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Abstract

We explore how ideas and practices common in Bayesian modeling
can be applied to help assess the quality of 3D protein structural models.
As the word model is used in both Bayesian Statistics and Protein
Science, throughout this article we deliberately use the word model to
discuss statistical models and structure to discuss protein 3D models,
thus avoiding potential confusions. The basic premise of our approach,
is that the evaluation of a Bayesian statistical model’s fit may reveal
aspects of the quality of a structure, when the fitted data are related
to protein structural properties. Therefore, we fit a Bayesian hierarchical
linear model to experimental and theoretical 13Cα Chemical Shifts. Then,
we propose two complementary approaches for the evaluation of such
fitting: 1) in terms of the expected differences between experimental and
posterior predicted values; 2) in terms of the leave-one-out cross validation
point-wise predictive accuracy. Finally, we present visualizations that
can help interpret these evaluations. The analyses presented in this
article are aimed to aid in detecting problematic residues in protein
structures. The code developed for this work is available on: https:

//github.com/BIOS-IMASL/Hierarchical-Bayes-NMR-Validation.

Introduction

Bayesian statistics offers very suitable theoretical advantages for developing
models involving bio-molecular structural data and it has been applied in
numerous tools and methods in this context [1–6]. Furthermore, Bayesian
methods are capable of accounting for errors and noise of variable source and
nature, which is suitable for working with bio-molecular experimental data [7].

In statistics, partially pooling data means to separate observations into
groups, while allowing the groups to remain somehow linked in order to
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influence each other. In a Bayesian setting, such sharing is achieved naturally
through hierarchical modeling. In hierarchical models (also called multilevel
models), parameters of the prior distributions are shared among groups,
inducing dependencies and allowing them to effectively share information
[8–10]. Advantages of hierarchical Bayesian modelling include obtaining model
parameter estimates for each group as well as for the total population. Also,
using common prior distributions helps preventing the models over-fit [11].

In this study, we fit Bayesian models to experimental 13Cα Chemical
Shifts.We focus specifically on 13Cα Chemical Shifts because they have proven
to be informative on protein structure at the residue level and have been used in
determination and validation in previous work by us and others [12–15]. Another
promising aspect of working with 13Cα Chemical Shifts is that their theoretical
counterparts, can be computed with high accuracy using quantum-chemical
methods [13].

Bayesian model comparison and evaluation is standard in Bayesian
applications as it constitutes a very important part of the Bayesian workflow.
A variety of methods have been proposed for this task, helping Bayesian
practitioners evaluate, critique and ultimately understand their models [16]. In
the present work, we propose two complementary approaches for the evaluation
of protein structures. Both are related to different ways of analysing the
results of a Bayesian hierarchical linear model that links experimental and
theoretical 13Cα Chemical Shifts. For the first approach, we compare structures
in terms of their residuals (i.e. the difference between the observed and posterior
predicted values). To ease the comparison, we put the residuals in the context
of reference densities which are pre-computed from a data set of high quality
protein structures (see Methods and Software section for details). In the second
approach, we evaluate the statistical model’s fit in terms of its out-of-sample
predictive accuracy, i.e. the predicted accuracy computed from data not used
to train the model. The out-of-sample predictive accuracy can be estimated
using leave-one-out cross-validation, which requires to re-fit a model n times,
with n being the size of the data set (i.e. the number of 13Cα Chemical Shifts).
As this can be too costly and cumbersome, in this work we use an alternative;
the Pareto-smooth-importance sampling leave-one-out cross validation (LOO
for short) [17, 18]. LOO offers an accurate, reliable and fast estimate of the
out-of-sample prediction accuracy from a single model fit. Additionally, the
predictive accuracy is computed per observation, as we use 13Cα Chemical Shifts
this is equivalent to compute the predictive accuracy per residue. This allows
us to make statements of the quality of the structure at both global and per
residue level.

