93, p < 2.2E-16***, n = 39). The effective diffusion increased exponentially with the81

anomalous diffusion exponent (Figure 2a). The linear regression for the transformed data (log-82

linear) explained 89% of the variance (slope=5.3 ± 0.3, p-value < 2.0 · 10−16 ???, R2 = 0.89,83

least-squares method). The anomalous exponent, however, was only reported for ∼ 37% (n=33) of84

the data, which included carboxylated, pegylated, and viral particles. An inverse statistical model85

was fitted to estimate the mean anomalous exponents as a function of the effective diffusions for86

the remaning 63% of the data, corresponding to amine, chitosan, antibodies, and proteins particles87

(n = 67). Particles with effective diffusions above Deff > 10 µm2/s were predicted to display88

regular diffusion (α ∼ 1).89

To elucidate the physical origin of the dominance of the anomalous exponent (α), its relationship

with the effective diffusion, Deff , was derived from Eqs. (1) and (2):

Deff =
Dα

∆teff
∆tαeff . (3)
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The effective diffusion, thus, has a factor that varies exponentially with the anomalous exponent90

(α). However, it also depends on the generalized diffusion (Dα), which is implicitly a function of91

the anomalous diffusion exponent as well as particle and fluid properties, and its functional form92

changes depending on the specific underlying subdiffusion mechanism (Metzler et al. 2014; Joiner93

et al. 2019). Our meta-analysis contained a broad range of data (Table 1), including particles with94

different chemistry, mucus of different types, different physicochemical conditions, and independent95

groups carrying different experimental implementations. Therefore, it was not obvious how the96

generalized diffusion would be changing in each case, and Eq. (3) was not sufficient to justify the97

dependence and dominance of α in determining the mobility of particles in mucus. To understand98

this phenomenon, the generalized diffusion had to be analyzed further.99

The units of the generalized diffusion constant, Dα, depend on the anomalous exponent. In our100

study, these units were µm2/sα. The anomalous diffusion exponent, as any other physical quantity,101

has an associated uncertainty (error or standard deviation) (Taylor 1997). Thus, the units of Dα102

are uncertain. In other words, the generalized diffusion constant is not measurable. The fact that103

Dα is not a physical quantity has been previously overlooked and mandates a revision of the classic104

subdiffusion equation, Eq. (2).105

To reformulate the subdiffusion equation, we split the generalized diffusion into the charac-

teristic length scale (LD) and characteristic time scale (tD) associated to the physical mechanism

responsible for the mobility of the particle:

Dα =
L2
D

tαD
. (4)

This ansatz was combined with the classic subdiffusion equation, Eq. (2), obtaining:

〈MSD(∆t)〉 = 2kL2
D

(
∆t

tD

)α
. (5)

This reformulated subdiffusion equation is valid for window times larger than the characteristic106

mobility time scale, ∆t ≥ tD. For smaller window times, the underlying mobility mechanism will107

dominate, requiring a different formulation for the displacement (Joiner et al. 2019).108

The reformulated subdiffusion equation, Eq. (5), was combined with the definition of the effec-

tive diffusion, Eq. (1), obtaining

Deff (α) =
L2
D

∆teff

(
∆teff
tD

)α
. (6)

The effective diffusion, thus, depends exponentially on the anomalous diffusion exponent, α, ex-

plaining the relationship observed empirically for the effective diffusion of particles in mucus (Figure
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2). To investigate the origin of the dominance of the anomalous diffusion exponent in the varia-

tion of the effective diffusion across multiple scales, we investigated the logarithm of the effective

diffusion equation, Eq. (3):

logDeff (α) = log
L2
D

∆teff
+ α log

∆teff
tD

. (7)

For a fix time window, ∆teff , the change of the effective diffusion with respect the anoma-109

lous diffusion is ∂ logDeff/∂α = log (∆teff/tD), while the the impact of the change in the110

characteristic mobility length and time scales are, respectively, ∂ logDeff/∂ logLD = 2 and111

