1

L0

11

L2

L3

L4

LS

L6

L7

18

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.26.221663; this version posted November 24, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Title

Laminin N-terminus a31 expression during development is lethal and causes widespread tissue-specific
defects in a transgenic mouse model.

Running title: In vivo analyses of LaNt a31

Author names and affiliations
Conor J. Sugden®, Valentina lorio*, Lee D. Troughton', Ke Liu®, George Bou-Gharios™*, Kevin J. Hamill**
*these authors jointly supervised this work

Affiliation: Institute of Life Course and Medical Sciences, University of Liverpool

Corresponding author (name and per manent addr ess)
Kevin J Hamill

William Henry Duncan Building,

University of Liverpool, 6 West Derby Street,

Liverpool, UK. L7 8TX

khamill @liverpool.ac.uk

Abbreviations

LaNt a31, laminin N-terminus a.31; BM, basement membrane; ECM, extracellular matrix; LN, laminin N-
terminal; LM, laminin; LE, laminin-type epidermal growth factor-like domain; DMEM, Dulbecco’'s
Modified Eagle Medium; SDS-PAGE sodium dodecy! sulfate polyacrylamide gel electrophoresis; mEFs,

mouse embryonic fibrablasts; hK 14, human keratin 14; intraperitoneal injection, IP


https://doi.org/10.1101/2020.07.26.221663
http://creativecommons.org/licenses/by-nc/4.0/

30

31

32

33

34

35

36

37

38

39

10

1

12

13

15

16

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.26.221663; this version posted November 24, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Acknowledgements
We are grateful to the staff at the University of Liverpool Biomedical Services Unit. We would like to thank
Dr. Takao Sakai, Dr. Rachel Lennon, and Dr. Mychel Morais for helpful discussions during the writing of

this manuscript.

Conflict of inter est statement

The authors declare that there are no conflicts of interests.

Author contributions:

Conor J. Sugden: Methodology, Validation, Formal analysis, Investigation, Data Curation, Writing -
Original Draft, Writing - Review & Editing, Visualization. Valentina l orio: Methodology, Investigation,
Data Curation, Writing - Review & Editing. Lee D. Troughton: Methodology, Writing - Original Draft,
Writing - Review & Editing. Ke Liu: Methodology, Writing - Review & Editing. George Bou-Gharios:
Conceptualization, Methodology, Writing - Review & Editing, Supervision. Kevin Hamill:
Conceptualization, Methodology, Writing - Original Draft , Writing - Review & Editing, Supervision,

Funding acquisition.

Funding
This work was supported by the biotechnology and biological sciences research council [grant number

BB/L020513/1] and the The University of Liverpool Crossley Barnes Bequest fund.


https://doi.org/10.1101/2020.07.26.221663
http://creativecommons.org/licenses/by-nc/4.0/

Y7

18

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.26.221663; this version posted November 24, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Abstract

Laminins are essential components of all basement membranes where they regulate an extensive array of
tissue functions. Alternative splicing from the laminin a3 gene produces a non-laminin but netrin-like
protein, Laminin N terminus ¢.31 (LaNt ¢:31). LaNt 31 iswidely expressed in intact tissue and is
upregulated in epithelial cancers and during wound healing. In vitro functional studies have shown that LaNt
o31 can influence numerous aspects of epithelial cell behaviour via modifying matrix organisation,
suggesting a new model of laminin auto-regulation. However, the function of this protein has not been
established beyond the epithelium and it has never been studied in vivo. Here, a mouse transgenic line was
generated using the ubiquitin C promoter to drive inducible expression of LaNt a31. When expression was
induced at embryonic day 15.5, LaNt a31 transgenic animals were not viable at birth, exhibiting localised
regions of erythema. Numerous striking defects were apparent histologically, including extra-vascular
erythrocytes in multiple tissues, kidney epithelial detachment, tubular dilation, interstitial bleeding, and
thickening of tubule basement membranes, disruption of the epidermal basal cell layer and of the hair
follicle outer root sheath, and ~50% reduction of cell numbersin the liver associated with depletion of
hematopoietic erythrocytic foci. These findings demonstrate that LaNt a31 can influence tissue
morphogenesis during development. More broadly, these data provide the first in vivo evidence to support
an emerging model of laminin self-regulation and provide a valuable model for onward investigation into

thisimportant area.
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Laminin, netrin, basement membrane, development


https://doi.org/10.1101/2020.07.26.221663
http://creativecommons.org/licenses/by-nc/4.0/

70

1

2

73

4

75

76

7

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.26.221663; this version posted November 24, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Summary Statement
Expression during development of Laminin N-terminus a31, a netrin-like laminin splice isoform, caused
defects indicating basement membrane disruption in multiple tissues; providing thefirst in vivo evidence for

laminin self-regulation.
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Introduction

Basement membranes (BMs) are specialised extracellular matrix (ECM) structures with essential and
remarkably diverse rolesin most cell and tissue behaviours; including regulating differentiation, cell
adhesion and migration 2. BMs not only provide the mechanical attachment points that support sheets of
cells to resist stresses but aso influence signalling cascades viadirect binding to cell surface receptors,
through the sequestration and controlled release of growth factors, and by providing biomechanical cues, as
reviewed in > “. BMs are also dynamic structures that are remodelled in terms of composition and structure
throughout life, with the most striking changes occuring during development > ©. At the core of every BM
are two networks of structural proteins; type IV collagens and laminins (LMs)”.