We expect the methods and visualizations presented here to introduce
Bayesian model checking tools to protein scientists. Also, we hope these
methods are adopted by protein scientists to help them evaluate the quality of
a given structure. This may include the structure determination process before
structure deposition at the Protein Data Bank. Or even after deposition, such
as evaluating a structures quality prior to further research like, for example,
performing docking or template-based modeling.
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Methods and Software

Reference data set

A reference data set of 111 high quality protein structures was obtained from
the Protein Data Bank (PDB) [19]. Each structure in this set has a resolution
6 2.0 Å and R-factors 6 0.25. The structures do not contain coordinates for
DNA, RNA or glycan molecules. Additionally, every structure in our set has a
corresponding entry at the Biological Magnetic Resonance Bank (BMRB) from
which experimental 13Cα Chemical Shift data was obtained [20]. Theoretical
13Cα Chemical Shift data was computed from the Cartesian coordinates of each
structure in this set, using CheShift-2 [15].

Target structures

Theoretical 13Cα Chemical Shift data was obtained for two structures of
protein Ubiquitin under PDB ids: 1UBQ and 1D3Z [21, 22]. Code id.: 1UBQ
corresponds to an X-ray crystallography determined structure of Ubiquitin,
while 1D3Z corresponds to an NMR determined structure. The latter contains
ten different conformations. We computed and averaged the theoretical 13Cα

Chemical Shifts for those 10 conformations. Additionally, the experimental
13Cα Chemical Shift set used in this analysis is taken from BMRB entry No:
6457, and is the same experimental data set used in the NMR determination of
1D3Z. In this study, the same experimental 13Cα Chemical Shift set was used
for both structures, but the theoretical 13Cα Chemical Shift set is different for
each structure, given that is was obtained from the Cartesian coordinates of
the PDB entries 1UBQ and 1D3Z. This particular data set construction for the
target structures, allows us to compare 1D3Z and 1UBQ based solely on the
differences between the 3D coordinates of their structures.

Hierarchical linear model

A Bayesian hierarchical linear regression model was fitted to the experimental
and theoretical 13Cα Chemical Shifts contained in the reference data set. The
data was normalized before fitting by subtracting the empirical mean and
dividing by the empirical standard deviation. The data grouping criterion was
amino acid side-chain, i.e., the model divides the data set into 19 groups (one
for each amino acid), with Cysteine being excluded given that CheShift-2 does
not offer reliable calculations for this amino acid. The full model is described
by expression 1 using standard statistical notation and it is also represented in
Figure 1 in Kruschke’s diagrams [23].
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ασ ∼ HN (1)

βσ ∼ HN (1)

αr ∼ N (0, αε)

βr ∼ HN (βε)

ε ∼ HN (1)

µr = αr + βrCStr

CSer ∼ N (µr, ε)

(1)

where HN (1) stands for half-normal distribution with standard deviation 1.
N (0, σ) is a normal distribution with mean 0 and standard deviation σ. CStr
represents theoretical 13Cα Chemical Shifts and CSer the experimental ones.
The sub index r denotes each of the 19 groups.

Figure 1: Krushke diagram representing the hierarchical linear model featured
in this work.
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Computation of the posterior predictive distribution of 13Cα

Chemical Shifts and Reference Densities

From the fitted hierarchical model, we compute the posterior predictive
distribution, that is the distribution of 13Cα Chemical Shifts as predicted by
the statistical model. We will refer to this set as corrected 13Cα Chemical
Shifts. Then, we compute the reference densities as the difference between
the corrected and experimental 13Cα Chemical Shifts from the reference data
set for each of the 19 most common amino acids present in proteins (with
Cysteine excluded as previously explained). Intuitively, the reference densities
are an approximation to the expected distribution of the difference between
experimental and corrected 13Cα Chemical Shifts. The difference between
corrected and experimental 13Cα Chemical Shifts was also computed for the
target structures, where the corrected set was defined from the posterior
predictive distribution of the model fitted to the structure’s 13Cα Chemical
Shift data.

