bioRxiv preprint doi: https://doi.org/10.1101/2020.07.27.219360; this version posted October 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

1	Fluency shaping increases integration of the command-to-execution and the auditory-to-motor
2	pathways in persistent developmental stuttering
3	
4	Alexandra Korzeczek ^{a,#} , Annika Primaßin ^{a,b#} , Alexander Wolff von Gudenberg ^c , Peter Dechent ^d ,
5	Walter Paulus ^a , Martin Sommer ^{a,e,f} , and Nicole E. Neef ^{a,g} *
6	
7	^a Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
8	^b FH Münster University of Applied Sciences, Münster School of Health (MSH), Münster, Germany
9	^c Institut der Kasseler Stottertherapie, Bad Emstal, Germany
10	^d MR Research in Neurology and Psychiatry, Department of Cognitive Neurology, University Medical
11	Center Göttingen, Göttingen, Germany
12	^e Department of Neurology, University Medical Center Göttingen, Germany
13	^f Department of Geriatrics, University Medical Center Göttingen, Germany
14	^g Department of Diagnostic and Interventional Neuroradiology, University Medical Center Göttingen,
15	Göttingen, Germany
16	
17	[#] These authors contributed equally
18	*Correspondence: Nicole E. Neef, Department of Diagnostic and Interventional Neuroradiology
19	University Medical Center, Georg August University, Robert-Koch-Straße 40, 37075 Göttingen,
20	Germany, <u>nneef@gwdg.de</u>
21	Contacts: Alexandra Korzeczek <u>alexandra.kore@posteo.de</u> ; Annika Primaßin <u>annika.primassin@fh-</u>
22	<u>muenster.de</u> ; Alexander Wolff von Gudenberg <u>awvgudenberg@kasseler-stottertherapie.de</u> ; Peter
23	Dechent <u>Peter.Dechent@medizin.uni-goettingen.de</u> ; Walter Paulus <u>wpaulus@med.uni-</u>
24	goettingen.de; Martin Sommer <u>martin.sommer@med.uni-goettingen.de</u>
25	
26	Running title: Sensorimotor plasticity in stuttering

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.27.219360; this version posted October 27, 2021. The copyright holder for this preprint (which was/<u>forceastings of peoplies author/funder, who has granted bioRxiv a license to ensprint the perpension</u> is made available under aCC-BY-NC 4.0 International license.

28 Abstract

29	Fluency-shaping enhances the speech fluency of persons who stutter, yet underlying conditions and
30	neuroplasticity-related mechanisms are largely unknown. While speech production-related brain
31	activity in stuttering is well studied, it is unclear whether therapy repairs networks of altered
32	sensorimotor integration, imprecise neural timing and sequencing, faulty error monitoring, or
33	insufficient speech planning. Here, we tested the impact of one-year fluency-shaping therapy on
34	resting-state fMRI connectivity within sets of brain regions subserving these speech functions. We
35	analyzed resting-state data of 22 patients who participated in a fluency-shaping program, 18 patients
36	not participating in therapy, and 28 fluent control participants, measured one year apart. Improved
37	fluency was accompanied by an increased synchronization within the sensorimotor integration
38	network. Specifically, two connections were strengthened; the left inferior frontal gyrus showed
39	increased connectivity with the precentral gyrus at the representation of the left laryngeal motor
40	cortex, and the left inferior frontal gyrus showed increased connectivity with the right superior
41	temporal gyrus. Thus, therapy-associated neural remediation was based on a strengthened
42	integration of the command-to-execution pathway together with an increased auditory-to-motor
43	coupling. Since we investigated task-free brain activity, we assume that our findings are not biased to
44	network activity involved in compensation but represent long-term focal neuroplasticity effects.
45	

46 Keywords

stuttering intervention, sensorimotor integration, neuroplasticity, inferior frontal gyrus, dorsal
laryngeal motor cortex

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.27.219360; this version posted October 27, 2021. The copyright holder for this preprint (which was/horreadtion by predievery) is the author/funder, who has granted bioRxiv a license to charge available under a CC-BY-NC 4.0 International license.

50 Introduction

51	Most people speak fluently with ease, but fluent speech requires a complex interplay across multiple
52	functional domains. In stuttering, aberrant brain activity and connectivity is evident in networks that
53	convey fluent speech production (Ingham et al., 2018). However, especially in adults who
54	experienced lifelong stuttering, it is challenging to differentiate core neural deficits from stuttering-
55	induced neural signatures or intervention-induced neuroplasticity from compensatory network
56	activity (Kell, 2012). Thus, our understanding of the neurophysiological mechanistic principles of
57	stuttering and its neural remediation remains limited.
58	The neural networks that may become involved during stuttering intervention have hardly been
59	studied. Previous neuroimaging studies reported local and distributed intervention-induced activity
60	changes in the left inferior frontal gyrus (Kell et al., 2009; Lu et al., 2017; Neumann et al., 2018),
61	cerebellum (De Nil et al., 2001; Lu et al., 2012; Toyomura et al., 2015), and basal ganglia (Toyomura
62	et al., 2015), and a change in lateralization of speech-related frontal brain activity towards the more
63	typical leftwards pattern (De Nil et al., 2003; Kell et al., 2009; Neumann et al., 2018, 2003). All except
64	one earlier study (Toyomura et al., 2015) involved the training of voicing patterns to shape speech
65	fluency, a common approach to overcome stuttering.
66	Fluency shaping is a speech restructuring method that requires individuals to change their speech
67	patterns. Specifically, during fluency shaping, patients learn to speak slowly with gentle onsets of
68	phonation, light articulatory contacts, and soft voicing of plosives (Euler et al., 2009; Webster, 1974).
69	After three weeks of fluency shaping training, connectivity was increased between the left anterior
70	superior temporal gyrus and the left articulatory motor cortex, and hyperconnectivity was reduced
71	between the left IFG pars opercularis and the sensory feedback processing left supramarginal gyrus
72	(Kell et al., 2018). This observation suggests a treatment-induced boost of auditory-to-motor
73	coupling and likely indicates neuroplasticity induced by sensorimotor learning (Calmels, 2020).

74 However, a stuttering intervention that leads to a significant reduction of speech dysfluencies in

adults (Euler et al., 2009) and children (Euler et al., 2021) presumably addresses large-scale

76 functional networks that exceed auditory-to-motor mapping. Further supporting domains that are 77 related to speech processing could be speech planning (Andreatta et al., 2010; Price, 2012), 78 sensorimotor integration (Behroozmand et al., 2015; Darainy et al., 2019; Hickok et al., 2011; 79 Tourville et al., 2008), articulatory convergence (Brown et al., 2005; Guenther, 2016; Turkeltaub et 80 al., 2002), and the inhibition of competitive processes (Ghahremani et al., 2018; Xue et al., 2008). 81 Previous studies might have failed to detect changes in these crucial functional domains because 82 measured brain activity was biased by the tasks employed. 83 One suitable approach to scrutinizing learning-induced neuroplasticity is resting-state functional 84 magnetic resonance imaging (rs-MRI). On the one hand, rs-fMRI is free from confounds of task 85 performance, particularly in participants who may present symptoms such as physical concomitants 86 during speaking. Thus, task-free brain activity assesses changes in brain dynamics that are not biased 87 by differences in how a task is performed in pre-learning versus post-learning condition (Vahdat et 88 al., 2011). On the other hand, it is widely assumed that ongoing spontaneous global activity of the 89 brain at rest is (1) highly-structured, (2) closely relates to underlying anatomical connectivity, and (3) 90 reflects local neuronal dynamics, signal transmission delay, and genuine noise, i.e., unstructured 91 input (Deco et al., 2011). It has been shown that even under the resting-state condition, brain areas 92 show activity changes with learning, and correlated activity increases between learning-related areas 93 (Albert et al., 2009; Darainy et al., 2019; Vahdat et al., 2011). 94 To date, task-free brain activity has been studied twice to test stuttering intervention-induced 95 neuroplasticity (Lu et al., 2017, 2012). Both studies investigated the same speech therapy. During the 96 7-day intervention with three daily sessions, participants trained a new voicing pattern with word 97 listen-and-repeat tasks followed by overt-Pinyin-reading tasks. Later, participants listened to their

98 audio-recordings and received the therapist's feedback. In addition, participants applied the newly

99 learned speaking pattern to utterances produced throughout their daily lives (Lu et al., 2017). The

100 first study showed an intervention-related decrease of rs-fMRI connectivity in the left declive and

101 vermis area of the cerebellum. In addition, connectivity changes in the cerebellum correlated

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.27.219360; this version posted October 27, 2021. The copyright holder for this preprint (which was/horreadtion by predievery) is the author/funder, who has granted bioRxiv a license to charge available under a CC-BY-NC 4.0 International license.

102	positively with the change of stuttering severity after the change of duration of the stuttering events
103	and physical concomitants was regressed out (Lu et al., 2012). Because stuttering-related cerebellar
104	overactivity was often considered to reflect compensatory activity (Brown et al., 2005; De Nil et al.,
105	2008; Lu et al., 2010; Watkins et al., 2008), Lu and colleagues suggested the reduced cerebellar rs-
106	fMRI connectivity to display reduced compensatory activity and, thus, to indicate a neural
107	reorganization of the intrinsic functional architecture of speech processing. The second study, which
108	included a reduced number of the same participants, showed that rest-related connectivity changes
109	in the cerebellum and task-related activity increases in the left ventral inferior frontal gyrus and
110	insula, were not correlated. The task-related activity was measured during the overt reading of
111	monosyllabic Chinese characters (Lu et al., 2017). This observation was discussed to support the idea
112	that resting-state functional connectivity and task-related brain activity provide different insights into
113	mechanisms behind brain plasticity.
114	Here, we use a longitudinal approach to examine stuttering intervention-induced improvement in
115	speech fluency and neurofunctional reorganization. To this end, we acquired rs-fMRI data before and
116	11 months after a computer-assisted fluency shaping training (Euler et al., 2009) in persons with
117	developmental stuttering (PDS+) and tested time-dependent connectivity changes. We controlled for
118	the specificity of intervention-induced changes by studying two control groups, i.e., patients with
119	developmental stuttering not taking part in any stuttering intervention (PDS-) and fluent controls
120	(FC). We quantified the synchronicity of spontaneous low-frequency fluctuations to characterize the
121	connectivity between functionally related brain hubs. We determined sets of ROIs to assess
122	connectivity of a priori determined semi-discrete networks associated with speech planning (Bohland
123	and Guenther, 2006; Rottschy et al., 2012), articulatory convergence (Guenther, 2016), speech-
124	related sensorimotor integration (Darainy et al., 2019), and speech motor inhibitory control
125	(Ghahremani et al., 2018; Neef et al., 2016). All ROIs were chosen from the literature. However, we
126	made no directional hypothesis before the data collection. Chosen ROIs capture spontaneous BOLD
127	fMRI fluctuations of neuronal populations that are integral parts of brain networks. Network

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.27.219360; this version posted October 27, 2021. The copyright holder for this preprint (which was hor control bioRxiv a license to cherror bioRxiv a license to cherror bioRxiv propriation by the author/funder, who has granted bioRxiv a license to cherror bioRxiv a license.

128 dynamics are without much doubt nonlinear and difficult to predict. In this vein, the outcomes were

129 not predicted and are therefore exploratory. To capture brain-behavior relationships, we additionally

130 explored correlations between changes in functional connectivity and speech fluency.