Each LM is an obligate o3y heterotrimer formed from one of five o chains (LAMAL-5), three B
chains (LAMBL1-3) and three y chains (LAMC1-3), with each chain displaying spatio-temporal distribution
patterns, as reviewed in g1 Assembly of LM networks and higher-order structures involves formation of a
ternary node between the laminin N-terminal (LN) domains of an o, a and a7y chain ** 2, These ternary
oy nodes assemble in atwo-step processinvolving an initial rapid formation of unstable By LN
intermediate which is then stabilised through the incorporation of an o. LN domain ***’. The biological
importance of these LN-LN interactions is exemplified by a group of human syndromic disorders where
missense mutations affecting the LN domains of the LAMA2, LAMB2 or LAMAS genes give rise to muscular
dystrophy in merosin-deficient muscular dystrophy, kidney and ocular developmental defectsin Pierson
syndrome, or defects in kidney, craniofacial and limb development respectively *?2. Although these
disorders demonstrate that LM network assembly is essential for homeostasis of humerous tissues, not all
LM chains contain an LN domain. Specifically, LM a4, which is expressed at high levels in the vasculature,
and the LMoa3a and LMv2 chains, which are abundant in surface epithelium including the skin, have
shortened amino termini which lack this key domain but yet still form functional BMs ® > Thisraises
questions of whether LN domains are important in all tissue contexts or whether additional proteins may

compensate for the inability of the LMs to form networks.
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Alongside their main LM transcripts, the LAMA3 and LAMAS genes produce short transcripts
encoding proteins that are unable to trimerise into LMs but which contain LN domains °. At least one of
these laminin N terminus proteins encodes a functional protein, LaNt a31, the structural features of which
are an o LN domain followed by a short stretch of laminin-type epidermal growth factor-like (LE) domains
and unique C-terminal region with no conserved domain architecture. In addition to the LaNt proteins, the
laminin-superfamily includes netrin genes which encode proteins with either § or y LN domains, stretches of
LE repeats and unique C-terminal regions (as reviewed in *°. Moreover, proteolytic processing of LMs are
also released from LMal %, LMB1 ?®, LMa3b . Each of these LN domain-containing proteins and cryptic
fragments have cell surface receptor binding capabilities and can act as signalling molecules (reviewed in .
However, netrin-4, which evolved independently from the other netrins *" *, also has LM-network
disrupting capabilities ****, and when overexpressed in vivo, caused increased lymphatic permeability *.
Netrin-4 LN domain has greatest homology with LM B LN domains whereas LaNt o:31 contains the LMa3b
LN domain *; therefore, although LaNt 031 could act similarly to these proteins, it likely plays a different
role depending on the LM context.

LaNt a31 is expressed in the basal layer of epitheliain the skin °, cornea® and digestive tract, the
ECM around terminal duct lobular units of the breast and alveolar air sacs in the lung, and is widely
expressed by endothelial cells . Increased expression is associated with breast ductal carcinomaand in
vitro overexpression leads to a change in the mode of breast cancer cell invasion through LM-rich matrices
% LaNt a31 isalso transiently upregulated during re-epithelialization ex vivo burn wounds and in stem cell
activation assays >’ In epidermal and corneal keratinocytes, knockdown or overexpression experiments
revealed that modulating LaNt a31 levels leads to reduced migration rates and modifying cell-to-matrix
adhesion %, Consistent with arole in matrix assembly, increased expression LaNt 031 causes striking
changesto LM 332, including formation tight clusters beneath cells and increasing the proteolytic processing
of LM o3 by matrix metalloproteinases “°. Although these findings all support LaNt a:31 as being a mediator
of cell behaviour, it is as yet unknown what role it plays in complex in vivo tissue environments and in

particualar in matrixes that are actively being remodeled.
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29 Here, we present thefirst in vivo study of LaNt 31 overexpression in newly developed mouse
30 models.
31
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Materials and methods

Ethics

All procedures were licensed by the UK Home Office under the Animal (Specific Procedures) Act
1986, project license numbers (PPL) 70/9047 and 70/7288. All mice were housed and maintained within the
University of Liverpool Biological Services Unit in specific pathogen-free conditions in accordance with

UK Home Office guidelines. Food and water were available ad libitum.

Antibodies

Rabbit monoclonal antibodies against the influenza hemaggl utinin epitope (HA) (C29F4, Cell
Signalling Technology, Danvers, MA) were used for immunoblotting at 67 ng ml™. Goat polyclonal
antibodies against DDDDK (equivalent to FLAG sequence, ab1257, Abcam, Cambridge, UK), rabbit
polyclonal antibodies against 6X-His (ab137839, Abcam), and rabbit polyclona antibodies against lamin
A/C (4C11, Cell Signalling Technology) were used at 1 pug mi™ for immunoblotting. Mouse monoclonal
antibodies against LaNt 031 *" were used at 0.225 pg mi™ for immunoblotting. Rabbit polyclonal antibodies
against mCherry (ab183628, Abcam) were used at 2.5 pg mi™ for immunofluorescence. Alexa fluor 647
conjugated goat anti-rabbit IgG recombinant secondary antibodies, were obtained from Thermo Fisher
Scientific (Waltham, MA, United States) and used at 2 pg ml™ for indirect immunofluorescence

microscopy.

pUbC-L oxP-L aNta31-T2A-tdTomato

A gBlock was synthesised (Integrated DNA Technologies, Coralville, 1A) containing Ndel and Ndel
restriction enzyme sites, T7 promoter binding site **, Kozak consensus sequence *, Igk secretion signal
(METDTLLLWVLLLWVPGSTGD) *, LaNt a:31-encoding cDNA (amino acids 38-488) %, Flag
(DYKDDDDK) * and HA (YPYDVPDYA) * tag sequences, T2A sequence (EGRGSLLTCGDVEENPGP)
% and BamHI. The gBlock DNA wasinserted into pCSCMV:tdTomato (a gift from Gerhart Ryffel,
Addgene plasmid #30530 ; http://n2t.net/addgene:30530; RRID:Addgene 30530) using Ndel and BamHI

(New England Biolabs, Ipswich, MA), to produce pCS-LaNta31-T2A-tdTomato. LaNta31-T2A-tdTomato
8
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was then removed from this backbone using Nhel and EcoRI, and inserted into a vector containing the
Ubiquitin C (UbC) promoter and a floxed stop cassette, all flanked by cH$4 insulator elements, producing

pUDbC-LoxP-LaNta31-T2A-tdTomato.

hK 14-L aNt a31

Full length LaNt ¢#.31 cDNA was amplified by PCR and inserted into pSecTag vector (Thermo Fisher
Scientific), introducing Igk leader sequence 5’ of the LaNt 31 sequence, and Myc and 6x Histags 3’ of the
LaNt a31 sequence. The complete Igik-LaNt 031-Myc-His sequence was inserted into pPGEM®-5Zf(+)
vector (Promega, Madison, WI) using Nhel and Pmel (New England Biolabs), producing pPGEM®-5Zf(+)-
LaNt a31. Separately, the sequence encoding human keratin 14 (hk14) promoter was amplified by PCR,
using primersintroducing Mlul 5 and Ndel, Nsil 3' of the sequence, and this was inserted into a bicistronic
vector containing the mCherry segeunce, producing phK 14-mCherry. Finally, Igk-LaNta31-Myc-His was
excised from pGEM®-5Zf(+)-LaNta31 using Ndel and Nsil (New England Biolabs) and inserted into

phK14-mCherry, to produce phK 14-LaNta31-T2A-mCherry.