Model comparison and Cross Validation

When faced with more than one model for the same data it is natural to ask
which model is the best at explaining the data, and more broadly, how are
models different from each other and what they have in common. One way to
asses a model is through its predictions. In order to do so, we can compare
a model’s predictions to experimental data. If we use the same experimental
data used to fit the model, i.e. we compute the within-sample error, we may
become overconfident in our model. The most simple solution is to compute
the out-of-sample error, this is the error that a model makes when evaluated
on data not used to fit it. Unfortunately, leaving a portion of the data aside
just for validation is most often than not a very expensive luxury. NMR
structure validation is clearly one such example.

The log predictive density has an important role in model comparison
because of its connection to the Kullback-Leibler divergence, a measure of
closeness between two probability distributions [11]. For historical reasons,
measures of predictive accuracy are referred to as information criteria and they
are a collection of diverse methods that allow to estimate the out-of-sample
error without requiring external data. In a Bayesian context one such measure
is LOO as previously mentioned in the introduction [17, 18, 24]. In the next
subsections, we will briefly explain some of the details related to LOO, specially
those more relevant for the current work.

LOO

The cross-validated leave-one-out predictive distribution p(yi | y−i) (or most
commonly its logarithm) can be used to asses the out-of-sample prediction
accuracy. In the present work this means the probability, according to the
model, of observing the i 13Cα Chemical Shifts when that Chemical Shift is not
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included in the fitting.
Computing p(yi | y−i) can become costly as it requires to fit a model n

times (where n is the data set’s size). Fortunately, the leave-one-out predictive
distribution can be approximated by using importance weights. The variance of
these importance weights can be large or even infinite, LOO applies a smoothing
procedure that involves replacing the largest importance weights with values
from an estimated Pareto distribution. For details of how this is done and why
it works see Vehtari et. al. (2017) [17]. What is most important for our current
discussion is that the κ̂ parameter of such Pareto distribution can be used to
detect highly influential observations, i.e. observations that have a large effect
on the predictive distribution when they are left out. In general higher values of
κ̂ can indicate problems with the data or model, specially when κ̂ > 0.7 [18,25].
In the Results section, we show how this diagnostic can be useful in the context
of protein structure validation.

LOO-PIT

PIT (Probability Integral Transform) known as the universality of the uniform
distribution, states that given a random variable with an arbitrary continuous
distribution, it is possible to create a uniform distribution in the interval [0, 1].
Specifically, given a continuous random variable X for which the cumulative
distribution function is FX , then FX(X) ∼ Unif(0, 1).

LOO-PIT is obtained by comparing the observed data y to posterior
predicted data ỹ. The comparison is done point-wise. We have:

pi = P (ỹi ≤ yi | y−i)

Intuitively, LOO-PIT is computing the point-wise probability that the
observed data yi has a lower value than the posterior predicted data ỹi. For a
well calibrated model the expected distribution of p is the uniform distribution
over the [0, 1] interval, i.e. a standard uniform distribution. Deviations from
uniformity indicate different mismatches between the data and the predictions
made by the model. For example a frown shape indicates that the predictive
distributions are too broad compared with the data, while the opposite will be
true for a U-shaped LOO-PIT density. An important advantage of using the
leave-one-out predictive distribution instead of just the predictive distribution
is that with the former, we are not using the data twice (once to fit the model
and once to validate it) [11,25].

Expected Log Predictive Density

Finally, we can compare models point-wise using their Expected Log Predictive
Density (ELPD), where the expectation is taken over the whole posterior. In
other words, the predictions take into account the parameter’s uncertainty, as
expressed by the statistical model and data. Notice that the value of the ELPD
is not useful by itself, but can be used to compare the relative fit of residues
within a same structure and/or to compare the relative fit of residues from two
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or more structures, as long as they are fitted to the same data. While the values
of k̂appa indicate how influential an observation is, i.e how much the predictive
distribution changes when they are left out. The ELPD indicates how difficult
is to the model to predict a particular observation.