131

- 132 Methods
- 133 Participants

134 The current data were collected during a dissertation project (Primaßin, 2019) that evaluated the 135 long-term effects of an intensive stuttering intervention on white matter integrity and task-related 136 brain activity. Persons who stutter who were about to begin with intervention at the Kassel 137 Stuttering Therapy (KST) were invited to participate in the MRI study. Volunteers from the KST were 138 assigned to PDS+. Fluent control participants were recruited via advertisements at the homepage of 139 the Department of Clinical Neurophysiology and at notice boards of the university campus and clinic 140 and were assigned to FC. Stuttering controls were recruited via announcements at stuttering self-141 help groups and at the 2016 annual congress of the German stuttering self-help group association 142 (BVSS). Stuttering controls did not participate in any stuttering intervention during the entire study 143 period and were assigned to PDS-. 144 Seventy-six right-handed, monolingual speakers of German participated voluntarily in the current 145 study. Exclusion criteria were speech or language disorders other than developmental stuttering, 146 neurological impairment, drug abuse, or medications that act on the central nervous system. None of 147 the PDS- took part in any stuttering intervention during the entire study period. For analysis, we 148 excluded the data of three PDS+ because they participated in addition in a different stuttering 149 intervention. Data of further four participants (1 PDS+, 2 PDS-, 1 FC) were excluded because of 150 missing behavioral or rs-fMRI data, and data of one PDS+ were excluded because of extensive rs-fMRI 151 motion artifacts. Thus, the rs-fMRI data analysis comprised 22 PDS+ (2 females, mean age 25.6 ± 11.7 152 years with 7 participants younger than 18 years), 18 PDS- (2 females, mean age 34.8 ± 7.0 years, with

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.27.219360; this version posted October 27, 2021. The copyright holder for this preprint (which was/horreadtion by predievery) is the author/funder, who has granted bioRxiv a license to charge available under a CC-BY-NC 4.0 International license.

153	no participant younger than 18 years), and 28 FC (4 females, mean age 25.1 \pm 7.4 years with 5
154	participants younger than 18 years). While age was comparable between PDS+ and FC with T = -0.16
155	and $p = 0.87$, PDS+ were younger than PDS- with $T = -3.1$ and $p = 0.004$, and PDS+ were younger than
156	PDS- with T = -4.49 and p < 0.001. PDS+ and FC were matched with regard to sex and handedness
157	(Oldfield, 1971). PDS- had a higher education score than participants in the two other groups (see
158	Table 1). Speech fluency (Stuttering severity index, SSI-4) (Riley et al., 2004) of all participants was
159	assessed prior to each MRI session. Stuttering severity was lower in PDS- than in PDS+ (Table 1). In
160	addition, a self-assessment of the psychosocial impact of stuttering (Overall Assessment of the
161	Speaker's Experience of Stuttering, OASES) (Yaruss and Quesal, 2014) indicated that PDS+ were more
162	affected by stuttering than PDS Finally, both PDS- and PDS+ were comparable regarding the time
163	span in years that had passed since the last stuttering intervention before participating in the current
164	study (Table 1 and Supplementary Table 1). There were three participants per group not providing
165	information on their stuttering intervention history. Age of intervention and nature of intervention
166	varied in both groups. However, the groups were too small to compare them with respect to these
167	two variables.

168

	PDS+	PDS-	FC	Test-statistics	two-sided
				(<i>df</i>)	<i>p</i> -value
n	22	18	28		
Age, years	25.6 ± 11.7	$34.8\pm7.0^{\ast}$	25.1 ± 7.4	7.58 (2, 65) ⁱ	0.001
Sex ratio	20:2	16:2	24:4	11	0.89
Education ^a	2 (1.0)	6 (3.0)*	3 (2.8)	16.68 (2,68) ^{III}	< 0.001

169 **Table 1 Demographic data of participants**

Handedness	91 (12)	91 (33)	100 (33)	0.04 (2,68) "	0.98
SSI-4 at T1	25 (14.3) #	14 (11.3)	_	2.56 ^{iv}	0.010
SSI-4 at T2	9 (10.5)	12.5 (11.0)	_	-1.31 ^{iv}	0.194
OASES at T1	3.0 (0.6) *	2.0 (0.4)	-	4.70 ^{iv}	< 0.001
OASES at T2	1.9 (0.5)	2.0 (0.5)	_	-0.65 ^{iv}	0.516
Last therapy, years ago	8.5±8.7~	12.7 ± 8.8~		-1.18(32) ^v	0.249
Onset, years	4.8 ± 3.0	5.0±3.6	_	0.22 ^{iv}	0.839
MRI interval, months	11.6 ± 1.0	11.6 ± 1.4	11.4 ± 0.8	0.95 (2) ¹¹¹	0.623

170Interval/ratio -scaled variables are presented as mean \pm standard deviation. Ordinal-scaled variables171are presented as median (interquartile range). *significantly different from both other groups in post

hoc comparisons (p < 0.001), [#]significantly different from stuttering controls (p < 0.001), ~ three

173 missing values, ¹one-way independent ANOVA, ¹Fisher's exact test, ¹¹Kruskal-Wallis test, ¹VMann-

174 Whitney test, ^vunpaired t-test, ^a achieved education levels were 1 = still attending school, 2 = school, 3

175 = high school, 4 = <2years college, 5 = 2 years of college, 6 = 4 years of college, 7 = postgraduate

176

The study was registered on January 14, 2016, at the study center of the University Medical Center of
Göttingen and was given the registration number 01703. This registration is not publicly accessible,
but access could be requested under the following email address: sz-umg.registrierung@med.unigoettingen.de. The ethical review board of the University Medical Center Göttingen, Georg August
University Göttingen, Germany, approved the study, and all participants gave their written informed
consent, according to the Declaration of Helsinki, before participation. In addition, informed consent
was obtained from parents or legal guardians of participants under the age of 18.

All participants took part in two MRI sessions (T1 and T2) separated by 10 to 15 months. The scanning interval was similar between groups (Table 1). PDS+ were scanned pre- (T1) and post-

186 intervention (T2).

187 Intensive stuttering intervention and follow-up care

188 PDS+ took part in the Kasseler Stottertherapie (Euler et al., 2009), an intensive program that 189 incorporates fluency shaping with computer-assisted biofeedback during a two-week on-site and 190 one-year follow-up treatment. Fluency shaping reconstructs patterns of vocalization, articulation, 191 and respiration, resulting in prolonged speech, soft voice onsets of initial phonemes, and a smooth 192 transition between sounds. It was first introduced with the precision fluency shaping program by 193 Webster (Max Ludo and Caruso Anthony J., 1997; Webster, 1980, 1974). The overarching aim of this 194 approach is to train to speak slowly with gentle onsets of phonation, light articulatory contacts, and 195 soft voicing of plosives. In the current study, the on-site intervention encompassed two weeks of 196 intensive therapy and training, i.e., at least eight hours per day and seven days per week. The 197 intervention was structured into alternating sessions. Sessions included group therapy, individual 198 computer-assisted speech training, one-to-one speech therapy, and in-vivo training. In-vivo training 199 stands for applying the speech technique in real-life situations that require patients to talk to persons 200 outside the therapy setting while still receiving support from a therapist. Next to applying the speech 201 technique during everyday communication, participants were encouraged to practice daily with the 202 computer. Computer-assisted training at home was mainly based on the biofeedback-assisted 203 practice of the new speech patterns. Biofeedback consisted of a visualization of the speech sound 204 wave. As an incentive, participants could get the costs of the software reimbursed by their health 205 insurance if they practiced at least 1980 minutes within the first half of the year and 990 minutes 206 within the second half (Euler et al., 2009). Thus, the intervention under study was the same as in Kell 207 et al. (2018, 2009) and Neumann et al. (2018, 2005, 2003), differed in the way of providing feedback 208 from the one in De Nil et al. (2003) and differed in intervention duration, therapy content, and 209 provision of feedback from the stuttering intervention studied in the only other resting-state study

(Lu et al., 2017, 2012). During the follow-up period, there were two refresher courses at the therapy
center at one month and ten months, respectively, after the initial intensive training. If participants
were not able to attend the 10-month refresher, they could also attend subsequently offered
refresher courses. In this study, participants scheduled the second refresher at the latest 14 months
after the intervention. On rare occasions, due to organizational issues, MRI measurements at T2 took
place one day before the second refresher.

216

217 Assessment and statistical analysis of behavioral data

218 Changes in speech fluency were assessed by two experienced speech-language pathologists (one of 219 whom was A.P.) using the Stuttering Severity Index (SSI-4). The SSI-4 assessment included a 220 spontaneous speech sample and a reading sample. Each sample comprised 488 to 500 syllables. For 221 interrater reliability estimation, the two raters analyzed nine randomly chosen participants, three 222 from each group. Reliability estimates were statistically assessed with SPSS software with 223 Krippendorf's Alpha Reliability Estimate (KALPHA) using 10,000 bootstrapping samples at an ordinal 224 level (Hayes and Krippendorff, 2017). KALPHA ranged between 0.84 and 0.98 for the SSI-4 sub-scores 225 reading, spontaneous speech, duration, and concomitants. KALPHA was 0.96 for the SSI-4 total score, 226 indicating a good to excellent consensus between raters. The participants' experience with stuttering 227 was assessed with the German version of the OASES (Yaruss and Quesal, 2014). We assessed 228 behavioral changes as a change in the SSI-4 total scores and change in the OASES total scores 229 between T1 and T2 using R (version 3.5.3). We ran robust mixed ANOVAs on trimmed means with 230 Group as between-factor and Time as within-factor using the function *tsplit* with the default 231 trimming level of 0.2 of the package WRS (R.R. Wilcox' robust statistics functions -version 0.37). Time 232 was implemented as the second factor. Post hoc we applied Wilcoxon signed-rank tests.

233

234 Definition of four speech-related semi-discrete brain networks

235	Resting-state fMRI captures brain activity in the absence of a task. Spontaneous fluctuations of the
236	blood-oxygen-level-dependent (BOLD) signal represent specific patterns of synchronous activity and
237	reflect the functional organization of the brain (Biswal et al., 1995). Compared to data-driven
238	approaches, which are also common to study rs-fMRI activity, ROI-to-ROI analyses provide detailed
239	information on the specific connectivity of brain areas of interest as demonstrated for the dorsal and
240	ventral attentional systems (Fox et al., 2006) or the functional connectivity of the anterior cingulate
241	cortex (Margulies et al., 2007). Fluent speech production engages large-scale brain networks
242	conveying emotional, linguistic, cognitive, sensory, and motor functions. Among these processes,
243	dysfunctional speech planning, articulatory convergence, sensorimotor integration or motor
244	inhibition most likely cause the primary motor signs of stuttering, which are sound and syllable
245	repetitions, sound prolongations, and speech blocks. Here, we distinguished four semi-discrete brain
246	networks consisting of brain regions that are recruited for any of these functions (Fig. 1).
247	Several left-hemispheric regions contribute to speech planning: posterior inferior gyrus, insula,
248	temporoparietal regions, and the proper and pre-supplementary motor area (Andreatta et al., 2010;
249	Price, 2012). A selected brain region of dysfunctional speech planning was derived from a fixed-
250	effects analysis of an earlier fMRI study of our lab that investigated imagined speaking compared
251	with humming in 15 PDS and 15 FC (Neef et al., 2016) (Fig. 1A). Between-group contrasts of an ROI
252	analysis within the area BA 44 and of a functional connectivity analysis with the left posterior area 44
253	as seed revealed dysfunctional brain regions of speech planning in PDS (Neef et al., 2016).
254	Articulatory convergence seeds originated from combined ALE meta-analyses (Guenther, 2016) on
255	brain imaging studies of simple articulatory movements of the jaw, larynx, lips, tongue, and
256	respiratory system (Fig. 1B). The rationale behind this concept was that speaking requires the joint
257	coordination of multiple articulatory subsystems, i.e., jaw movements, lip movements, larynx
258	movements, respiratory movements, and tongue movements. Brain regions that are involved in the
259	control of multiple articulatory subsystems were defined as regions of high articulatory convergence.
260	To determine such brain regions, Guenther (2016) performed five activation likelihood estimate (ALE)