Cloning procedures

Restriction digests were set up with 1 ug of plasmid DNA, 1 pg of PCR product, or 100 ng of
gBlock DNA, 20 U of each enzyme and CutSmart buffer (50 mM Potassium Acetate, 20 mM Tris-acetate,
10 mM magnesium acetate, 100 ug mi™ BSA (New England Biolabs) and incubated at 37°C for 1 h.
Enzymatic activity was inactivated by 20 min incubation at 65°C. PCR or cloning products were separated
using 1% (w/v) agarose gels (Thermo Fisher Scientific) dissolved in 1 x TAE electrophoresis buffer (40 mM
Tris pH 7.6, 20 mM acetic acid, 1 mM EDTA) containing ethidium bromide, and visualised using a UV
transi|luminator ChemiDoc M P System (BioRad, Hercules, CA). DNA bands of the correct sizes were
excised from the gel and purified using GenElute™ Gel Extraction Kit, following manufacturer’ s protocol
(SigmaAldrich, St. Louis, Missouri, United States). Purified inserts were ligated into vectors at 3:1 molar
ratios, either using Instant Sticky-end Ligase Master Mix (New England Biolabs) following manufacturers

protocol, or using 400 U of T4 DNA ligase and 1X reaction buffer (50 mM Tris-HCI, 10 mM MgCl, 1 mM
9
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ATP, 10 mM DTT, New England Biolabs) at 16°C overnight, followed by enzymatic inactivation at 65°C
for 10 min. Ligated DNA was heat-shock transformed into One-Shot TOP10 chemically competent E. coli
cells (Thermo Fisher Scientific) following manufacturer’s protocol, then plated onto LB plates containing
the appropriate antibiotic (100 pg mi™ ampicillin, 50 ug ml™ kanamycin or 25 ug mi™ chloramphenicol,
Sigma Aldrich). Plasmid DNA was extracted from bacteria using GenElute™ Plasmid Miniprep Kit (Sigma
Aldrich), following the manufacturer’ s protocol. Plasmids were sequenced by DNASeq (University of

Dundee, Dundee, UK).

Cell Culture

K ERA-308 murine epidermal keratinocyte cells *’, were purchased from CLS (Cell Lines Service
GmbH, Eppelheim, Germany) and maintained in high glucose (4.5 g L™) Dulbecco’s Modified Eagle
Medium (DMEM, Sigma Aldrich) supplemented with 10% foetal calf serum (LabTech, East Sussex, UK)
and 2 mM L-glutamine (Sigma Aldrich). HEK293A cells were maintained in DMEM supplemented with

10% FCS and 4 mM L-glutamine.

Céell Transfections

1 x 101 KERA-308 or 4 x 10° HEK 293A cells were seeded in 6-well plates (Greiner-BioOne,
Kremsminster, Austria) 24 h prior to transfection. For KERA-308 cells, 2 ug of hK14-LaNta31-T2A-
mCherry or LaNt-a31-pSec-Tag and 2 pl Lipofectamine 2000 (Thermo Fisher Scientific) were used. For
HEK293A cells, either 1 ug pCAG-Cre:GFP and 2 pl Lipofectamine 2000, 2 pg of pUbC-LoxP-LaNta31-
T2A-tdTomato and 5 pl Lipofectamine 2000, or 2 pug of pUbC-LoxP-LaNta31-T2A-tdTomato, 1 g of
pCAG-Cre:GFP and 7 ul Lipofectamine 2000 (Thermo Fisher Scientific), were mixed with 2 ml of Gibco™
Opti-MEM ™ Reduced Serum Medium (Thermo Fisher Scientific) and incubated for 10 min at room
temperature. The DNA-lipofectamine complex was added to the wells, and the media was replaced with

DMEM high glucose after 6 h.

10
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Explant culture method

Hair was removed from mouse skin tissue using Veet hair removal cream (Reckitt Benckiser,
Slough, UK) and the skin washed in Dulbecco’s Phosphate Buffered Saline (DPBS) containing 200 U mi™
penicillin, 200 U mi™* streptomycin, and 5 U ml™ amphotericin B1 (all Sigma Aldrich). The skin was then
dissected into 2-3 mm? pieces using a surgical scalpel and 3 or 4 pieces placed per well of a6-well dish
(Greiner Bio-One, Kremsmiinster, Austria) with the dermisin contact with the dish. 300 pl of DMEM
supplemented with 20% FCS, 2 mM L-glutamine, 200 pg mi™ penicillin, 200 pg mi™ streptomycin, and 5
ug mi™ fungizone (all Sigma Aldrich) was added to the wells. After 24 h, each well was topped up with 1 ml

of media, and the media was replenished every 48 h thereafter.

Transgenic Line establishment

Generation of transgenic mice were carried out based on the protocol described in *. C57BI6CBAF1L
females (Charles River Laboratories, Margate, Kent, UK) between 6-8 weeks were superovulated by
intraperitoneal (IP) injections of 51U pregnant mare’s serum gonadotrophin (PMSG; in 100ul H,0),
followed 46 h later by 5 1U of human chorionic gonadotropin (hCG, Sigma Aldrich). Treated females were
mated with C57BI6CBAF1 males overnight. Mated females were identified from the presence of copulation
plugs, anaesthetised, and oviducts removed and dissected in M2 media (Millipore, Watford, UK). Day-1
oocytes (C57BL/6Jx CBA F1) were transferred into clean media by mouth pipetting. Cumulus cells were
removed by hyaluronidase (300 pg ml™, Merck, Darmstadt, Germany) treatment in M2 mediawith gentle
shaking until detached from the egg surface. Oocytes were then rinsed and transferred to M 16 media
(Millipore, Speciality Media, EmbryoMax) ready for injection.