Software

All Bayesian models were solved with PyMC3 [26]. ArviZ was used to compute
LOO, ELPD and related plots [27]. PyMOL was used to visualize 3D protein
structures [28].

Results

In this work we explore the quality of protein structures using 13Cα Chemical
Shifts through the evaluation of a Bayesian hierarchical linear model’s fit. An
important aspect of fitting this particular model, is the estimation of the effective
reference value for the 13Cα Chemical Shifts. This is important as wrong
referencing can be an issue when working with Chemical Shifts. In our study, the
estimated reference value is unique for every protein in our data set. Moreover,
by using a hierarchical model, we obtain a correction specific for every one of
the 19 most common amino acids that constitute proteins (as already mentioned
Cysteine is excluded). Said effective reference is accounted for in every posterior
analysis made on the model’s fit.

We present two approaches for the Bayesian model’s fit evaluation. The
first approach analyses differences between corrected and experimental 13Cα

Chemical Shifts. This is highly appealing as the comparison is done using
a familiar metric for protein scientists, specially NMR spectroscopists. The
second approach, instead evaluates the model’s fit using the LOO predictive
distribution, which is a general and widely accepted way to assess Bayesian
statistical models [11,17,18,25]. Both methods complement each other, the first
one focus on how well the corrected 13Cα chemical shift agrees with the expected
distribution while the second approach is based on how well the model predicts
the data. The combined usage of both approaches can help spectroscopists
and protein scientists in general to flag problematic residues that may deserve
further attention.

Difference between experimental 13Cα Chemical Shifts and
corrected 13Cα Chemical Shifts

Using reference densities on the differences between corrected and experimental
13Cα Chemical Shifts obtained from high quality structures can help
contextualize particular differences found in any given NMR structure.
Resulting in a straightforward way to asses how problematic is the resolved
structure for each residue.
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The reference densities for the amino acid types present in Ubiquitin are
plotted in light blue in Figure 2. As expected, these distributions have zero-mean
but most importantly they have different variances. Even when we did not
perform any formal test to evaluate if and how these densities depart from
a Gaussian distribution we can see that most of the reference densities are
skewed or have more than one peak (most likely reflecting sub-populations
of 13Cα Chemical Shift differences corresponding to α-helix and β-strands).
These distributions also reflect variations among amino acids related to natural
abundance as well as chemical features. For example Glycine, which is the
most abundant amino acid and the one spanning broader regions on the
Ramachandran plot, has the smoothest curve. Given all these particularities,
comparing differences between observed and corrected 13Cα Chemical Shifts
in terms of a single common variance could be miss leading. Instead, we use
quantiles computed per each amino acid’s distribution. Specifically we used
the 0.05, 0.2, 0.8 and 0.95 quantiles. Thus, we divide the reference densities
into a central 60% (between the 0.2 and 0.8 quantiles) a 30% (15% between
0.05 and 0.2 and another 15% between 0.8 and 0.95) and finally the remaining
10% for those value below 0.05 and above 0.95. In Figure 2 we can also see
the differences for every residue in structures 1D3Z and 1UBQ represented as
rhombuses and dots below each reference density. We use color to help interpret
such differences, green if the 13Cα Chemical Shifts difference is found in the
central 60%, yellow if it is found in the 30% around the central values and red
if it is found in the 10% most extreme values. It is important to note that
even when a residue is marked red that does not automatically indicates it is a
poorly determined residue, as in fact we expect that 10% of the residues from
good quality structures to appear red using the presented method. Instead we
can considered them as residues that may deserve further attention [15].

As we can see the differences in general are small between the two target
structures, with a few exceptions such as Isoleucine 30 and Leucine 56. Figure 3
uses the same color-schema from Figure 2 in the context of a 3D structure. The
accompanying code at the repository (see Abstract) can automatically generate
a file containing the colored structures as in Figure 3 and can be loaded with
PyMOL or VMD [29].