261 meta-analyses, one for each subsystem, thereby including only functional imaging contrasts of non-262 speech movement tasks. Afterward, he identified brain coordinates where foci of three or more 263 articulatory systems showed very close proximity by visual inspection (Guenther, 2016). Speech-264 related sensorimotor integration seeds were derived from a 'listen-and-repeat' localizer task in a 265 brain imaging study of sensorimotor plasticity in speech motor adaptation (Darainy et al., 2019) (Fig. 266 1C). The study investigated in 19 neurotypical participants on two consecutive days whether 267 behavioral learning-related changes in perception and speech movements influenced brain motor 268 areas directly or indirectly via sensory areas. ROI-to-ROI analyses of rs-functional connectivity were 269 used to identify sensorimotor plasticity between the first and the second day (Darainy et al., 2019). 270 Of note, the ROI coordinates of the primary motor cortex (mid precentral gyrus) reported by (Darainy 271 et al., 2019) were exchanged because of the differences in speech tasks. Whereas participants in 272 Darainy et al. (2019) adjusted articulatory movements to the perception of vowels, the stuttering 273 intervention required the modification of voicing and thus a skillful control of the larynx. (Neumann 274 et al., 2018) for example reported that the very same stuttering intervention normalized the mean 275 fundamental frequency (meanF0) for PWS+. Thus, coordinates of the laryngeal motor cortex (LMC) 276 that were chosen for replacement, were derived from a fMRI meta-analysis encompassing 19 overt 277 speech production studies with 283 neurotypical participants (Kumar et al., 2016; Simonyan, 2014). 278 For further rs-fMRI analyses in CONN (SPM toolbox), the coordinates in Talairach space, left LMC at [-279 45, -14, 33] and right LMC at [44, -12, 35], reported by Kumar et al. (2016), were converted with 280 GingerALE (http://www.brainmap.org/ale/) using the transform "Talairach to MNI (SPM)" to MNI 281 space, left LMC [-47, -10, 34] and right LMC [49, -8, 35]. Motor inhibition seeds that involved common 282 areas of inference resolution, action withholding, and action cancellation were derived from a meta-283 analysis of 225 studies (Zhang et al., 2017). We added the subthalamic nucleus seed to the inhibition 284 network to account for the dedicated involvement of this structure in response inhibition (Aron and 285 Poldrack, 2006) (Fig. 1D). In two experiments, this study showed the inhibitory role of the 286 subthalamic nucleus using action cancellation tasks (stop-signal task)(Aron and Poldrack, 2006).

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.27.219360; this version posted October 27, 2021. The copyright holder for this preprint (which was https://doi.org/10.1101/2020.07.27.219360; this version posted October 27, 2021. The copyright holder for this preprint (which was https://doi.org/10.1101/2020.07.27.219360; this version posted October 27, 2021. The copyright holder for this preprint (which was https://doi.org/10.1101/2020.07.27.219360; this version posted October 27, 2021. The copyright holder for this preprint (which was https://doi.org/10.1101/2020.07.27.219360; this version posted October 27, 2021. The copyright holder for this preprint (which was https://doi.org/10.1101/2020.07.27.219360; this version posted October 27, 2021. The copyright holder for this preprint (which was https://doi.org/10.1101/2020.07.27.219360; this version posted October 27, 2021. The copyright holder for this preprint (which was https://doi.org/10.1101/2020.07.27.219360; this version posted October 27, 2021. The copyright holder for this preprint (which was https://doi.org/10.1101/2020.07.27.219360; this version posted October 27, 2021. The copyright holder for this preprint (which was https://doi.org/10.1101/2020.07.27.219360; this version posted October 27, 2021. The copyright holder for this preprint (which was https://doi.org/10.1101/2020.07.27.219360; this version posted October 27, 2021. The copyright holder for this preprint (which was https://doi.org/10.1101/2020.07.27.219360; this version posted October 27, 2021. The copyright holder for this preprint (which was https://doi.org/10.1101/2020.07.27.219360; this version posted October 27, 2021. The copyright holder for this preprint (which was https://doi.org/10.1101/2020.07.27.219360; this version posted October 27, 2021. The copyright holder for the copyright h

- 287 We created spherical seeds with a radius of 6 mm for all ROIs. Coordinates for brain hubs involved in
- 288 speech-related sensorimotor integration can be found in Table 2. Seeds for the remaining three
- networks are listed in Supplementary Tables 3-5. Seed ROIs did not overlap.

290

291 Figure 1 ROI-to-ROI resting state fMRI analyses were conducted in four semi-discrete functional networks.

- 292 Spheres with a diameter of 6 mm served as seed regions, overlaid here on rendered surfaces of the MNI
- 293 standard brain. Intervention effects were tested for speech planning (A), articulatory convergence (B),

sensorimotor integration (C), and motor inhibition (D). HG = Heschl's gyrus, primary auditory cortex; IPL =

- 295 inferior parietal lobe; IFG = inferior frontal gyrus, pars opercularis; LMC = laryngeal motor cortex; MTG = middle
- 296 temporal gyrus; OP = parietal operculum; PoCG = postcentral gyrus; PrCG = precentral gyrus; preSMA = pre-
- supplementary motor area; pSTG = posterior superior temporal gyrus; Put = putamen; rCC = rostral cingulate
- 298 zone; SMA = supplementary motor area; SMG = supramarginal gyrus; STN = subthalamic nucleus; Th =
- 299 thalamus; vMC = ventral primary motor cortex; vPrCG = ventral precentral gyrus; vSC = ventral primary
- 300 somatosensory cortex.

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.27.219360; this version posted October 27, 2021. The copyright holder for this preprint (which was/<u>forceastings of peoplies author/funder, who has granted bioRxiv a license to ensprint the perpension</u> is made available under aCC-BY-NC 4.0 International license.

301

302 Table 2 Brain hubs of speech-related sensorimotor integration

Brain hub – anatomical label	ROI Label	Х	Y	Z
Inferior frontal gyrus, pars opercularis	L IFG	-56	8	8
	R IFG	48	10	2
Pre-supplementary motor area	R preSMA	2	6	60
Ventral primary motor cortex	LvMC	-48	-10	42
	R vMC	54	-8	44
Laryngeal motor cortex [†]	L LMC	-47	-10	34
	R LMC	49	-8	35
Ventral primary somatosensory cortex	L vSC	-56	-12	44
	R vSC	50	-14	34
Parietal operculum, secondary somatosensory cortex	LOP	-60	-12	20
	ROP	60	-10	20
Supramarginal gyrus	L SMG	-54	-40	32
	R SMG	56	-32	20
Heschl's gyrus, primary auditory cortex	L HG	-46	-18	6
	RHG	48	-22	8
Posterior superior temporal gyrus	L pSTG	-54	-34	3
	R pSTG	56	-30	2

303 All coordinates refer to MNI-space. L = left, R = right. Coordinates were derived from a listen and repeat speech

304 task (modified after Darainy et al. 2019; Kumar et al., 2016; Simonyan, 2014).

305

306 MRI acquisition protocol

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.27.219360; this version posted October 27, 2021. The copyright holder for this preprint (which was/horreadtion by predievery) is the author/funder, who has granted bioRxiv a license to charge available under a CC-BY-NC 4.0 International license.

307	MRI data were acquired in a 3 Tesla Siemens Magnetom Tim Trio scanner (Erlangen, Germany) using
308	an eight-channel, phased-array head coil at the University Medical Center Göttingen, Germany.
309	Sagittal T1-weighted structural data were acquired with a 3D turbo fast low angle shot (FLASH)
310	sequence (TR = 2250ms, TE = 3.26ms, TI = 900ms, flip angle = 9°, 256mm FoV, 7/8 Fourier phase
311	encoding) as whole-brain anatomical reference data at a spatial resolution of $1 \times 1 \times 1$ mm ³ voxel
312	size (256 $ imes$ 256 matrix). For resting-state fMRI a gradient-echo echo-planar imaging (EPI) sequence
313	(TR = 1800ms, TE = 30ms, flip angle = 70°, parallel acquisition factor 2, 192 mm FoV, 33 slices, 194
314	volumes) was used with isotropic voxels at 3 $(mm)^3$ and a 64 x 64 acquisition matrix. We acquired
315	two six-minute rs-fMRI time series at T1 and at T2, respectively, while participants fixated on a cross
316	in an open eyes condition. Due to different head sizes, the rs-fMRI data did not fully cover the
317	cerebellum in some participants. Therefore, the cerebellum was excluded in further rs-fMRI analyses.
318	Participants lay in a supine position in the scanner and wore headphones for noise protection and
319	MR-compatible LCD goggles (VisuaStim XGA, Resonance Technology Inc., Northridge, CA, USA).
220	

320

321 Rs-fMRI data preprocessing

322	Structural and functional MRI data were preprocessed and analyzed with CONN functional
323	connectivity toolbox version 18b (Whitfield-Gabrieli and Nieto-Castanon, 2012). The toolbox is based
324	on Matlab and Statistical Parametric Mapping (SPM). The standard preprocessing pipeline of CONN
325	was used with functional realignment, functional centering of the image to (0, 0, 0) coordinates,
326	slice-timing correction, structural centering to (0, 0, 0) coordinates, structural segmentation and
327	normalization to MNI space, and spatial smoothing with a smoothing kernel of 8 mm full-width at
328	half-maximum. Motion parameters and signal outliers were detected via the Artifact Rejection
329	Toolbox set to 95 th percentile, which allowed for quantifying participant motion in the scanner and
330	identifying outliers based on the mean signal (Goto et al., 2016; Power et al., 2012). Motion
331	parameters, and white matter and cerebral spinal fluid signals were included as confounds and

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.27.219360; this version posted October 27, 2021. The copyright holder for this preprint (which was/<u>horrearthied by peoplieded) is the author/funder, who has granted bioRxiv a license to ensprint the preprint was available under a CC-BY-NC 4.0 International license.</u>

regressed out during denoising before first-level analysis. Data were denoised using a bandpass filter
 of 0.009 - 0.08 Hz.