∂ logDeff/∂ log tD = −α. The changes were evaluated with respect the logarithms of the length112

and time scales to obtain results independent of the measuring units. The change with respect113

the length scale is constant with a value of two, while the change with resepct the time scale is114

bounded within an absolute value of one. Thus, for sampling time windows that are more than115

two orders of magnitude larger than the characteristic mobility time scale, ∆teff/tD � 102, the116

anomalous diffusion would be the dominant physical factor determining the change in the effective117

diffusion.118

This hypothesis was confirmed for the collected diffusion data in mucus, Eq. (7), by extracting119

the average mobility length and time scales from the empirical data (Figure 2a). This led to LD ∼ 3120

nm and T ∼ 5 µs. The sampling window time was ∆teff = 1 s. Therefore, ∆teff/tD ∼ 106 � 102,121

satisfying the condition for the dominance of the anomalous diffusion exponent derived above. To122

justify the values obtained for the average length, LD and time scales tD, it was necessary to123

look into the underlying mechanisms fueling the mobility of the particles. A given mechanism124

would propel the particles with a velocity vD for the characteristic time tD. This defines the125

characteristic length scale LD ∼ vDtD. In all experiments analyzed, the particles were passive,126

acquiring a transient velocity fueled by the transfer of kinetic energy from the thermal buffeting127

of the fluid, that is, v2D ∼ kBT/m, where kB is the Boltzmann constant, and m is the mass of128

the particle. Mucus is a viscous fluid, and this velocity will dissipate with a characteristic time129

tD ∼ m/γ, where γ is the friction coefficient. Not surprisingly, this leads to the Stokes-Einstein130

equation for the underlying characteristic diffusion, D ∼ L2
D/tD ∼ kBT/γ. For the typical mid-size131

particle in the data analyzed, d ∼ 100 nm, the relaxation time is tD ∼ 1 µs and the microscopic132

diffusion is D ∼ 1 µ2/s. This leads to the characteristic mobility length scale LD ∼
√
D tD ∼ 1133

nm (Joiner et al. 2019). Therefore, the estimated values for LD and tD are consistent with the134

average empirical values obtained for Eq. (7), supporting our reformulated subdiffusion framework.135

Thus, the problem of characterizing the diffusion of a particle in mucus reduces to identifying136

the physical factors that regulating the anomalous exponent. These factors depend on the specific137

5

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 26, 2020. ; https://doi.org/10.1101/2020.07.25.221416doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.25.221416
http://creativecommons.org/licenses/by-nc/4.0/


mechanism hindering the regular diffusion (Metzler et al. 2014). There are at least two mechanism138

that may play an important role in mucus. First, microscopic particles can bind to the mucin139

fibers that constitute mucus leading to subdiffusion (Barr et al. 2015). Second, mucin fibers form140

a polymeric mesh that can trap particles as observed in other hydrogels (Wong et al. 2004). Below141

we discuss the physical factors that control the subdiffusion exponent in each case.142

Binding to mucins in mucus does not necessarily lead to subdiffusion. If a particle has a single

binding site with a characteristic binding time tb, this will elongate the characteristic diffusion

time, tD ∼ tr + tb leading to the microscopic diffusion D v2Dt
2
r/tD ∼ frkBT/m. Therefore, the

diffusion will be rescaled by the fraction of time spent in the relaxation of the thermal energy,

fr = tr/(tr + tb), without altering the anomalous exponent. However, if more than one region

of the particle can bind to mucins simultaneously and the number of number of regions bound to

mucines vary stochastically, an increase of the binding time beyond the sampling time, tb � ∆teff ,

would lead to an effective power law distribution of binding times with no apparent characteristic

binding time Xu et al. 2011. The emergence of long-tailed attachment time distributions leads

to subdiffusion. The anomalous exponent, α, is equal to the exponent, ν, of the asymptotic

approximated power-law distribution of attachment times (Metzler et al. 2014; Joiner et al. 2019).

The generalized subdiffusion constant is given by

Dα =
D τD
ταD

. (8)

This was obtained using a continuous-time random walk approximation (Joiner et al. 2019). Here,

D is the diffusion of the particle in the absence of interactions with mucins, tauD is the average

diffusion time of a particle before attaching again to a mucin fiber. This result is consistent with

the ansatz that we introduced in Eq. (4). The anomalous exponent can also be related to the

average minimum time of a particle attached to a mucin fiber (τ0):

sinc1/αα =
τ0
τD

. (9)

This mechanism indicates that particle-mucin affinity will dominate the effecitive diffusion of a143

particle in mucus. Unfortunately, the experiments analyzed did not explored the particle affinities144

to mucus explicitely.145

The microenvironment trapping mechanism was observed in F-actin networks, where micro-146

scopic tracers were shown to follow anomalous diffusion. The anomalous exponent was a lin-147

ear function of the ratio between the particle size (d) and network’s mesh size (ξ) (Wong et al.148