DNA was diluted to afinal concentration of 2 ng pl™* in embryo water (Sigma Aldrich) and filter-
purified using Durapore-PVDF 0.22 uM centrifuge filters (Merck). Injection pipettes were used to pierce the
outer layers of the oocyte and to inject DNA. DNA was injected into the pronuclei of the oocyte.
Undamaged eggs were transferred to clean M16 media and incubated at 37°C until transferred into
pseudopregnant CD1 females on the same day. Meanwhile, pseudopregnant females were obtained by

mating vasectomised CD1 males overnight. Copulation plugs were checked and females were used 1 day
11
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post-coitum. Females were anaesthetised by inhalation of isoflurane (Sigma Aldrich). 30 injected oocytes
were transferred to plugged pseudopregnant female oviducts through the infundibulum.

In generating the pUbC-LoxP-LaNta31-T2A-tdTomato line, 460 mouse zygotes were injected over
four sessions. 87% of these zygotes survived and were transferred into 11 recipient CD1 mothers. From
these mothers, 42 pups were born. Of the 10 FO mice that gave a positive genotype result, four passed on the
transgene to the F1 generation. Mice that did not pass on the transgene to the F1 generation were culled, the
four FO mice were mated to expand colonies for cryopreservation, and one line was continued for
investigation.

For K14-LaNta31 transgenic mice, 140 embryos were transferred into five recipient CD1 mothers.
Three small litters were born, totalling seven pups. two pups possessed the transgene, and these were mated
to generate F1 mice.

R26CreERT2 (Jax Lab 008463) *° mice were purchased from The Jackson Laboratory (Bar Harbor,

Maine, United States).

In Vivo Transgene I nduction

Tamoxifen (Sigma Aldrich) was dissolved in corn oil (Sigma Aldrich) and administered vialP at a
concentrations of 25 mg kg™ or 75 mg kg™, Progesterone (Sigma Aldrich) was dissolved in corn cil (Sigma
Aldrich) and was co-administered al ongside tamoxifen at a dose of exactly half of the corresponding

tamoxifen dose (12.5 mg kg™ or 25 mg kg').

DNA Extraction

Four weeks after birth, ear notches were collected from mouse pups and digested in 100 pl lysis
buffer (50 mM Tris-HCI pH 8.0, 0.1 M NaCl, 1% SDS, 20 mM EDTA) and 10 pl of proteinase K (10 mg
mil™, al Sigma Aldrich) overnight at 55°C. The following day, samples were cooled, spun at 13,000 rpm for
3 min and the supernatant transferred to clean 1.5 ml tubes (Eppendorf, Hamburg, Germany). An equal

volume of isopropanol (Sigma Aldrich) was added, gently inverted and span at 13,000 rpm, and supernatant

12
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discarded. Pellets were washed with 500 pl of 70% EtOH (Sigma Aldrich), then air-dried for 10 min, and

resuspended in 50 pl ddH-0.

PCR

50 ng of genomic DNA was mixed with 12.5 pl of REDtaq ReadyMix PCR Reaction Mix (20 mM
Tris-HCI pH 8.3, 100 mM KCI, 3 mM MgCIl2, 0.002% gelatin, 0.4 mM dNTP mix, 0.06 unit/ml of Tag
DNA Polymerase, SigmaAldrich) and 0.5 uM of each primer; ddH,0 was added to make the reaction
mixture up to 25 pl. Primer pairs for genotyping were as follows: LaNt 031 to tdTomato Forward 5 —
ATCTATGCTGGTGGAGGGGT -3, Reverse 5 — TCTTTGATGACCTCCTCGCC - 3'; Cre Forward 5
—GCATTACCGGTCGATGCAACGAGTGATGAG -3, Reverse 5’ —
GAGTGAACGAACCTGGTCGAAATCAGTGCG —3'; Recombination Forward 5 —
TCCGCTAAATTCTGGCCGTT -3, Reverse 5 —GTGCTTTCCTGGGGTCTTCA —3'(all from
Integrated DNA Technologies). Cycle conditions were as follows: Genotyping — 1 cycle of 95°C for 5 min,
35 cycles of 95°C for 15 s; 56°C for 30 s; 72°C for 40 s, followed by afinal cycle of 72°C for 5 min. For
checking recombination: 1 cycle of 95°C for 5 min, 35 cycles of 95°C for 15 s; 60°C for 30's; 72°C for 90 s,
followed by afinal cycle of 72°C for 7 min. PCR products were separated by gel electrophoresis and imaged

using a BioRad Gel Doc XR+ System.

SDS-PAGE and wester n immunablotting

Cells were homogenized by scraping into 90 uL Urea/SDS buffer: 10 mM Tris-HCI pH 6.8, 6.7 M
urea, 1% w/v SDS, 10% v/v glycerol and 7.4 uM bromophenol blue, containing 50 uM
phenylmethysulfonyl fluoride (PM SF) and 50 uM N-methylmaleimide (all Sigma Aldrich). Lysates were
sonicated and 10% v/v B-mercaptoethanol (Sigma Aldrich) added. Proteins were separated by sodium
dodecy! sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) using 10% polyacrylamide gels; 1.5 M
Tris, 0.4% w/v SDS, 10% acrylamide/ bis-acrylamide (all Sigma Aldrich), eectrophoresis buffer; 25 mM
tris-HCI, 190 mM glycine, 0.1% w/v SDS, pH 8.5 (all Sigma Aldrich). Proteins were transferred to a

nitrocellulose membrane using the TurboBlot™ system (BioRad) and blocked at room temperature in
13
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Odyssey® TBS-Blocking Buffer (Li-Cor BioSciences, Lincoln, NE, United States) for 1 h. The membranes
were probed overnight at 4°C diluted in blocking buffer, washed 3 x 5 min in PBS with 0.1% Tween (both
Sigma Aldrich) and probed for 1 h at room temperature in the dark with IRDye® conjugated secondary Abs
against goat 1gG (800CW) and rabbit IgG (680CW), raised in goat or donkey (LiCor BioSciences), diluted
in Odyssey® TBS-Blocking Buffer at 0.05 pg ml™. Membranes were then washed for 3 x 5 minin PBS with
0.1% Tween, rinsed with ddH,O and imaged using the Odyssey® CLX 9120 infrared imaging system

(LiCor BioSciences). Image Studio Light v.5.2 was used to process scanned membranes.