334

335 ROI-to-ROI functional connectivity analyses

336	We used the CONN toolbox to analyze rs-fMRI data to determine Fisher-transformed correlation
337	coefficients of bivariate ROI-to-ROI correlations with hemodynamic response function weighting for
338	each of the four sets of ROIs (Fig. 1). We then run four global mixed models ANOVAs with Group
339	(PDS+, FC) as the between-subjects factor and Time and ROIs as within-subjects factors to test
340	intervention-induced neuroplasticity. For multiple comparison correction, we set the connection
341	threshold at seed level p -FDR < 0.05 (two-sided) and the seed-level permutation analysis threshold
342	(based on a Network-Based Statistics by intensity approach ¹²) at p -FDR < 0.05. Beta values represent
343	average functional connectivity (Fisher-transformed correlation coefficients) and indicate effect sizes.
344	If Group x Time interactions were significant, we extracted beta values and calculated two-sided
345	paired <i>t</i> -tests in CONN to compare connectivity between T2 and T1 separately for each group.
346	Furthermore, we calculated two-sided unpaired <i>t</i> -tests to analyze group differences separately at T1
347	and T2 (Table 3).
348	PDS- were not included in the global ANOVAs because of the age differences. Still, to test whether
349	the condition to continue to stutter for the period of the treatment influenced brain connectivity, we
350	calculated in CONN additional two-sided independent t-tests, comparing the adjusted connectivity
351	change from T1 to T2 (left IFG-to-LMC, left IFG-to-right pSTG) between PDS+ and PDS. Connectivity
352	changes were adjusted for age and SSI total scores at T1. Because education correlated with age, $r =$
353	0.483, $p < 0.001$, education was not regressed out. Post-hoc we calculated two-sided paired t-tests to

354 compare adjusted connectivity between T2 and T1 separately for each group. Furthermore, we

355 calculated two-sided unpaired t-tests to analyze group differences separately at T1 and T2 (Table 4).

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.27.219360; this version posted October 27, 2021. The copyright holder for this preprint (which was from the author/funder, who has granted bioRxiv a license to the preprint the preprint was available under a CC-BY-NC 4.0 International license.

356 Finally, Pearson correlations were calculated in MATLAB (R2018b) to test brain-behavior

357 relationships.

358

359 Data availability statement

360 The data that support the findings of this study are available from the corresponding author upon

361 reasonable request.

362

```
363 Results
```

364 Computer-assisted intensive intervention improved speech fluency and well-being

365	The observed reduction in the total scores of the Stuttering Severity Index (SSI-4) and the Overall
366	Assessment of the Speaker's Experience of Stuttering (OASES) indicates a positive effect of stuttering
367	intervention. The robust ANOVA for stuttering severity revealed a significant interaction of Group by
368	Time, $Q = 24.44$, $p < 0.001$, an effect of Group $Q = 48.38$, $p < 0.001$, and an effect of Time $Q = 50.99$, p
369	< 0.001. Post hoc tests showed that stuttering severity decreased from T1 to T2, $V = 253$, $p < 0.001$, r
370	= -0.87 (Fig. 2C) in the intervention group. In the non-intervention groups, on the other hand, the SSI-
371	4 scores remained unchanged with $V = 63$, $p = 0.81$, $r = -0.06$ for PDS- and $V = 58.5$, $p = 0.38$, $r = -0.17$
372	for FC. Similarly, the robust ANOVA for the speaker's experience of stuttering revealed a significant
373	interaction of Group by Time, Q = 66.73, p < 0.001, an effect of Group Q = 20.39, p < 0.001 and an
374	effect of time $Q = 74.17$, $p < 0.001$. Post hoc tests revealed a decrease in the OASES-scores between
375	T1 and T2 only in PDS+, V = 253, p < 0.001, r = -0.87 (Fig. 2B). PDS- experienced no changes in their
376	experience with stuttering, $V = 110.5$, $p = 0.29$, $r = -0.25$. Behavioral outcome measures are
377	summarized in Supplementary Table 6.

378

379 Intervention strengthened sensorimotor network connections

380 Only one of the four global mixed model ANOVAs revealed significant results. When the

- 381 sensorimotor integration network seeds were entered in the analysis, there was no effect of Group
- and no effect of Time, but the left IFG showed a Group \times Time \times Target interaction with F(10, 39) =
- 383 3.46, Intensity = 7.34, *p* = 0.021. Specifically, the interaction was significant for the left IFG-to-left
- 384 LMC connection with beta = 0.12, *T*(48) = 4.22, *p* = 0.002, and for the left IFG-to-right pSTG
- connection, beta = 0.13, T(48) = 3.12, p = 0.025 (Fig. 2A). Post-hoc tests showed that connectivity
- 386 increased in PDS+ but not in FC, and that pre-treatment connectivity was similar between PDS+ and
- 387 FC, but post-treatment connectivity was greater in PDS+ than FC (Table 3).
- 388

398 Table 3 Disentangling the Group × Time interaction with PDS+ and FC

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.27.219360; this version posted October 27, 2021. The copyright holder for this preprint (which was/<u>horrearthied by peoplieded) is the author/funder, who has granted bioRxiv a license to ensprint the perpendent of the available under a CC-BY-NC 4.0 International license.</u>

Seed - target region	Time	Beta	T (<i>DF</i>)	р	Group	T (DF)	р
	T2 > T1				FC vs PDS+		
left IFG – left LMC	PDS+	0.1	4.91 [#] <i>(21)</i>	< 0.001	T1	1.84 (47.7)	0.072
	FC	-0.051	-1.81 [#] (27)	0.082	T2	-2.8 (35.9)	0.007
left IFG – right pSTG	PDS+	0.094	3.32 [#] (21)	0.003	T1	1.38 (46.7)	0.174
	FC	-0.051	-1.46 [#] (27)	0.155	T2	-3.09 (48.0)	0.003

399

[#]Positive values indicate increased connectivity, and negative values indicate decreased connectivity at T2.

400

401 Connectivity changes relate to fluent speaking

402	To control whether neuroplasticity was related to the intervention and not to stuttering as a
403	condition itself, we tested whether significant changes were only evident in PWS+ or whether a
404	stuttering control group, PDS-, showed similar changes. Because PDS+ and PDS- differed in pre-
405	intervention stuttering severity and age, we fed SSI-4 total scores and age as variables of no interest
406	in the model. The Group $ imes$ Time interaction was significant for the left IFG-to-LMC connection with
407	beta = 0.17, $T(34)$ = 3.42, p = 0.002, but not for the left IFG-to-right STG connection with beta = 0.11,
408	T(34) = 1.68, $p = 0.102$. PDS+, but not PDS- showed connectivity increases for both connections
409	(Table 4). Pre- and post-treatment group comparisons were not significant (Table 4).

410

412 Figure 3 RS-fMRI connectivity corrected for age and stuttering severity (SSI-scores at T1). Boxplots display

413 residuals of (A) PDS+ and (B) PDS- at T1 and T2. Boxplots show whiskers from minimum to maximum,

- 414 interquartile range, and median values. IFG = inferior frontal gyrus; LMC = laryngeal motor cortex; pSTG =
- 415 *posterior superior temporal gyrus.*
- 416

417 Table 4 Disentangling the Group × Time interaction with PDS+ and PDS-

Seed - target region	Time	Beta	<i>T</i> (DF)	р	Group	<i>T</i> (DF)	р
	T2 > T1				PDS+ vs. PDS-		
¹ eft FG – eft LMC	PDS+	0.09	3.64 [#] (19)	0.002	T1	-1.34 (37.9)	0.188
	PDS-	-0.08	-1.73 [#] (15)	0.105	Τ2	1.45 (36.9)	0.155
¹ eft FG – right pSTG	PDS+	0.11	3.26 [#] (19)	0.004	T1	-0.78 (34.2)	0.442
	PDS-	0.008	0.14 [#] (15)	0.891	T2	1.69 (35.0)	0.100

⁴¹⁸ *[#]Positive values indicate increased connectivity, and negative values indicate decreased connectivity at T2.*

419

•

420 No correlation between connectivity changes and fluency enhancement

421 Neither the change in speech fluency (SSI-4, total score) nor the reappraisal of stuttering (OASES,

total score) correlated with the changes in rs-connectivity of PDS+, all p > 0.05.

423

424 Discussion

- 425 A one-year, biofeedback-based, speech restructuring training program sustainably facilitated speech
- 426 fluency of patients with developmental stuttering. Furthermore, neural reorganization included a
- 427 strengthened synchronization of the IFG pars opercularis with the left LMC and the right pSTG. Thus,
- 428 resting-state fMRI showed that intensive stuttering intervention remodeled the command-to-
- 429 execution pathway and the sensory-to-motor pathway within the sensorimotor integration network.
- 430 Hence, we show here for the first time that a computer-assisted, biofeedback-based, intensive

431 speech training program induced functionally specific, long-term focal changes in task-free brain

432 connectivity.

433

434 Therapy induced a positive shift of brain connectivity

435 We measured, task-free BOLD fMRI fluctuations with ROI-to-ROI connectivity matrices. Chosen 436 metrics characterize connectivity between pairs of ROIs among predefined sets of regions and yield 437 values varying above and below zero. The metrics called 'connectivity' is, at its core, a tanh⁻¹-438 transformed correlation coefficient. The naming 'connectivity' can be counter-intuitive when a 439 measure with negative values is concerned. We stuck to this nomenclature, following (Biswal et al., 440 1995; Whitfield-Gabrieli and Nieto-Castanon, 2012). How then can we interpret negative values and 441 changes? The activity waveforms at the two sites of interest underly a number of influences. Some 442 might be direct, between the regions, others indirect. The sum of all influences create the observed 443 correlation, reported as 'connectivity'. Negative connectivity values signify a negative correlation 444 between the signal waveforms of the two brain regions of interest. This connectivity reflects, in a 445 single number, the net effects of those multiple influences, some driving positive correlations, some 446 driving negative correlations. The overall group median around 0 is consistent with the idea that 447 positively correlating influences and negatively correlating influences are balanced. The fluctuations 448 observed for individual participants, the change of sign from T1 to T2, indicates that the relative 449 magnitude of positive and negatively correlating influences varies. In this framework, the therapy-450 related shift towards more positive connectivity has to be interpreted as an increase of the 451 influences that drive positive correlations between the two sites. In some participants, this effect 452 occurs relative to a baseline of an overall negative correlation, leading to less negative 'connectivity'. 453 This shift towards more positively correlating influences on the sensorimotor areas, follows the 454 training and usage of reshaped speech patterns. This is consistent with the hypothesis that the 455 sensorimotor integration necessary for this re(learning) is the cause of this more positively 456 correlating influence.

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.27.219360; this version posted October 27, 2021. The copyright holder for this preprint (which was/<u>forceastings of peoplies author/funder, who has granted bioRxiv a license to ensprint the perpension</u> is made available under aCC-BY-NC 4.0 International license.