2004). The empirical dependency obtained was α ≈ 1 for d/ξ < 0.1, α ≈ −1.25 d/ξ + 1.38 for149

0.1 < d/ξ < 1.1, and α ≈ 0.1 for d/ξ > 1.1. Thus, particles with a size that is 10% of the150
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mesh size or smaller diffused normally, while particles with a size similar or larger to the mesh or151

displayed a reduced diffusitivity with a low anomalous exponent. This phenomenon was justified152

qualitatively assuming an elastic energy threshold that is eventually large enough to overcome the153

free energy barrier and push the particle over a new microenvironment. The specific parameters154

of the relationship were not derived from first principles, but one would expect a similar behavior155

in mucus. This mechanism indicates that the effective diffusion of relatively large particles will156

be severely affected independently on particle-mucin interactions, that is, the particle chemistry.157

Unfortunately, the mesh size was not measured or reported in most experiments reviewed in our158

study.159

Particle size was not an apparent significant predictor in the random forest analysis (Figure160

1a), but the subdiffusion mechanisms discussed above indicated that it should be relevant when161

approaching the typical mesh size of mucus. The analysis of the effective diffusion as a func-162

tion of particle diameters indicated a clear threshold around d? ∼ 100 nm (Figure 3a). Larger163

particles, d > 100 nm, displayed lower effective diffusion values but with no apparent statistical164

correlation with size (ρ = −0.24, p= 0.19). The associated empirical and predicted anomalous165

exponents ranged from 0.15 to 1, indicating that factors other than particle size are influencing166

the subdiffusion. Smaller particles, d < 100 nm, displayed an effective diffusion with a significant167

statistical correlation (Figure 3a). In particular, those particles that had been predicted to display168

regular diffusion were inversely dependent with particle size, that is, slope m ∼ −1 (Figure 3). As169

predicted by the microenvironment trapping mechanism, small particles in mucus displayed regu-170

lar diffusion, midsize particles were subject to subdiffusion (although the attachment-mechanism171

cannot be discarded), and large particles display a variety of outputs probably dependent on the172

mesh size (and potential interaction with mucus). The average mucus in humans has a typical173

mesh size between 100 to 1000 nm (Cone 2009), which explain the diffusion behavior for particles174

around 100 nm, or greater, in Figure 3b.175

Particle type was selected as the second most relevant variable to predict the effective diffusion176

based on the random Forest analysis (Figure 1). Comparing the effective diffusion for the different177

particles confirms this prediction (Figure S.1a). Antibodies and proteins displayed the fastest178

effective diffusion with a mean of 48.9 µm2/s (Figure S.1). Viruses were the second fastest group179

with a mean effective diffusion an order of magnitude smaller, 3.5 µm2/s. Pegylated and amine180

particles formed the third group. They displayed statistically similar effective diffusions with means181

(medians) 0.99 µm2/s and 2· 10−2 µm2/s. This was followed by COOH particles, mean (median)182

3· 10−2 µm2/s, and finally chitosan 4 ·10−3 µm2/s. Difference in particle size could explain the183

reduction in effective diffusion for antibodies/proteins, viruses, and PEG particles (Figure S.1b).184

They had, respectively, median sizes of ∼ 10 nm, ∼ 100 nm, and ∼ 1000 nm. It is unclear what185
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were the physico-chemical factors behind the slower diffusion of Amine, COOH, and Chitosan186

particles (Figure S.1).187

The third predictor for effective diffusion was particle charge, express as the zeta-potential188

(Figure 1). Particles with negative zeta potential displayed a positive correlation with the effective189

diffusion constant with a Spearman correlation of ρ = 0.6 (p = 0.002***, n = 36) (Figure 4a). The190

relationship was approximated by an exponential function, Deff ∼ exp(mξ). The potential rate,191

m, was m = 0.024 ± 0.006 (p ∼ 0.0002***) obtained from a least-square linear regression using192

the log-linear data. This exponential model accounted for 30 % of the variance (R2 = 0.30). The193

largest effective diffusions were achieved at neutral zeta potentials. Positive zeta potentials (n=21)194

had lower values but did not display a statistically significant correlation the effective diffusion.195