Tissue processing

For cryosections, PO pups were culled by cervical dislocation, and fixed in 4% paraformaldehyde
(Merck) overnight at 4°C. Samples were cryoprotected in 30% sucrose/PBS solutions then in 30%
sucrose/PBS:O.C.T (1:1) solutions (Tissue-Tek, Sakura Finetek Europe, Alphen aan den Rijn, The
Netherlands), each overnight at 4°C. Samples were embedded in OCT compound and transferred on dry ice.
Embedded samples were sectioned at 8 um using a Leica CM 1850 cryostat (Leica, Wokingham, UK). For
paraffin sections, Tissues were fixed in 10% neutral buffered formalin (Leica,) for 24 h, then processed
through graded ethanol and xylene before being embedded in paraffin wax. 5 um sections were cut using a
rotary microtome RM 2235 (Leica), adhered to microscope slides, then dried overnight at 37°C. Sections
were dewaxed and rehydrated with xylene followed by a series of decreasing ethanol concentrations.
Antigen retrieval was performed by microwaving sectionsin preheated 0.01 M citrate buffer pH 6 (Sigma

Aldrich) for 5 min.

Hematoxylin and Eosin Staining

Sections were dewaxed and rehydrated with xylene followed by a series of decreasing ethanol
concentrations. Sections were then stained in Harris hematoxylin solution (Leica) for 5 min, H,O for 1 min,
acid alcohol (Leica) for 5 s, H,O for 5 min, agueous eosin (Leica) for 3 min, H,O for 15 s, followed by
dehydration through graded ethanol and xylene. Slides were coverslipped with DPX mounting media

(Sigma Aldrich).
14
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Immunohistochemistry

Slides were incubated in ice-cold acetone for 10 min, then transferred into PBS for 10 minblocking,
then blocked in PBS containing 10% normal goat serum (NGS) at room temperature for 1 h. Next, samples
were probed with the primary antibodies diluted in PBS-Tween (0.05%) with 5% NGS at 4°C overnight.
Samples were then washed for 3 x 5 min in PBS-Tween (0.05%), before being probed with secondary
antibodies diluted in PBS-Tween (0.05%) with 5% NGS at room temperature for 1 h. Samples were washed
for 3x 5 minin PBS-Tween (0.05%). Slides were mounted with VECTASHIELD® Antifade Mounting

Medium with DAPI (VECTASHIELD®, Burlingame, CA).

Image Acquisition

H& E images were acquired using a Zeiss Axio Scan.Z1 equipped with an Axiocam colour CCD
camerausing ZEN Blue software (all from Zeiss, Oberkochen, Germany). Live cell images were acquired
using a Nikon Eclipse Ti-E microscope (Nikon, Tokyo, Japan). Immunofluorescence images of tissues were

acquired using a Zeiss LSM 800 confocal microscope (Zeiss).

Image Analysis
Images were processed using either Zen 2.6 (blue edition) (Zeiss) or ImageJ (National Institutes of
Health, Bethesda, MD, United States)™. Stardist plugin ** was used for segmentation of nuclei from H& E

images. Images were thresholded manually to remove areas containing no tissue in the images.

15
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Results

Inducible LaNt a31 constr uct validation.

To investigate the consequences of LaNt a31 overexpression in vivo, we generated an inducible
system for conditional LaNt a31 transgene expression (Fig. 1A). An expression construct was created
containing the ubiquitin C promoter driving expression of the human LaNt a31 cDNA with the native
secretion signal replaced by mouse immunoglobulin k leader sequence to maximise secretion, and with
sequences for Flag and HA epitope tags added to the C-terminus of the LaNt a31 coding region. A T2A
element was included to enable expression of tdTomato from the same transgene but not directly fused to
LaNt 031 *. A floxed stop-cassette was inserted between the promoter and the start of the construct to
prevent transgene expression until Cre-mediated removal of this cassette. The entire construct was flanked
with the cHS4 B-globin insulator to protect against chromatin-mediated gene silencing ** (Fig. 1A).
Restriction enzyme digests and plasmid sequencing confirmed the assembled pUbC-LoxP-LaNta31-T2A-
tdTomato plasmid.

To confirm the construct expressed only following exposure to Cre recombinase, the pUbC-LoxP-
LaNta31-T2A-tdTomato was co-transfected alongside pCAG-Cre:GFP, encoding GFP-tagged Cre
recombinase, into HEK293A cells. tdTomato signal was observed only in cells transfected with both
plasmids (Fig. 1B). PCR using primers flanking the STOP cassette also confirmed that the cassette was
removed only in cells transfected with both plasmids (Fig. 1C). Western blotting using polyclonal anti-Flag
antibodies confirmed expression of the predicted ~ 57 kDa band in co-transfected cell lysates (Fig. 1D), this
also confirmed that the T2A element was cleaved in the final product releasing the tdTomato tag. Together,
these results demonstrate that the pUbC-L oxP-LaNta31-T2A-tdTomato plasmid allows for the Cre-

inducible expression of LaNt 631 and tdTomato.

Generation and validation of a novel LaNt a31 over expressing mouse line.
The pUbC-LoxP-LaNta31-T2A-tdTomato construct was linearised, and transgenic FO mice
generated by pronuclear microinjection into oocytes. To confirm transgene expression, FO mice were mated

with WT (C57BL/6J) mice, embryos were collected at E11.5, and mEFs were isolated from the embryos.
16
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Presence of the UbC-LoxP-LaNta31-T2A-tdTomato transgene (hereafter UbCLaNt) was confirmed by PCR
(Fig. 2A). mEFs were transduced with an adenovirus encoding codon-optimised Cre recombinase (ad-CMV -
iCre). Analysis by immunoblotting with anti-HA-antibodies (Fig. 2B) revedled a~57 KDa band and
fluorescence microscopy confirmed tdTomato expression (Fig. 2C) in samples containing both the UbC-
LaNt transgene and the ad-CMV-iCre, but not in cells with either plasmid individually.

Male UbCLaNt mice were mated with females from the tamoxifen-inducible ubiquitous Cre line
R26CreERT2 (Fig. 3A). Transgene expression was induced by IP of tamoxifen at E13.5, and embryos
collected at E19.5. PCR confirmed that Cre/L oxP mediated recombination only occurred in the embryos
with both the UbCLaNt and the R26CreERT?2 (Fig. 3B). Explants were generated from the skin of these
embryos, and only the explants grown from double transgenic embryos exhibited tdTomato expression by
fluorescence microscopy (Fig. 3C) and HA-tagged LaNt a31 expression by western immunoblotting (Fig.
3D). Together, these data confirmed the generation of tamoxifen-inducible LaNt a31 overexpressing mouse

line, without detectable leakiness (UbCLaNt::R26CreERT?2).