457

458	Stuttering intervention strengthens connectivity of the left IFG with the left laryngeal motor cortex
459	The studied intervention encompassed one year of learning and practicing a new speech technique.
460	This speech technique comprises soft voice onsets, consonant lenitions, and controlled sound
461	prolongations (Euler et al., 2009). Thus, voicing and timing are the key features under change
462	throughout the acquisition of the new speech technique. The control of voicing is based on the
463	neural control of the larynx and involves the LMC (Bouchard et al., 2013; Brown et al., 2008; Olthoff
464	et al., 2008; Rödel et al., 2004; Simonyan, 2014; Simonyan et al., 2009), while the control of speech
465	timing involves activity of the posterior part of the inferior frontal gyrus pars opercularis (Clos et al.,
466	2013; Long et al., 2016; Neef et al., 2016). Accordingly, the intensive training incorporated two brain
467	regions, the left LMC and the left IFG, that provide essential neural contributions to fluent speech
468	production.
469	We found that the intervention strengthened connectivity between the left IFG and the left LMC in
469 470	We found that the intervention strengthened connectivity between the left IFG and the left LMC in the current study. This finding is also consistent with the involvement of the left posterior IFG and
469 470 471	We found that the intervention strengthened connectivity between the left IFG and the left LMC in the current study. This finding is also consistent with the involvement of the left posterior IFG and left motor cortex in motor learning in general (Papitto et al., 2019) and with the particular
469 470 471 472	We found that the intervention strengthened connectivity between the left IFG and the left LMC in the current study. This finding is also consistent with the involvement of the left posterior IFG and left motor cortex in motor learning in general (Papitto et al., 2019) and with the particular involvement of the posterior IFG and the left LMC in speech motor learning (Darainy et al., 2019;
469 470 471 472 473	We found that the intervention strengthened connectivity between the left IFG and the left LMC in the current study. This finding is also consistent with the involvement of the left posterior IFG and left motor cortex in motor learning in general (Papitto et al., 2019) and with the particular involvement of the posterior IFG and the left LMC in speech motor learning (Darainy et al., 2019; Rauschecker et al., 2008). The IFG and the orofacial motor cortex share direct connections (Greenlee
469 470 471 472 473 474	We found that the intervention strengthened connectivity between the left IFG and the left LMC in the current study. This finding is also consistent with the involvement of the left posterior IFG and left motor cortex in motor learning in general (Papitto et al., 2019) and with the particular involvement of the posterior IFG and the left LMC in speech motor learning (Darainy et al., 2019; Rauschecker et al., 2008). The IFG and the orofacial motor cortex share direct connections (Greenlee et al., 2004) and are commonly co-active under task- and resting-state conditions (Simonyan et al.,
469 470 471 472 473 474 475	We found that the intervention strengthened connectivity between the left IFG and the left LMC in the current study. This finding is also consistent with the involvement of the left posterior IFG and left motor cortex in motor learning in general (Papitto et al., 2019) and with the particular involvement of the posterior IFG and the left LMC in speech motor learning (Darainy et al., 2019; Rauschecker et al., 2008). The IFG and the orofacial motor cortex share direct connections (Greenlee et al., 2004) and are commonly co-active under task- and resting-state conditions (Simonyan et al., 2009; Simonyan and Fuertinger, 2015). Furthermore, theories on speech motor control assume the
469 470 471 472 473 474 475 476	We found that the intervention strengthened connectivity between the left IFG and the left LMC in the current study. This finding is also consistent with the involvement of the left posterior IFG and left motor cortex in motor learning in general (Papitto et al., 2019) and with the particular involvement of the posterior IFG and the left LMC in speech motor learning (Darainy et al., 2019; Rauschecker et al., 2008). The IFG and the orofacial motor cortex share direct connections (Greenlee et al., 2004) and are commonly co-active under task- and resting-state conditions (Simonyan et al., 2009; Simonyan and Fuertinger, 2015). Furthermore, theories on speech motor control assume the posterior region of the IFG to link the target speech unit to an articulatory code that is subsequently
469 470 471 472 473 474 475 476 477	We found that the intervention strengthened connectivity between the left IFG and the left LMC in the current study. This finding is also consistent with the involvement of the left posterior IFG and left motor cortex in motor learning in general (Papitto et al., 2019) and with the particular involvement of the posterior IFG and the left LMC in speech motor learning (Darainy et al., 2019; Rauschecker et al., 2008). The IFG and the orofacial motor cortex share direct connections (Greenlee et al., 2004) and are commonly co-active under task- and resting-state conditions (Simonyan et al., 2009; Simonyan and Fuertinger, 2015). Furthermore, theories on speech motor control assume the posterior region of the IFG to link the target speech unit to an articulatory code that is subsequently implemented by the motor cortices, which finally orchestrate the articulators, including the larynx
469 470 471 472 473 474 475 476 477 478	We found that the intervention strengthened connectivity between the left IFG and the left LMC in the current study. This finding is also consistent with the involvement of the left posterior IFG and left motor cortex in motor learning in general (Papitto et al., 2019) and with the particular involvement of the posterior IFG and the left LMC in speech motor learning (Darainy et al., 2019; Rauschecker et al., 2008). The IFG and the orofacial motor cortex share direct connections (Greenlee et al., 2004) and are commonly co-active under task- and resting-state conditions (Simonyan et al., 2009; Simonyan and Fuertinger, 2015). Furthermore, theories on speech motor control assume the posterior region of the IFG to link the target speech unit to an articulatory code that is subsequently implemented by the motor cortices, which finally orchestrate the articulators, including the larynx (Guenther, 2016). Hence, vital functional connectivity between the left IFG and left LMC is essential

480

481 Stuttering intervention strengthens connectivity of the left IFG with the right posterior superior

482 temporal gyrus

483	The intervention strengthened co-activity between the left IFG and the right pSTG. The speech motor
484	system has to monitor the auditory feedback signal to correct articulatory errors in natural speech
485	rapidly. Speech-related auditory feedback control involves the right pSTG and task-related co-
486	activations of the left posterior IFG with bilateral pSTGs (Behroozmand et al., 2015; Guenther, 2016;
487	Guenther et al., 2006; Niziolek and Guenther, 2013; Tourville et al., 2008). The DIVA (directions into
488	velocities of articulators) model of speech motor control suggests that the posterior IFG provides
489	feedforward control signals, and the pSTG conveys feedback-based corrective signals (Guenther,
490	2016). In addition, the right pSTG is associated with spectral auditory feedback control, whereas the
491	left pSTG is more involved during changes in the temporal domain of auditory feedback (Floegel et
492	al., 2020). Learning and practicing a new speech technique addresses neural circuitries of auditory
493	feedback monitoring because patients are constantly required to adjust their speech to fit the new
494	sound pattern of fluency shaping. We suggest that the increased co-activity between left IFG and
495	right pSTG could reflect the frequent recruitment of both brain regions and auditory spectral
496	feedback control mechanisms during learning and practicing the new speech pattern.
497	Interestingly in our study, PDS+ had no increase of left-hemispheric functional connectivity between
498	the ventral motor cortex vMC and pSTG, contrary to observations in a former study (Kell et al., 2018).
499	This former study used task-related fMRI and showed a reduced left pSTS-to-vMC connectivity before
500	therapy and a strengthened left aSTG-to-vMC connectivity after therapy in PDS+. One possible
501	explanation of why we could not find such an intervention-associated strengthening of left auditory-
502	to-motor coupling could be the seeds' locations in the current study. While the IFG seeds overlap,
503	MC and STG ROIs are not overlapping. However, another difference between both studies is the time
504	between T1 and T2. The current study investigated the long-term effects. Thus, strengthened
505	connectivity, including the left pSTG could be missing as participants might have shifted auditory
506	feedback control strategies throughout the intervention. One could speculate that temporal features

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.27.219360; this version posted October 27, 2021. The copyright holder for this preprint (which was hor control bioRxiv a license to cherror bioRxiv a license to cherror bioRxiv propriation by the author/funder, who has granted bioRxiv a license to cherror bioRxiv a license.

related to the soft production of consonants might be more critical at the early stage of speech

508 motor learning, while spectral features such as vowel length and prosody come later into play.

509

510 Resting-state connectivity is improbable to reflect compensatory brain activity

511 Here, we measured MRI signal fluctuations in the absence of response demands or external

512 stimulation to describe intervention-induced changes in the speech function-related sensorimotor

513 integration network. It is assumed that spontaneous brain activity at rest relates to the underlying

anatomical circuitry (Deco et al., 2013) as supported by diffusion-weighted imaging (Hagmann et al.,

515 2008; Honey et al., 2009). Specifically, it has been suggested that spatially and temporally correlated

516 brain activity at rest arises from neuronal noise between brain areas that share anatomical

517 connections (Deco et al., 2013). In this respect, the current study extends the scope of previous

518 studies where task-related changes in brain activity were observed as a result of the very same

519 intensive stuttering intervention (Kell et al., 2018, 2009; Neumann et al., 2005, 2003). Nevertheless,

520 the current finding of increased sensorimotor learning does not contradict previous conclusions, i.e.,

521 normalization of brain activity after intervention (Kell et al., 2018, 2009; Neumann et al., 2005, 2003)

522 as findings are not directly comparable. First, whereas this study investigates long-term effects, the

523 former study tested short-term brain changes directly after the on-site intervention. In addition, the

524 analyses methods of this study highlight learning-related changes and cannot represent neuronal

525 processes related to the occurrence of speech disfluencies. On the other hand, task-related

526 neuroimaging results from learning studies might be confounded by behavioral changes. Using

527 resting-state activity as a neural marker of neuroplasticity rules out that changes in brain activity

528 were induced by changes in task performance (Darainy et al., 2019). In fact, here we provided a

529 purely neurophysiological index of neuroplasticity in the context of an intensive stuttering

530 intervention.

531

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.27.219360; this version posted October 27, 2021. The copyright holder for this preprint (which was/<u>horrearthied by preedinged by preedinged by prestrict to perpendent of the author/funder, who has granted bioRxiv a license to enspire the prestrict to perpendent is made available under aCC-BY-NC 4.0 International license.</u>

532 No correlations between behavioral and connectivity changes

533	Consistent with our findings, some previous studies reported no correlations between changes in
534	brain activity and changes in speech fluency (Neumann et al., 2003; Toyomura et al., 2015). Others
535	observed correlations between post-treatment speech fluency and task-based brain activity and
536	connectivity (Kell et al., 2018, 2009; Lu et al., 2017) or task-free resting-state connectivity (Lu et al.,
537	2012). These previously reported resting-state functional connectivity changes involved the
538	cerebellum and related the left declive and vermis area to intervention-induced speech fluency (Kell
539	et al., 2009; Lu et al., 2012; Toyomura et al., 2015). In our study, the field of view did not cover the
540	cerebellum, and thus cerebellar ROIs were not included in the analyses. For this reason, it was not
541	possible to test intervention-induced reorganization of the cerebellum.
542	However, the question still remains of why the significant changes in connectivity reported here do
543	not correlate with speech fluency changes.
544	
545	Connectivity changes involve brain hubs of the sensorimotor integration network
546	We observed no connectivity changes between brain hubs subserving speech planning processes and
547	articulatory convergence. Speech planning processes address working memory resources, and
548	related brain activity is shaped by sequencing demands, syllable complexity, and length (Bohland and
549	Guenther, 2006; Rottschy et al., 2012; Segawa et al., 2015). Articulatory convergence relates to the
550	joint coordination of articulatory movements across the multiple articulatory subsystems (Guenther,
551	2016). During the intervention, the main focus of practice was controlling the larynx to use soft voice

- onsets and consonants together with slow speech. This technique requires primarily sensorimotor
- 553 control and monitoring of the intended auditory target and might unburden or even facilitate speech
- 554 planning and articulatory convergence. Thus, speech planning processes or the coordination of
- articulators were not addressed to result in task-free functional connectivity changes. Our
- observation is in line with a recent neuroimaging study showing that PDS exhibit no deficit in learning