Particle size or other properties did not seem to explain the trend observed for negatively charged196

zeta potentials. These particles, however, displayed a linear positive correlation with the anomalous197

diffusion (Figure 4b). Based on the two mechanisms discussed above, one interpretation could be198

that given the negative charge of the mucin fibers, an increasing negative charge of a partice will199

increase its effective radius, increasing the particle size to network mesh ratio and thus reducing200

the diffusivity. Alternatively, the presence of negative charges could compete for ions with respect201

the mucin fibers exposing hydrophobic regions that could interact with the particles as has been202

observed in carboxilated particles forming bundles with mucus (Lai et al. 2007, 2009). Based on203

the attachment-mechanism, the increase in negative zeta potential would be proportional to the204

attachment time induced. The positive zeta potential would be expected to interact with mucin205

fibers. That could explain the reduction inf effective diffusion with respect neutral structures, but206

it did not display any apparent correlation with the anomalous exponent.207

The mucus source and dominant mucin were the last two significant predictor of effective208

diffusion. The effective diffusion was faster in human cervix samples with a median ∼ 10 µm2/s,209

although the values spanned six orders of magnitude, from ∼ 10−4 to ∼ 102 µm2/s (Figure S.1a).210

The effective diffusion was the slowest in mucus from human lung (median ∼ 10−2 µ2/s) and211

pig intestine (median ∼ 10−2 µm2/s). The median particle size in empirical data from human212

cervix mucus was more than an order of magnitude smaller, ∼ 10 nm, than for the empirical data213

from the other sources. The median pH for the empirical data from human cervix mucus was214

significantly lower pHs (median 5.5) compared to the other sources (median 7). Lower pH tends215

to thicken mucus (Hwang et al Rheological Properties of Mucus 1969), thus expecting a slower216

effective diffusion. But the particle size may have offset this trend. The transcription analysis217

identified MUC5B, which is dominant in human cervix, displaying the largest effective diffusion218

(median ∼ 10 µm2/s) compared to the other dominant mucins, MUC2 common in respiratory219

mucus (median diffusion ∼ 10−1 µm2/s), and MUC5AC common in intestinal mucus (median220
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diffusion ∼ 10−2 µm2/s) (Figure S.3).221

Thus, our meta-analysis discovered that the anomalous exponent is the dominant factor regu-222

lating the effective diffusion microscopic particles in mucus, explaining 90% of the variance across223

6 orders of magnitude (Figure 2a). However, less than 40% of the empirical data had measured224

the anomalous exponent, indicating an important gap in the field about the dominance of this225

factor in the diffusion of particles in mucus. To empirically validate our finding, we provide pre-226

dictions of the anomalous exponent in Figure 2b. Remarkably, those particles predicted to display227

regular diffusion showed an inverse dependence between the effective diffusion and particle size, as228

expected from standard Brownian motion (Figure 3).229

Our first-principles analysis of subdiffusion provided a general equation that explained the230

exponential relationship between anomalous diffusion and the effective diffusion as well as the231

dominance of the anomalous exponent, independently of the underlying subdiffusion mechanism,232

Eq. (6). Our analysis indicated that the generalized diffusion constant is not a well-defined phys-233

ical quantity, and it must be replaced by characteristic length and time scales associated to the234

underlying mobility mechanisms, Eq. (4). This led to a reformulation of the subdiffusion equation,235

Eq. (5), which applies to any physical system. We conclude that the physical factors regulating236

the anomalous exponent is key to characterize and control the diffusivity of particles. In mucus237

and hydrogels, in particular, we propose that the attachment and microenvironment mechanisms238

should be used as a guide. Measuring the attachment time distributions and mucus mesh size239

are key factors regulating the anomalous exponent in these mechanisms. But they had not been240

measured even among the mucus experiments that measured anomalous exponents. Our work,241

thus, fills a gap that would guide a more effective and insightful study of effective diffusions in242

mucus and other complex fluids. Our study also mandates a reinterpretation of the generalized243

diffusion constant in any physical system.244

—245
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Figures and Tables359

Property Symbol Range Data points

Effective diffusion Deff 3.1 ·10−5 to 1.3 ·102 µm2/s 106
Anomalous exponent α 0.16 to 1.02 39
Diameter d 3.5 to 1280.0 nm 106
Zeta potential ζ −73.0 to +33.3 mV 57
Temperature T 295 to 310 K 106
pH pH 3.0 to 7.4 63
Mucus source Hydrogel, human lung, human cervix, 106