UbCLaNt::R26CreERT2 expression in utero causes death and localised regions of erythema at birth.
To determine the impact of LaNt a31 during development where extensive BM remodelling occurs,
tamoxifen was administered via I P to pregnant UbCLaNt::R26CreERT2 mice at E15.5 and pregnancies
allowed to continue to term. Across two litters from different mothers, two from six pups and three from
five pups respectively were intact but not viable at birth, while the remaining littermates were healthy. The
non-viable pups displayed localised regions of erythema with varying severity between the mice, but were
otherwise fully developed and the same size as littermates (Fig. 4A). Genotyping identified that all offspring
possessed both the UbCLaNt and R26CreERT 2 transgenes (Fig. 4B). Hereafter, non-viable pups are referred
to as UbCLaNt::R26CreERT2 1E1, 1E2, 2E1, 2E2, 2E3, and viable pups UbCLaNt::R26CreERT2 2NE1,
2NE2. To confirm transgene expression, skin explants were established from non-viable pups, and tdTomato
fluorescence was confirmed by microscopy (Fig. 4C). Consistent with the fluorescence data, western
immunoblot analysis of total protein extracts from the explanted cells and whole embryo lysates revealed

transgene expression in non-viable pups, although expression levels varied between the mice (Fig. 4D). To
17
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further confirm transgene expression within tissues, OCT-embedded skin sections of
UbCLaNt::R26CreERT2 were processed with anti-mCherry antibodies which recognise the tdTomato
protein, revealing that only the non-viable pups expressed the tdTomato reporter (Fig. 4E). Together these
data confirm that only non-viable mice expressed the LaNt 031 transgene

Toidentify LaNt a31 effects at the tissue level, the pups were formalin-fixed and paraffin-embedded
then processed for H& E and immunohistochemistry. All organs were present in the mice and appeared
intact at the macroscopic level; however, blood exudate was observed throughout multiple tissues in all of
the LaNt 031 transgene expressing mice. We focused our attention on kidney, skin and lung as examples of
tissues where the BMs with differencesin LM composition and where we hypothesised LaNt o31 could,
therefore, elicit distinct effects. Specifically, the predominant LMs in the kidney contain three LN domains,

and mutations affecting LM polymerisation lead to Pierson syndrome **

, Whereas the major LM in the
skin contains one LN domain, LM 332, and loss of function leads to skin fragility, reviewed in >/, and
granulation tissue disorders ** *°. In the lung, LM 311, atwo LN domain LM, is enriched ® ®* and absence of
LM o3 is associated with pulmonary fibrosis ®2. Each of these three tissues also express LaNt 031 in adult

human tissue, and are, therefore, tissues where dysregulation of expression regulation could be

physiologically relevant *.

L aNt a31 over expression leads to epithelial detachment, tubular dilation and interstitial bleedingin
the kidney.

In the kidneys, striking alterations were observed in the renal tubules, pelvis, and blood vessels of
UbCLaNt::R26CreERT2 mice expressing the transgene. Specifically, dilation and detachment of the lining
epitheliain collecting ducts and uteric bud segments was evident (Fig. 5A, black arrows), and changes were
observed in the vessels of the kidney, with bleeding into the interstitial and subtubular surroundings (Fig.
5A, yellow arrows). There was some severity in the extent of the defects between the expressing pups
(interstitial bleeding 4 out of 5 mice, pelvic dilation 2 out of 5, epithelial detachment and tubular observed in

all mice). Indirect IF processing of tissue using antibodies raised against LM 111 revealed LM localisation to
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be unchanged, however immunoreactivity of the tubule BMs was thickened in the expressing pups

compared with littermate controls (Fig. 5B).

L aNt a31 overexpression disrupts epithelial basal cell layer organisation.

Histological examination of the dorsal skin of UbCLaNt::R26CreERT2 mice revealed localised
disruption of the epidermal basal cell layer, with aloss of the tight cuboidal structure of the stratum basale
(Fig. 6A). Basal layer disruption was also observed in the outer root sheath of the hair follicles (Fig. 6A).
Although no evidence of blistering at the dermal-epidermal junction was observed Mice expressing the LaNt
031 transgene displayed discontinuous LM immunoreactivity at the epidermal-dermal junction (Fig. 6B).

However, the LM surrounding the outer root sheath was unaffected (Fig. 6B).

Mice expressing the LaNt a31 transgene display structural differencesin the lung.

Lungs of PO mice were not inflated prior to FFPE, however structural differences between non-
expressing and expressing mice were apparent. Specifically, in mice expressing LaNt a.31, fewer, less
densely packed alveolar epithelial cells were observed. Additionally, and similarly to the kidney,

erythrocytes were present throughout the lung tissue. (Fig. 7A).

L aNt a31 over expression leads to a reduction of hematopoietic coloniesin theliver.

Surprisingly, drastic and obvious superficial changes were apparent in the livers of mice expressing
the LaNt .31 transgene compared to the non-expressing mice. Although the bile ducts, sinusoid endothelium
and hepatocyte morphology were unchanged, there was a clear reduction in hematopoietic foci in the LaNt
031 transgene expressing animals (Fig. 7B). This reduction corresponded to a >48% reduction of total cell

number (WT= 11.5 nuclei/ mm?, mean NE = 11.4 nuclei/ mm? mean E= 5.8 nuclei/ mm? Fig. 7C, D).

19


https://doi.org/10.1101/2020.07.26.221663
http://creativecommons.org/licenses/by-nc/4.0/

4

15

16

17

18

19

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.26.221663; this version posted November 24, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Keratin 14-driven constitutive LaNt a31 induces a low offspring number.

We next used a keratin-14 promoter (K14) to restrict expression to skin and the epithelia of tongue,
mouth, forestomach, trachea, thymus and respiratory and urinary tracts ®®. K14 promoter activity has also
been described in the oocyte ®. The new construct used the human K 14 promoter drive expression of human
LaNt a31, followed by a T2A element and a mCherry reporter Fig. S1A) and was validated by transfecting
into KERA 308 mouse epidermal keratinocytes and visualising the mCherry fluorescence (Fig. S1B) and
immunoblotting for the LaNt o.31 protein (Fig. S1C).