557 to produce novel phoneme sequences (Masapollo et al., 2021); task-related fMRI data showed no 558 difference in brain activity between PDS and controls for the articulation of practiced und novel 559 pseudowords. Thus, sensorimotor learning and feedback processing in the context of voice control 560 may be the main drivers of the neuroplasticity in the current study. 561 Previous studies also related intervention-associated functional activity and connectivity changes to 562 sensorimotor integration (Kell et al., 2018) and normalized prosody processing (Kell et al., 2018). 563 They suggested that fluency-inducing techniques synchronize a disturbed signal transmission 564 between auditory, speech motor planning, and motor areas (Neumann et al., 2003). Moreover, the 565 main conclusion from these previous task-fMRI studies is that fluency-shaping training normalizes 566 brain activity. This conclusion is based on the observation that pretreatment activity was reduced in 567 the left IFG and increased in the right IFG, but normalized to a level that is comparable to the activity 568 in controls after the intervention (Kell et al., 2018, 2009; Neumann et al., 2003). However, in the 569 present study, pretreatment rs-fMRI connectivity was similar between PDS+ and FC. There was 570 neither altered resting-state connectivity of the left nor of the right IFG. Only post-treatment 571 connectivity was increased between hubs within the set of sensorimotor integration ROIs. Thus, the 572 current findings do not directly support the previous normalization account. Instead, current rs-fMRI 573 data suggest that fluency-shaping training recruits connections that support sensorimotor learning 574 and integration. One could speculate that people who do not stutter would recruit similar 575 connections to learn a new speaking behavior and that intensive therapy addresses a vital brain 576 function. This interpretation is in line with rs-fMRI connectivity changes observed after short-term 577 speech motor adaptation (Darainy 2019). 578 The increased task-fMRI activity of the right IFG is a signature of persistent developmental stuttering 579 (Belyk et al., 2015; Brown et al., 2005; Budde et al., 2014; Neef et al., 2015). On the one hand, 580 previous studies associate the therapy-associated reduction of this hyperactivity in the right IFG with 581 compensatory mechanisms (Kell et al., 2009; Neumann et al., 2003; Preibisch et al., 2003). On the

other hand, previous studies from our group suggest that this hyperactivity might be related to

583	hyperactive action inhibition, which could indicate a pathophysiological mechanism that causes
584	stuttering (Hartwigsen et al., 2019; Neef et al., 2018, 2016). Here we show, that the connectivity
585	between the set of ROIs forming the inhibition network remained unchanged. This observation also
586	supports the view that fluency-shaping training addresses vital sensorimotor learning and integration
587	structures rather than the pathophysiological structures themselves.
588	
589	Perspectives concerning other therapeutic approaches to ameliorate stuttering
590	Common stuttering interventions consist of (1) speech motor interventions partly modifying or
591	entirely reshaping laryngeal, articulatory, or respiratory movements, (2) feedback and technology
592	interventions which use, e.g., delayed auditory feedback to enhance fluency, or visual feedback to
593	support speech motor interventions, (3) behavioral modification interventions, or (4) cognitive
594	interventions improving psychological well-being, self-confidence, and self-conception. The current
595	and previous studies tested neurofunctional correlates of brain reorganization for the first two
596	approaches. However, the neurobiological foundation of an intervention-induced relief from

597 stuttering induced by the other two approaches, such as, for example, the cognitive-behavior

intervention (Menzies et al., 2016), would be worth studying.

599 Of most significant importance are future studies in children with persistent stuttering. Cross-600 sectional morphological studies with children who stutter imply a primary deficit in left frontal brain 601 hubs of speech motor control (Beal et al., 2013; Chang et al., 2019; Garnett et al., 2018; Koenraads et 602 al., 2020). Moreover, compared to fluent peers, children who stutter exhibited a reduced activation 603 of the left dorsal IFG and the left premotor cortex during overt speech production, as shown by fNIRS 604 (Walsh et al., 2017). However, in particular, rs-fMRI is a feasible approach to extend our knowledge 605 about neuroplasticity related to improved fluency or even recovery in young children because it is 606 not required to engage them in a speech task. A longitudinal rs-fMRI study revealed aberrant 607 network organizations in children who persist in stuttering and in children who recovered from

stuttering (Chang et al., 2018). Therefore, a significant future objective is to disentangle interventionassociated neural reorganization and maladaptive changes related to manifestation. A better
understanding of conditions that facilitate neurotypical brain functioning in children who stutter
could provide the neurobiological foundation of therapeutic strategies that sustainably enhance
fluency.

613

614 Limitations

615 The current study was a non-interventional prospective study. Unlike a clinical trial, data collection

and patient participation did not interfere with the choice of treatment, sample collection,

617 procedures, or the treatment itself. Specifically, we collected MRI data without interfering with

timing or choice of treatment. It is essential to acknowledge that, like everyone else, persons with

619 stuttering try to get the best out of life, and participating in on-site intensive training for multiple

620 weeks means being away from work, family, and daily obligations. For this reason, the chosen design

621 helped us recruit as many participants as possible. However, this approach resulted in the problem

that while PDS+ and FC were comparable for age, PDS+ and PDS- differed for age and stuttering

623 severity. Strikingly, our statistics yielded results that were neither influenced by age nor by stuttering

624 severity at T1. Nevertheless, to enhance comparability between groups of stuttering participants,

625 future studies should match participants according to their stuttering severity.

626 In addition, the study protocol included a task-related fMRI of covert speaking (not reported here),

627 which was acquired before resting-state. Intervention-related changes in brain activity were evident

628 in the left and right rolandic operculum, the right IFG pars triangularis, the right SMG, the left STG,

the left temporal pole, and the left amygdala (Primaßin, 2019). However, none of these regions

630 showed intervention related-changes in task-free resting-state activity. Furthermore, the MRI

631 protocol was kept the same for all participants, and thus, possible carry-over effects would have

affected all groups in a similar way. Accordingly, although we cannot entirely exclude carry-over
effects, these two aspects make them less likely.

634	Last, test-retest reliability of metrics of spontaneous BOLD-fMRI fluctuations seems to strongly vary
635	between networks (Noble et al., 2019), regions (Donnelly-Kehoe et al., 2019), and over pairs of
636	regions (Pannunzi et al., 2017). For example, the default mode network and frontal network seem
637	most reliable, and subcortical networks seem least reliable (Noble et al., 2019), which might be
638	related to stronger connectivity estimates in cortical compared to subcortical networks (Noble et al.,
639	2017). Selected sets of seed ROIs were defined based on task-fMRI activity, an accepted approach to
640	evaluate rs-fMRI activity (Hausman et al., 2020; Pando-Naude et al., 2019). This approach was
641	motivated by the presumption that in the absence of a task, brain regions that typically activate
642	together during task performance show strong correlations with one another at rest (Deco et al.,
643	2013, 2011; Vahdat et al., 2011), and the current study was particularly interested in the brain hubs
644	involved in speech motor learning and processing. Because the selected sets of ROIs do not
645	constitute classical resting-state fMRI networks, such as the default network, they seem particularly
646	susceptible to variability and thus to a low test-retest reliability. Reliability across sessions is vital for
647	interpreting longitudinal studies (Birn et al., 2013). The statistical significance of increased
648	connectivity in the face of such variability suggests to us that the effect is of considerable magnitude.
649	

650 Conclusion

A one-year practice of fluency-shaping speech techniques boosts the synchrony of spontaneous brain
 activity in core hubs of speech timing and voice control. Thus, successful speech restructuring shapes
 sensorimotor integration networks and is reflected in a long-lasting, focal, neurofunctional
 reorganization.

655

656 References

657 658	Albert, N.B., Robertson, E.M., Miall, C.R., 2009. The resting human brain and motor learning. Current Biology 19, 1023–1027. https://doi.org/10.1016/j.cub.2009.04.028
659	Andreatta, R.D., Stemple, J.C., Joshi, A., Jiang, Y., 2010. Task-related differences in temporo-parietal
660	cortical activation during human phonatory behaviors. Neuroscience Letters 484, 51–55.
661	https://doi.org/10.1016/i.neulet.2010.08.017
662	Aron, Poldrack, 2006, Cortical and subcortical contributions to Stop signal response inhibition; role of
663	the subthalamic nucleus Neurosci 26 2424–2433
664	https://doi.org/10.1523/INFLIROSCI.4682-05.2006
665	Beal D S Gracco VI Brettschneider I Kroll R M De Nil I E 2013 A voxel-based morphometry
666	(VBM) analysis of regional grey and white matter volume abnormalities within the speech
667	production network of children who stutter. Cortex 49, 2151–2161.
668	https://doi.org/10.1016/j.cortex.2012.08.013
669	Behroozmand, R., Shebek, R., Hansen, D.R., Oya, H., Robin, D.A., Howard, M.A., Greenlee, J.D.W.,
670	2015. Sensory-motor networks involved in speech production and motor control: an fMRI
671	study. Neuroimage 109. 418–428. https://doi.org/10.1016/i.neuroimage.2015.01.040
672	Belvk, M., Kraft, S.J., Brown, S., 2015, Stuttering as a trait or state - an ALE meta-analysis of
673	neuroimaging studies. Eur. J. Neurosci. 41. 275–284. https://doi.org/10.1111/ein.12765
674	Birn, R.M., Mollov, E.K., Patriat, R., Parker, T., Meier, T.B., Kirk, G.R., Nair, V.A., Meverand, M.E.,
675	Prabhakaran, V., 2013. The effect of scan length on the reliability of resting-state fMRI
676	connectivity estimates. Neuroimage 83. 550–558.
677	https://doi.org/10.1016/i.neuroimage.2013.05.099
678	Biswal, B., Yetkin, F.Z., Haughton, V.M., Hyde, J.S., 1995. Functional connectivity in the motor cortex
679	of resting human brain using echo-planar mri. Magnetic Resonance in Medicine 34, 537–541.
680	https://doi.org/10.1002/mrm.1910340409
681	Bohland, J.W., Guenther, F.H., 2006. An fMRI investigation of syllable sequence production.
682	Neuroimage 32, 821–841, https://doi.org/10.1016/i.neuroimage.2006.04,173
683	Bouchard, K.E., Mesgarani, N., Johnson, K., Chang, E.F., 2013, Functional organization of human
684	sensorimotor cortex for speech articulation. Nature 495, 327–332.
685	https://doi.org/10.1038/nature11911
686	Brown, S., Ingham, R.J., Ingham, J.C., Laird, A.R., Fox, P.T., 2005. Stuttered and fluent speech
687	production: an ALE meta-analysis of functional neuroimaging studies. Hum Brain Mapp 25,
688	105–117. https://doi.org/10.1002/hbm.20140
689	Brown, S., Ngan, E., Liotti, M., 2008. A Larynx Area in the Human Motor Cortex. Cereb Cortex 18,
690	837–845. https://doi.org/10.1093/cercor/bhm131
691	Budde, K., Barron, D.S., Fox, P.T., 2014. Stuttering, induced fluency, and natural fluency: A
692	hierarchical series of activation likelihood estimation meta-analyses. Brain and Language 99–
693	107.
694	Calmels, C., 2020. Neural correlates of motor expertise: Extensive motor training and cortical
695	changes. Brain Res. 1739, 146323. https://doi.org/10.1016/j.brainres.2019.146323
696	Chang, SE., Angstadt, M., Chow, H.M., Etchell, A.C., Garnett, E.O., Choo, A.L., Kessler, D., Welsh,
697	R.C., Sripada, C., 2018. Anomalous network architecture of the resting brain in children who
698	stutter. Journal of Fluency Disorders 55, 46–67. https://doi.org/10.1016/j.jfludis.2017.01.002
699	Chang, SE., Garnett, E.O., Etchell, A., Chow, H.M., 2019. Functional and Neuroanatomical Bases of
700	Developmental Stuttering: Current Insights. Neuroscientist 25, 566–582.
701	https://doi.org/10.1177/1073858418803594
702	Clos, M., Amunts, K., Laird, A.R., Fox, P.T., Eickhoff, S.B., 2013. Tackling the multifunctional nature of
703	Broca's region meta-analytically: Co-activation-based parcellation of area 44. NeuroImage
704	83, 174–188. https://doi.org/10.1016/j.neuroimage.2013.06.041
705	Darainy, M., Vahdat, S., Ostry, D.J., 2019. Neural Basis of Sensorimotor Plasticity in Speech Motor
706	Adaptation. Cerebral Cortex 29, 2876–2889. https://doi.org/10.1093/cercor/bhy153
707	De Nil, L.F., Beal, D.S., Lafaille, S.J., Kroll, R.M., Crawley, A.P., Gracco, V.L., 2008. The effects of
708	simulated stuttering and prolonged speech on the neural activation patterns of stuttering