pig stomach, pig intestines
Mucin type MUC2, MUC5AC, MUC5B 103

Table 1: Summary of empirical data. Deff : The effective diffusion was obtained for a common
time window of 1 second. For references that shared relative diffusion with respect diffusion in
water, the effective diffusion constant was scaled using the Stokes-Einstein equation using the
temperature and hydrodynamic particle diameter reported (Miller 1924). Room temperature (298
K) was assumed if temperature was not reported in the study. Particle type data was obtained
by classifying particles as COOH, PEG, virus, amine, antibody/protein, or chitosan. This was
chose as a qualitative measure of particle-mucin bonds. The dominant mucin composition from
each mucus source was obtained by evaluating the expression levels of mucin genes from the
genome bioinformatics portal Ensembl (Zerbino et al. 2018). Mucins were identified assuming
the tissue/organ associated with each mucus, or closely associated tissues. Expression levels were
collected by taking the average of reported median of transcript per million (TPM) RNA-sequence
and the most explicitly stated expression levels of low, medium, and high. Based on potential
gene expression of mucins with reported levels of below cutoff, TPM measured below the minimum
(0.05 TPM) is distinguished from experiments with no data due to possible gene expression. An
expression level of low, medium or high was obtained over reports of below cutoff in the same
tissue. The dominant mucin was determined by the highest expression level then, if necessary,
by the highest average of median TPM. Identification of mucin expression based on tissues was
associated with each mucus: human respiratory mucus and human cystic fibrosis mucus were
associated with the human lung mucin genes; human cervical mucus and cervicovaginal mucus
were associated with human cervix or uterus mucin genes; pig intestinal mucus was originally
from jejunum part of the small intestine, however, due to a lack of reports for jejunum tissue, the
associated mucin genes were taken as the average of the median of TPM of pig duodenum and pig
ileum parts of the small intestine based on the close proximity to the jejunum; pig ileum intestinal
mucus were associated with ileum tissue mucin genes; pig gastric mucus were collected from pig
stomach mucin genes.
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Figure 1: Selected variables impacting effective diffusion. a, Average percentage increase of mean-
square error (% MSE) for the selected variables. These variables were investigated in permutations
of three using random forest (R package rfPermute by Archer 2019). The error bars correspond
to the standard deviation. b, Decision tree for the most important variables. Each node contains
the predicted average Deff and percentage of data predicted. The gradient display diffusion values
from ∼ 10−5 µm2/s (white) to ∼ 10−1 µm2/s (blue).
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Figure 2: Effective diffusion and anomalous exponent analysis. a, effective diffusion was plotted as
a function of anomalous exponent. The solid line represents the regression model. The grey area
represents the 95% confidence interval. Statistically significant slope and R2 of linear regression
is displayed. b, anomalous exponent was predicted based on the model found empirically in a.
The solid line designates the predicted linear model. The grey area represents the 95% confidence
interval of the predicted linear model. The dashed line represents a 95% prediction interval a-b,
distinguished particle types are represented in the legend of both panels. .
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Figure 3: Particle size analysis. a, effective diffusion was plotted against particle size, d. b,
anomalous exponent was plotted as a function of particle size. a-b, different particle types with
different symbols are indicated in a’s legend. Separate analysis was conducted for particles smaller
than 100 nm represented by the dotted line at d = 100 nm. Solid line corresponds to significant
linear regression and the grey area represents the 95% confidence interval. Significant slope and
R2 of each linear regression are displayed.
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Figure 4: Electrostatic analysis. a, effective diffusion was plotted against zeta potential. b,
anomalous exponent as a function of zeta potential. Classification of empirical and predicted data
is represented in the legend. a-b, Different particle types are distinguished in a legend. Separate
tests based on charge sign was conducted and designated by the dotted line at ζ = 0. Solid line
represents significant linear regression. Grey area represents the 95% confidence interval of the
linear regression. Significant slope and R2 of each linear regression are displayed.

18

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 26, 2020. ; https://doi.org/10.1101/2020.07.25.221416doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.25.221416
http://creativecommons.org/licenses/by-nc/4.0/


Supplementary material360

Common_core.csv

Table S.1: Supplementary material of common core file of all reviewed data. Common_core.
The first row is a header with designated column names fitted to physical properties collected.
Particle name, particle type, zeta potential, particle size, effecitve diffusion constant at 1s, anoma-
lous exponent, diffusion in water, ratio between effective diffusion constant at 1s and diffusion in
water, temperature, pH, dosing medium, salt type used, salt concentration, mucus used in the
experiment, mucus concentration, mucus purification, mucin gene expression level, and dominant
mucin gene is denoted as Particle, Surface_Chemistry, Zeta, Diameter, D_w, Diffusion_constant,
alpha, Ratio_Diffusion, Temperature, pH, Dosing Medium, Salt_type, Salt_Concentration,
Mucus_Type, Muc_Con, Purification, ’mucin gene name’_EL, and Dominate_Mucin, respec-
tively.
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Mucin_expression_level.csv