K14-LaNta31 transgenic mice were generated by pronuclear microinjection. However, unusually
small litters were obtained from recipient CD1 mothers and mice containing the transgene DNA (Fig. S1D)
did not express the transgene at the protein level (Fig. SIF-G). The unusually low offspring sizes, combined
with the lack of protein expression in genotype-positive mice, suggests that expression of LaNt a31 under

the control of the K14 promoter is lethal during development.
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Discussion

This study has demonstrated that LaNt a31 overexpression ubiquitously during development is
lethal, causing tissue specific-defects. These defects include blood exudate throughout most tissues as well
as striking changes to the tubules of the kidney and the basal layer of the epidermis, depletion of
hematopoietic colonies in the liver, and evidence of BM disruption at the dermal-epidermal junction. These
findings build upon previous in vitro and ex vivo work that have implicated LaNt o31 in the regulation of
cell adhesion, migration, and LM deposition® " “°, These findings provide the first in vivo evidence that
this little-studied LAMA3-derived splice isoform has biological significance in BM and tissue formation
during development and provide a valuable platform for onward investigation.

The molecular mechanism behind the severe phenotype of the transgenic animals is challenging to
determine at this point, however we can provide severa plausible reasons that can explain the phenotype

with substantial overlap. As LM network assembly requires binding of an a,  and y LN domain ***" %,

we
predicted that the presence of an oo LN domain within LaNt o31 would influence LM-LM interactions and
therefore BM assembly or integrity. Consistent with this hypothesis, much of the UbCLaNt::R26CreERT2
mi ce phenotypes resemble those from mice where LM networks cannot form due either to LN domain
mutations or overexpression of the LM-network disrupting protein, netrin-4. Specifically, mice with a
mutation in the LN domain of LM a5 die before birth exhibiting defective lung development and vascular
abnormalitiesin the kidneys ®. While mice with LM $2 LN domain mutations or LN domain deletions
exhibit renal defects, and athough viable at birth, become progressively weaker and die between postnatal
day 15 and 30 . Additionally, mice with netrin-4 overexpression under the control of the K14 promoter
were born smaller, redder, and with increased lymphatic permeability . In comparison to each of these
lines, the LaNt 031 animals present with similar but more severe and more widespread phenotypes, which
reflects the more widespread UBC and R26 promoter activities. Nevertheless, based on the broad similarity
between these phenotypes, we propose a model where LaNt a.31 overexpression inhibits LM network

assembly by competing with the native LM o chain. However, within this model, there remains the question

of how LaNt a31 influences tissues where there the expressed LM s do not contain an oo LN domain, and
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therefore are not able to polymerise *°. For example, The LM composition present within vessel BMs during
development and lymph vesselsisrich in the p and y LN domain-containing LM411 ™', Here, one might
have anticipated that the LaNt a31 LN domain could stabilise weak By LN dimers strengthening the BM but
the observed phenotype of blood exudate throughout the mouse tissues suggests instead that the LaNt a31
transgenics have vascular leakage which overall pointsto a disruptive rather than stabilising role.

The in vivo findings here combined with previous in vitro studies support LaNt a31 acting as a
regulator of BM homeostasis; however, we cannot yet fully rule out the possibility of LaNt a31 acting asa
signalling protein % 3”340 gpecifically, integrin-mediated signalling from LaNt o31-like proteolytically
released LN-domain containing fragments from LM a3b, a1, and 1 chains have been reported “*%° and
some aspects of the UbCLaNt::R26CreERT2 phenotype are consistent with LaNt a.31 acting in this way.
For example one of the most striking phenotypes observed in the UbCLaNt::R26CreERT2 mice was the
depletion of hematopoietic colonies in the liver, an essential stem cell niche during development %,
Integrins a6 and 1 are highly expressed in hematopoietic stem cells, and are central to the process of

migration both in and out of the fetal liver ®%

, and a netrin-4/laminin y1 complex has been shown to signal
through the integrin a6p1 receptor . Indeed, LaNt a31 may signal in asimilar manner, which may be
detrimental to the maintenance of hematopoietic coloniesin the fetal liver. Moreover, we previously
identified that LaNt a31 is enriched in human and porcine limbal stem cell niche of adult corneas, with
expression further upregulated upon ex vivo stem cell activation and wound repair *'. Coupled to the striking
phenotype observed here, it is tempting to hypothesise that LaNt a31 is involved in regulating stem cell
quiescence. While direct signaling effects could explain that role, indirect effects are also possible as
altering LM network structural organisation changes outside-in signalling, through changing the
presentation of ligands and by modifying growth factor sequestration and release rates ®. Indeed, LM

networks are critical for maintaining progenitor cell “stemness’ %%

. Dissecting the direct versus indirect
roles of LaNt 31 in intact tissue contexts is now a priority and the new transgenic line provides a valuable

resource to facilitate those onward investigations.
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Moving forward, the role of LaNt a.31 can now be determined in atissue and context specific
manner. In this study, we focused on widespread developmental expression asaBM formation and
remodelling is highly active, thereby maximising the likelihood of determining whether LaNt o31 is
functional in vivo and to focus future studies upon the most relevant tissues. Considering the widespread
expression of LaNt 031%, and the dramatic effects observed in this study, it is now important to determine
effectsin adult animals in normal conditions and following intervention. These studies should aso include
tissues where no overt LaNt o:31-induced phenotype was observed. For example, although we did not
observe muscle effects in these animals, LM network integrity is critical to muscle function, with the effects
of LM o2 LN domain mutations or deletions developing muscular dystrophy and peripheral neuropathy with

time 90-92

, therefore, longer-term studies may reveal further phenotypes once tissues are placed under stress.
Asthe LaNt a31 phenotypes are deleterious, further studies will require lineage-specific expression to gain
deeper cellular and temporal resolution.