709 710	and nonstuttering adults. Brain Lang 107, 114–123. https://doi.org/10.1016/i.bandl.2008.07.003
711	De Nil LE Kroll R M Houle S 2001 Eurotional neuroimaging of cerebellar activation during single
712	word reading and verb generation in stuttering and nonstuttering adults. Neurosci Lett 302
713	77–80 https://doi.org/10.1016/s0304-3940/01)01671-8
714	De Nil LE Kroll R.M. Lafaille S.L. Houle S. 2003. A nositron emission tomography study of short-
715	and long-term treatment effects on functional brain activation in adults who stutter.
716	Eluency Disord 28, 357–379; quiz 379–380, https://doi.org/10.1016/i.ifludis.2003.07.002
717	Deco G lirsa VK McIntosh A R 2011 Emerging concents for the dynamical organization of
718	resting-state activity in the brain. Nat Rev Neurosci 12, 43–56
719	https://doi.org/10.1038/prp2961
720	Deco G Ponce-Alvarez A Mantini D Romani G L Hagmann P Corbetta M 2013 Resting-State
721	European Connectivity Emerges from Structurally and Dynamically Shaped Slow Linear
722	Fluctuations Neurosci 33 11239–11252 https://doi.org/10.1523/INEUROSCI.1091-
723	13 2013
724	Donnelly-Kehoe P. Saenger, V.M. Lisofsky, N. Kühn, S. Kringelbach, M.L. Schwarzbach, J.
725	Lindenberger, U., Deco, G., 2019. Reliable local dynamics in the brain across sessions are
726	revealed by whole-brain modeling of resting state activity. Hum Brain Mapp 40, 2967–2980.
727	https://doi.org/10.1002/hbm.24572
728	Euler, H.A., Gudenberg, A.W. v. Jung, K., Neumann, K., 2009. Computergestützte Therapie bei
729	Redeflussstörungen: Die langfristige Wirksamkeit der Kasseler Stottertherapie (KST). Sprache
730	· Stimme · Gehör 33, 193–202. https://doi.org/10.1055/s-0029-1242747
731	Euler, H.A., Merkel, A., Hente, K., Neef, N., Wolff von Gudenberg, A., Neumann, K., 2021. Speech
732	restructuring group treatment for 6-to-9-year-old children who stutter: A therapeutic trial. J
733	Commun Disord 89, 106073. https://doi.org/10.1016/j.jcomdis.2020.106073
734	Floegel, M., Fuchs, S., Kell, C.A., 2020. Differential contributions of the two cerebral hemispheres to
735	temporal and spectral speech feedback control. Nat Commun 11, 2839.
736	https://doi.org/10.1038/s41467-020-16743-2
737	Fox, M.D., Corbetta, M., Snyder, A.Z., Vincent, J.L., Raichle, M.E., 2006. Spontaneous neuronal activity
738	distinguishes human dorsal and ventral attention systems. PNAS 103, 10046–10051.
739	https://doi.org/10.1073/pnas.0604187103
740	Garnett, E.O., Chow, H.M., Nieto-Castañón, A., Tourville, J.A., Guenther, F.H., Chang, SE., 2018.
741	Anomalous morphology in left hemisphere motor and premotor cortex of children who
742	stutter. Brain 141, 2670–2684. https://doi.org/10.1093/brain/awy199
743	Ghahremani, A., Wessel, J.R., Udupa, K., Neagu, B., Zhuang, P., Saha, U., Kalia, S.K., Hodaie, M.,
744	Lozano, A.M., Aron, A.R., Chen, R., 2018. Stopping and slowing manual and spoken
745	responses: Similar oscillatory signatures recorded from the subthalamic nucleus. Brain Lang
746	176, 1–10. https://doi.org/10.1016/j.bandl.2017.10.009
747	Goto, M., Abe, O., Miyati, T., Yamasue, H., Gomi, T., Takeda, T., 2016. Head Motion and Correction
748	Methods in Resting-state Functional MRI. Magn Reson Med Sci 15, 178–186.
749	https://doi.org/10.2463/mrms.rev.2015-0060
750	Greenlee, J.D.W., Oya, H., Kawasaki, H., Volkov, I.O., Kaufman, O.P., Kovach, C., Howard, M.A.,
751	Brugge, J.F., 2004. A Functional Connection Between Inferior Frontal Gyrus and Orofacial
752	Motor Cortex in Human. Journal of Neurophysiology 92, 1153–1164.
753	https://doi.org/10.1152/jn.00609.2003
754	Guenther, F.H., 2016. Neural Control of Speech. MIT Press, Cambridge, Mass.
755	Guenther, F.H., Ghosh, S.S., Tourville, J.A., 2006. Neural modeling and imaging of the cortical
/50 757	Interactions underlying syllable production. Brain Lang 96, 280–301.
/)/ 750	Intps://doi.org/10.1010/J.Dandi.2005.001
750 750	maginanii, r., Caninoun, L., Oiganuel, A., Meuli, K., Honey, C.J., Wedeen, V.J., Sporns, O., 2008.
760	https://doi.org/10.1371/journal.phio.0060159
,00	https://doi.org/10.13/1/journal.poi0.0000133

761	Hartwigsen, G., Neef, N.E., Camilleri, J.A., Margulies, D.S., Eickhoff, S.B., 2019. Functional Segregation
762	of the Right Inferior Frontal Gyrus: Evidence From Coactivation-Based Parcellation. Cereb.
763	Cortex 29, 1532–1546. https://doi.org/10.1093/cercor/bhy049
764	Hausman, H.K., Jackson, T.B., Goen, J.R.M., Bernard, J.A., 2020. From Synchrony to Asynchrony:
765	Cerebellar-Basal Ganglia Functional Circuits in Young and Older Adults. Cereb Cortex 30, 718–
766	729. https://doi.org/10.1093/cercor/bhz121
767	Hayes, A.F., Krippendorff, K., 2017. Answering the call for a standard reliability measure for coding
768	data. Communication Methods and Measures 1, 77–89.
769	Hickok, Houde, J., Rong, F., 2011. Sensorimotor Integration in Speech Processing: Computational
770	Basis and Neural Organization. Neuron 69, 407–422.
771	https://doi.org/10.1016/j.neuron.2011.01.019
772	Honey, C.J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J.P., Meuli, R., Hagmann, P., 2009.
773	Predicting human resting-state functional connectivity from structural connectivity. PNAS
774	106, 2035–2040. https://doi.org/10.1073/pnas.0811168106
775	Ingham, R.J., Ingham, J.C., Euler, H.A., Neumann, K., 2018. Stuttering treatment and brain research in
776	adults: A still unfolding relationship. J Fluency Disord 55, 106–119.
777	https://doi.org/10.1016/j.jfludis.2017.02.003
778	Kell, C.A., 2012. Resting-state MRI: a peek through the keyhole on therapy for stuttering. Neurology
779	79, 614–615. https://doi.org/10.1212/WNL.0b013e31826357fe
780	Kell, C.A., Neumann, K., Behrens, M., Gudenberg, A.W. von, Giraud, AL., 2018. Speaking-related
781	changes in cortical functional connecitivity associated with assisted and spontaneous
782	recovery from developmental stuttering. Journal of Fluency Disorders 55, 135–144.
783	https://doi.org/10.1016/j.jfludis.2017.02.001
784	Kell, C.A., Neumann, K., von Kriegstein, K., Posenenske, C., Gudenberg, V., W, A., Euler, H., Giraud, A
785	L., 2009. How the brain repairs stuttering. Brain 132, 2747–2760.
786	https://doi.org/10.1093/brain/awp185
787	Koenraads, S.P.C., van der Schroeff, M.P., van Ingen, G., Lamballais, S., Tiemeier, H., Baatenburg de
788	Jong, R.J., White, T., Franken, M.C., Muetzel, R.L., 2020. Structural brain differences in pre-
789	adolescents who persist in and recover from stuttering. Neuroimage Clin 27, 102334.
790	https://doi.org/10.1016/j.nicl.2020.102334
791	Kumar, V., Croxson, P.L., Simonyan, K., 2016. Structural Organization of the Laryngeal Motor Cortical
792	Network and Its Implication for Evolution of Speech Production. The Journal of Neuroscience
793	36, 4170–4181. https://doi.org/10.1523/JNEUROSCI.3914-15.2016
794	Long, M.A., Katlowitz, K.A., Svirsky, M.A., Clary, R.C., Byun, T.M., Majaj, N., Oya, H., Howard III, M.A.,
795	Greenlee, J.D.W., 2016. Functional Segregation of Cortical Regions Underlying Speech Timing
796	and Articulation. Neuron 89, 1187–1193. https://doi.org/10.1016/j.neuron.2016.01.032
797	Lu, C., Chen, C., Ning, N., Ding, G., Guo, T., Peng, D., Yang, Y., Li, K., Lin, C., 2010. The neural
798	substrates for atypical planning and execution of word production in stuttering. Exp Neurol
799	221, 146–156. https://doi.org/10.1016/j.expneurol.2009.10.016
800	Lu, C., Chen, C., Peng, D., You, W., Zhang, X., Ding, G., Deng, X., Yan, Q., Howell, P., 2012. Neural
801	anomaly and reorganization in speakers who stutter: a short-term intervention study.
802	Neurology 79, 625–632. https://doi.org/10.1212/WNL.0b013e31826356d2
803	Lu, C., Zheng, L., Long, Y., Yan, Q., Ding, G., Liu, L., Peng, D., Howell, P., 2017. Reorganization of brain
804	function after a short-term behavioral intervention for stuttering. Brain and Language 168,
805	12–22. https://doi.org/10.1016/j.bandl.2017.01.001
806	Margulies, D.S., Kelly, A.M.C., Uddin, L.Q., Biswal, B.B., Castellanos, F.X., Milham, M.P., 2007.
807	Mapping the functional connectivity of anterior cingulate cortex. Neuroimage 37, 579–588.
808	https://doi.org/10.1016/j.neuroimage.2007.05.019
809	Masapollo, M., Segawa, J.A., Beal, D.S., Tourville, J.A., Nieto-Castañón, A., Heyne, M., Frankford, S.A.,
810	Guenther, F.H., 2021. Behavioral and Neural Correlates of Speech Motor Sequence Learning
811	in Stuttering and Neurotypical Speakers: An fMRI Investigation. Neurobiology of Language 2,
812	106–137. https://doi.org/10.1162/nol_a_00027