Table S.2: Supplementary material on dominant mucin classification based on mucus source.
Mucin_expression_level. The first row is a header and first column designates mucus type. Rep-
resented expression levels are denoted as ’mucin gene name’_EL. Expression levels are classified
as below cutoff, low, medium, high, or unavailable. The average median Transcripts per million
(TPM) for each mucin gene is designated as ’mucin gene name’_TPM_median_avg. See methods
for more information.
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Dependent Independent
variable variable Slope Intercept R2 p-value‖ rho‡ p-value‡

Effective Diffusion¶∧ Diameter∧◦ -2.1 ± 0.3 3.5 ± 0.4 0.67 3.5E-7*** -0.9 1.7E-12***
Effective Diffusion¶∧ Negative† 0.024 ± 0.006 -1.6 ±0.2 0.30 0.0006*** 0.6 0.0002***
Effective Diffusion¶∧ Positive† 0.01 ± 0.02 -2.8 ± 0.4 0.03 0.5 0.3 0.2
Effective Diffusion¶∧ Alpha 5.3 ± 0.3 -5.0 ± 0.2 0.89 <2.0E-16*** 0.9 <2.2E-16***
Anomalous Exponent Diameter∧◦ -0.13 ± 0.03 1.11 ± 0.04 0.39 0.0007*** -0.6 0.001
Anomalous Exponent Negative† 0.004 ± 0.001 0.68 ± 0.04 0.26 0.002*** 0.5 0.0007***
Anomalous Exponent Positive† 0.003 ± 0.003 0.44 ± 0.07 0.04 0.4 0.3 0.2

Table S.3: Supplementary material of linear Analysis of Nanoparticles’ Mobility Through Mucus
and Biohydrogels. ‖ Simple Linear Regression and Pearson’s p-value for the slope. ‡ Spearman
analysis. ¶ Effective Diffusion coefficient (µm2/s). ∧ Logarithmic of base 10 (log10). ◦ Diameter
less than 100 nm. *** Data has strong significance. † Zeta potential (mV). Overview table of
values associating with statistically significant simple linear regression along with spearson and
pearson analysis.
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Figure S.1: Transport capabilities based on particle type. a, effective diffusion constant at one
second based on particle type b, anomalous exponent based on particle type. c, .particle size based
on particle type. d, particle net charge based on particle type. e, mucus temperature based on
particle type. f, mucus pH based on particle type. a-f, box plots are ranked by effective diffusion
from high to low. The total amount of data points for each particle type is designated as n aligned
with their respected particle type for each panel.
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Figure S.2: Mucus source influence on particle transport. a, effective diffusion constant at one
second based on mucus source. b, anomalous exponent based on mucus source. c, particle size
based on mucus source. d, particle net charge based on mucus source. e, mucus temperature
based on mucus source. f, mucus pH based on mucus source. a-f, box plots are ranked by effective
diffusion from high to low. The total amount of data points for each mucus source is designated
as n aligned with their respected mucus source for each panel.
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Figure S.3: Impact of dominant mucin genes on particle transport. a, effective diffusion constant
at one second based on dominate mucin. b, anomalous exponent based on dominate mucin. c,
particle size based on dominate mucin. d, particle net charge based on dominate mucin. e, mucus
temperature based on dominate mucin. f, mucus pH based on dominate mucin. a-f, box plots are
ranked by effective diffusion from high to low. The total amount of data points for each dominate
mucin is designated as n aligned with their respected dominate mucin for each panel.
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Figure S.4: In-depth overview of significant linear regression models. a, standardized residual
and normal probability of standardized residuals for effective diffusion as a function of anomalous
exponent. b, standardized residual and normal probability of standardized residuals for effective
diffusion as a function of particle size for sizes less than 100 nm. Dotted line is a visualization
marker for particles smaller than 100 nm. c, standardized residual and normal probability of
standardized residuals for effective diffusion as a function of particle size for particles displaying
normal brownian motion. Dotted line is a visualization marker for particles smaller than 100 nm.
d, standardized residual and normal probability of standardized residuals for effective diffusion as
a function of zet potential for negatively charged particles. Dotted line is a visualization marker
for negatively charged particles. a-d, different particle types with corresponding symbols are
designated in a and b’s legend.
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