This study providesthe first in vivo evidence that LaNt a31, the newest member of the LM
superfamily, is abiologically relevant matricellular protein and emphasi ses the importance of oo LN domains
as regulators of tissue homeostasis. Indeed, whereas identification of oo LN domain mutationsin rare
inherited disorders have established that LN domains matter * % %% the LaNt 031 protein is a naturally
occurring splice isoform 2 which suggests active regulation of the LN domain interactions via aternative
splicing. Changes to alternative splicing rates often occur in normal situations, including during
development and tissue remodelling, in response to damage such as in wound repair, and can be
dysregulated in pathological situationsincluding frequently in cancer % Considered in this way, the

finding the LaNt a31 is biologically active in vivo has exciting and far-reaching implications for our

understanding of BM biology.
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Figurelegends

Figure 1 - Validation of UbCLaNt Cre-inducible construct in vitro

A) Diagram of the pUbC-LoxP-LaNt-0.31-T2A-tdTomato construct. B) HEK 293A cells were transfected
with pUbC-LoxP-LaNt-a31-T2A-tdTomato, pPCAG-Cre:GFP, or pUbC-LoxP-LaNt-0.31-T2A-tdTomato and
pCAG-Cre:GFP and imaged 48 h after transfection. Scale bar 100 um C) PCR was performed using primers
flanking the stop cassette on DNA extracted from HEK293A cells co-transfected with pUbC-LoxP-LaNt-
031-T2A-tdTomato and pCAG-Cre:GFP. D) Western blot of lysates from HEK293 cells either
untransfected or transfected with CMV- LaNt-a31-T2A-Dendra2 (positive control), or pUbC-LoxP-LaNt-

031-T2A-tdTomato and pCAG-Cre:GFP then probed with anti-flag antibodies

Figure 2 -UbC-L oxP-L aNt-a31-T2A-tdT omato embryonic fibroblast express the transgene upon
transduction with a Crerecombinase-coding adenovirus

A) PCR was performed on gDNA of F1 UbC-LoxP-LaNt-031-T2A-tdTomato embryos. B) Western blot of
protein lysates from explanted F1 mouse embryonic fibroblasts processed with anti-HA antibodies. C)
Fluorescence microscopy images of explanted cells from UbC-LoxP-LaNt-a.31-T2A-tdTomato F1 mice.

Scale bar = 100 pm.

Figure 3 - UbCLaNta31 x R26CreERT 2 ER transgenic mice express the UbC-L aNta31 transgene
following exposur e to tamoxifen

A) Schematic diagram of the UbC-LaNt-a31 and Rosa-Cre transgenes. B) PCR performed using primers
flanking the stop cassette on DNA extracted from transgenic mouse embryos from a UbCLaNta31 x
R26CreERT2 mating. C) Phase contrast and fluorescence microscopy images of explanted cells from
UbCLaNta31::R26CreERT2 embryos. Scale bar = 100 um. D) Western blot of lysates from

UbCLaNta31::R26CreERT2 embryo explants processed with anti-HA antibodies.

33


https://doi.org/10.1101/2020.07.26.221663
http://creativecommons.org/licenses/by-nc/4.0/

70

1

2

73

4

75

76

7

78

9

30

31

32

33

34

35

36

37

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.26.221663; this version posted November 24, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Figure 4 - Transgenic mice over expressing LaNta31 display localised regions of erythema

A) Representative images of UbCLaNt::R26CreERT2 PO mice B) PCR genotyping of transgenic mice. C)
Fluorescence microscopy images of explanted cells from UbCLaNt::R26CreERT2 PO mice. D) Western blot
of tissue lysates of UbCLaNt::R26CreERT2 PO mice. E) Representative fluorescence microscopy
UbCLaNt::R26CreERT2 PO mouse OCT sections (8 um) probed with anti-mCherry antibodies. Y ellow

arrows indicate cells expressing the tdTomato transgene reporter. Scale bar = 100 pm.

Figure5 - LaNt a31 over expression leads to epithelial detachment, tubular dilation and interstitial
bleeding in the kidney and thickening of the tubular basement membrane.

A) Representative images of H& E stained FFPE sections (5 um) of newborn UbCLaNt::R26CreERT2
transgenic mouse kidneys. Middle and right columns show areas of increased magnification. Black arrows
point to aress of epithelial detachment. White arrows point to tubular dilation. Yellow arrows point to areas
of interstitial bleeding. B) UbCLaNt::R26CreERT2 PO mouse FFPE sections (5 um) processed for
immunohistochemistry with anti-laminin 111 polyclonal antibodies. Middle and right columns show areas of

increased magnification. Scale bars = 100 pm.

Figure 6 - LaNt a31 over expression disrupts epider mal-dermal basement membrane.

A) H&E staining of FFPE sections (5 um) of newborn UbCLaNt::R26CreERT2 transgenic

mouse dorsal skin. Middle and right columns show increased magnification of the

epithelium or hair follicles respectively. Y ellow arrows indicate basal layer of epithelial

cells. Scale bar = 100 um. B) UbCLaNt::R26CreERT2 PO mouse FFPE sections (5 pm) processed for
immunohistochemistry with anti-laminin 111 immunoreactivity. Middle and right columns show areas of

increased magnification. Y ellow arrows indicate the epidermal-dermal junction. Scale bar = 100 pm.

Figure 7 - Mice expressing the LaNta31 transgene display structural differencesin thelung and a

reduction of hematopoietic coloniesin theliver.
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A) UbCLaNta31::R26CreERT?2 PO lung FFPE sections (5 um) stained with H& E. Middle and right columns
show areas of increased magnification. B) H& E staining of FFPE sections (5 um) of newborn
UbCLaNt::R26CreERT2 transgenic mouse skin. Middle and right columns show increased magnification of
different area of the liver. Yellow arrowheads highlight areas of increased cell density. Scale bars = 100 um.

C) Representative image analysis method of determining nuclei count. D) Quantification of nuclei.

Supplemental Figure 1 — Transgenic expression of LaNt 31 under control of the human keratin-14
promoter resultsin alow number of offspring.

A) Diagram of the phK14-LaNta31-T2A-mCherry construct. B) Fluorescence microscopy images of KERA
308 cells transfected with phK 14-LaNta31-T2A-mCherry. C) Western blot of protein lysates from
transfected KERA 308 cells. D) Schematic of FO mice generation and PCR genotyping of FO mice. E) PCR
genotyping of F1 mice. F) Representative fluorescence images of frozen sections from F1 mice tissues. G)

Western blot of tissue lysates from F1 mice, probed with anti-His antibodies.
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