813	Max Ludo, Caruso Anthony J., 1997. Contemporary Techniques for Establishing Fluency in the
814	Treatment of Adults Who Stutter. Contemporary Issues in Communication Science and
815	Disorders 24, 39–46. https://doi.org/10.1044/cicsd_24_S_39
816	Menzies, R., O'Brian, S., Lowe, R., Packman, A., Onslow, M., 2016. International Phase II clinical trial
817	of CBTPsych: A standalone Internet social anxiety treatment for adults who stutter. J Fluency
818	Disord 48, 35–43, https://doi.org/10.1016/i.ifludis.2016.06.002
819	Neef N.F. Anwander A. Bütfering C. Schmidt-Samoa C. Friederici A.D. Paulus W. Sommer M.
820	2018 Structural connectivity of right frontal hyperactive areas scales with stuttering severity
821	Brain 141, 191–204. https://doi.org/10.1093/brain/awx316
822	Neef, N.E., Anwander, A., Friederici, A.D., 2015. The Neurobiological Grounding of Persistent
823	Stuttering: from Structure to Function. Curr Neurol Neurosci Rep 15, 63.
824	https://doi.org/10.1007/s11910-015-0579-4
825	Neef N F Bütfering C Anwander A Friederici A D Paulus W Sommer M 2016 Left nosterior-
826	dorsal area 44 couples with parietal areas to promote speech fluency, while right area 44
827	activity promotes the stopping of motor responses. NeuroImage 1/2, 628–6//
027	https://doi.org/10.1016/i.nouroimage 2016.08.020
020	Neumann K. Euler H.A. Gudenberg A.W. von Giraud A.L. Lanfermann H. Gall V. Breihigeh C.
023	2002 The nature and treatment of stuttoring as revealed by fMDL a within, and between
021	2005. The fidure and treatment of stuttering as revealed by fivini, a within- and between-
022	group companison. Journal of Fluency Disorders, Brain Imaging and Stuttering 26, 561–410.
85Z	nttps://doi.org/10.1016/J.Jnudis.2003.07.003
021	Assisted and unassisted recession of functional anomalies associated with dyspressed in
034 025	Assisted and diffusisted recession of functional anomalies associated with dysprosody in adults who stutter lowred of Eluoney Disorders 55, 120–134
836	https://doi.org/10.1016/i.ifludis.2017.09.003 [Tito] anhand diosor DOL in Citavi. Projekt
030 927	übernehmen]
027	ubernennienij Neumann K. Breibisch C. Fuler II.A. Cudenberg A.W. von Lonfermann II. Cell V. Circud A. L
020	200E Certical electricity accessized with stuttering therapy, Journal of Elyaney Disorders 20
039	2005. Contrar plasticity associated with stuttering therapy. Journal of Fluency Disorders 50,
84U 041	25–59. https://doi.org/10.1016/j.jhudis.2004.12.002
041	Niziolek, C.A., Gueniner, F.H., 2015. Vowel Calegory Boundaries Enhance Cortical and Benavioral
84Z	Responses to Speech Feedback Alterations. J. Neurosci. 33, 12090–12098.
843	nttps://doi.org/10.1523/JNEUKOSCI.1008-13.2013
844	Noble, S., Scheinost, D., Constable, R.T., 2019. A decade of test-retest reliability of functional
845	connectivity: A systematic review and meta-analysis. Neuroimage 203, 116157.
846	nttps://doi.org/10.1016/j.neuroimage.2019.11615/
847	Noble, S., Spann, M.N., Tokoglu, F., Shen, X., Constable, R.T., Scheinost, D., 2017. Influences on the
848	Test-Retest Reliability of Functional Connectivity MRI and its Relationship with Behavioral
849	Utility. Cereb Cortex 27, 5415–5429. https://doi.org/10.1093/cercor/bhx230
850	Oldfield, R.C., 1971. The assessment and analysis of handedness: the Edinburgh Inventory.
851	Neuropsychologia 9, 97–113.
852	Olthoff, A., Baudewig, J., Kruse, E., Dechent, P., 2008. Cortical Sensorimotor Control in Vocalization: A
853	Functional Magnetic Resonance Imaging Study. The Laryngoscope 118, 2091–2096.
854	https://doi.org/10.1097/MLG.0b013e31817fd40f
855	Pando-Naude, V., Barrios, F.A., Alcauter, S., Pasaye, E.H., Vase, L., Brattico, E., Vuust, P., Garza-
856	Villarreal, E.A., 2019. Functional connectivity of music-induced analgesia in fibromyalgia. Sci
857	Rep 9, 15486. https://doi.org/10.1038/s41598-019-51990-4
858	Pannunzi, M., Hindriks, R., Bettinardi, R.G., Wenger, E., Lisofsky, N., Martensson, J., Butler, O.,
859	Filevich, E., Becker, M., Lochstet, M., Kühn, S., Deco, G., 2017. Resting-state fMRI
860	correlations: From link-wise unreliability to whole brain stability. Neuroimage 157, 250–262.
861	https://doi.org/10.1016/j.neuroimage.2017.06.006
862	Papitto, G., Friederici, A.D., Zaccarella, E., 2019. The topographical organization of motor processing:
863	An ALE meta-analysis on six action domains and the relevance of Broca's region. NeuroImage
864	116321. https://doi.org/10.1016/j.neuroimage.2019.116321

865 866	Power, J.D., Barnes, K.A., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E., 2012. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage
867	59, 2142–2154. https://doi.org/10.1016/j.neuroimage.2011.10.018
868	Preibisch, C., Neumann, K., Raab, P., Euler, H.A., von Gudenberg, A.W., Lanfermann, H., Giraud, AL.,
869	2003. Evidence for compensation for stuttering by the right frontal operculum. Neurolmage
870	20, 1356–1364. https://doi.org/10.1016/S1053-8119(03)00376-8
871	Price, C.J., 2012. A review and synthesis of the first 20 years of PET and fMRI studies of heard speech,
872	spoken language and reading. Neuroimage 62, 816–847.
873	https://doi.org/10.1016/j.neuroimage.2012.04.062
874	Primaßin, A., 2019. Longitudinal structural and functional brain changes associated with stuttering
875	improvement by therapy or brain lesion (Doctoral dissertation). Georg August University,
876	Göttingen.
877	Rauschecker, A.M., Pringle, A., Watkins, K.E., 2008. Changes in neural activity associated with
878	learning to articulate novel auditory pseudowords by covert repetition. Hum. Brain Mapp.
879	29, 1231–1242. https://doi.org/10.1002/hbm.20460
880	Riley, J., Riley, G., Maguire, G., 2004. Subjective Screening of Stuttering severity, locus of control and
881	avoidance: research edition. Journal of Fluency Disorders 29, 51–62.
882	https://doi.org/10.1016/j.jfludis.2003.12.001
883	Rödel, R.M.W., Olthoff, A., Tergau, F., Simonyan, K., Kraemer, D., Markus, H., Kruse, E., 2004. Human
884	Cortical Motor Representation of the Larynx as Assessed by Transcranial Magnetic
885	Stimulation (TMS). The Laryngoscope 114, 918–922. https://doi.org/10.1097/00005537-
886	200405000-00026
887	Rottschy, C., Langner, R., Dogan, I., Reetz, K., Laird, A.R., Schulz, J.B., Fox, P.T., Eickhoff, S.B., 2012.
888	Modelling neural correlates of working memory: a coordinate-based meta-analysis.
889	Neuroimage 60, 830–846. https://doi.org/10.1016/j.neuroimage.2011.11.050
890	Segawa, J.A., Tourville, J.A., Beal, D.S., Guenther, F.H., 2015. The neural correlates of speech motor
891	sequence learning. Journal of cognitive science 27, 819–831.
892	https://doi.org/10.1162/jocn a 00737
893	Simonyan, K., 2014. The laryngeal motor cortex: its organization and connectivity. Current Opinion in
894	Neurobiology, SI: Communication and language 28, 15–21.
895	https://doi.org/10.1016/j.conb.2014.05.006
896	Simonyan, K., Fuertinger, S., 2015. Speech networks at rest and in action: interactions between
897	functional brain networks controlling speech production. J. Neurophysiol. 113, 2967–2978.
898	https://doi.org/10.1152/jn.00964.2014
899	Simonyan, K., Ostuni, J., Ludlow, C.L., Horwitz, B., 2009. Functional but not structural networks of the
900	human laryngeal motor cortex show left hemispheric lateralization during syllable but not
901	breathing production. The Journal of Neuroscience 29, 14912–14923.
902	https://doi.org/10.1523/JNEUROSCI.4897-09.2009
903	Tourville, J.A., Reilly, K.J., Guenther, F.H., 2008. Neural mechanisms underlying auditory feedback
904	control of speech. NeuroImage 39, 1429–1443.
905	https://doi.org/10.1016/j.neuroimage.2007.09.054
906	Toyomura, A., Fujii, T., Kuriki, S., 2015. Effect of an 8-week practice of externally triggered speech on
907	basal ganglia activity of stuttering and fluent speakers. NeuroImage 109, 458–468.
908	https://doi.org/10.1016/j.neuroimage.2015.01.024
909	Turkeltaub, P.E., Eden, G.F., Jones, K.M., Zeffiro, T.A., 2002. Meta-Analysis of the Functional
910	Neuroanatomy of Single-Word Reading: Method and Validation. NeuroImage 16, 765–780.
911	https://doi.org/10.1006/nimg.2002.1131
912	Vahdat, S., Darainy, M., Milner, T.E., Ostry, D.J., 2011, Functionally Specific Changes in Resting-State
913	SensorimotorNetworks after Motor Learning. The Journal of Neuroscience 31, 16907–16915.
914	https://doi.org/10.1523/JNEUROSCI.2737-11.2011
915	Walsh, B., Tian, F., Tourville, J.A., Yücel, M.A., Kuczek, T., Bostian, A.J., 2017. Hemodynamics of
916	speech production: An fNIRS investigation of children who stutter. Sci Rep 7, 1–13.
917	https://doi.org/10.1038/s41598-017-04357-6

918	Watkins, K.E., Smith, S.M., Davis, S., Howell, P., 2008. Structural and functional abnormalities of the
919	motor system in developmental stuttering. Brain 131, 50–59.
920	https://doi.org/10.1093/brain/awm241
921	Webster, R.L., 1980. The Precision Fluency Shaping Program: Speech Reconstruction for Stutterers.
922	Communications Development Corporation.
923	Webster, R.L., 1974. A behavioral analysis of stuttering: treatment and theory, in: Calhoun, K.S.,
924	Adams, H.E., Mitchell, K.M. (Eds.), Innovative Treatment Methods in Psychopathology.
925	Wiley, New York, p. 17 67.
926	Whitfield-Gabrieli, S., Nieto-Castanon, A., 2012. Conn: a functional connectivity toolbox for
927	correlated and anticorrelated brain networks. Brain Connect 2, 125–141.
928	https://doi.org/10.1089/brain.2012.0073
929	Xue, G., Aron, A.R., Poldrack, R.A., 2008. Common Neural Substrates for Inhibition of Spoken and
930	Manual Responses. Cereb Cortex 18, 1923–1932. https://doi.org/10.1093/cercor/bhm220
931	Yaruss, J.S., Quesal, R.W., 2014. OASES: Overall Assessment of the Speaker's Experience of Stuttering.
932	Pearson Assessments, Bloomington.
933	Zhang, R., Geng, X., Lee, T.M.C., 2017. Large-scale functional neural network correlates of response
934	inhibition: an fMRI meta-analysis. Brain Struct Funct 1–18. https://doi.org/10.1007/s00429-
935	017-1443-x
936	
937	
938	Acknowledgments
939	This work was supported by the DFG (SO 429/4-1 to M.S). We thank Bettina Helten for the co-
940	analysis of the speech samples, Michael Bartl for supporting the organization of the behavioral data,
941	and Britta Perl and Ilona Pfahlert for assistance with the acquisition of the MRI data.

942

943 Author contributions

- 944 AK, AP, PD, WP, MS, and NEN conceptualized and designed the study. AP acquired the data. AK and
- 945 NEN analysed the rs-fMRI data. AK and NEN interpreted the data, drafted, and revised the
- 946 manuscript for content. All authors reviewed the manuscript.

- 948 Additional Information
- 949 The author(s) declare no competing interests.

в

4.22

-4.22

PDS+ intervention

А

PDS- intervention

B