LOO predictive distribution

As previously mentioned the LOO predictive distribution is a general way to
assess Bayesian statistical models and is not related to proteins structures in any
direct way [11,17,18,25]. For a calibrated model, i.e. a model which predictive
distribution is in good agreement with the observed data, the distribution of the
LOO probability integral transform (LOO-PIT) is uniform. As this only holds
asymptotically, a way to empirically assess calibration for a finite sample is to
compare the density of LOO-PIT against the density of uniform samples of the
same size as the data used to compute LOO-PIT. Such comparison is done in
Figure 4 for structures 1D3Z and 1UBQ. We can see that both models seem to
be overall well calibrated but both models have a slightly positive slope, with
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Figure 2: The reference densities in light blue are used as a representation for the
expected differences between experimental and corrected 13Cα Chemical Shifts
in high quality NMR resolved structures. The dots and rhombuses represent
the 13Cα Chemical Shifts differences for the structures under PDB entries 1D3Z
and 1UBQ respectively. The markers are displayed in color red when found in
the 10% most extreme values, yellow if they are placed in the 30% around the
central values and green for the central 60%.

less predicted lower values than expected and more higher values than expected.
In other words the predictive distributions are slightly biased compared to the
training data, specially for 1D3Z which it is also showing a small excess of values
around the middle.

Analysis of the κ̂ parameter

The parameter κ̂ of the Pareto distribution used to stabilize the importance
weights during the LOO computation can help spot influential observations,
i.e. observations that have a large effect on predictions if removed during the
cross validation approximation. The higher this value, the most influential the

9

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.07.27.223818doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.27.223818
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3: 3D structure of 1D3Z (left) and 1UBQ (right). The amino acid
residues are colored according to the placement of their 13Cα Chemical Shift
difference respective to the reference densities in Figure 2.

Figure 4: LOO-PIT for 1D3Z and 1UBQ. The thick line corresponds to the
observed LOO-PIT density and the thin lines represent simulations from the
standard uniform distribution in the [0, 1] interval for a data set of the same size
as the one used to computed LOO-PIT. From comparison with these simulations
we can define what constitutes a large or small deviation from uniformity. Both
1D3Z and 1UBQ are within the expected margins.

observation is, with values above 0.7 being of particular interest (see subsection
LOO in Methods and Software section). Figure 5 shows that for 1D3Z the
residues with κ̂ > 0.7 are Asparagine 25, Valine 26, Isoleucine 30 and Isoleucine
61. While for 1UBQ these are Isoleucine 13, Valine 26, Isoleucine 30 and
Arginine 72.
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Figure 5: k̂ values for every residue in 1D3Z (left) and 1UBQ (right). The
dashed orange line indicates the value of 0.7. Residues above this value are
labeled as they can be considered as highly influential.

Expected Log Predictive Density

Figure 6 shows the differences of ELPD between structures 1D3Z and 1UBQ.
Globally, these structures seem to be on par, except for residue Isoleucine 30
that is showing a better agreement for 1UBQ.

Figure 6: Difference for the Expected Log Predictive Density between structures
1D3Z and 1UBQ. Positive values indicate, that a particular residue is better
resolved for structure 1D3Z, and in turn negative values indicate that structure
1UBQ better resolves them.
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From the observation of these results, it is worth noting that Isoleucine 30
has a κ̂ value ≥ 0.7 in both 1D3Z and 1UBQ (see Figure 5). It was also located
in the extreme quantiles on Figures 2 and 3 for the 1D3Z target structure. Also,
it showed the largest ELPD difference between the two structures analysed in
this work (see Figure 6). Another flagged residue for both structures, this
time only by the κ̂ value analysis, is Valine 26. Although, this residue was
in the green region of expected differences for both structures. These results
perform a demonstration of how the described analyses can be used for structure
validation. This implies the use of the presented tools for pointing at residues
with poor agreement between experimental and theoretical 13Cα Chemical Shifts
according to the Bayesian hierarchical linear model.

Conclusions

We have presented a collection of tools and visualizations for NMR protein
structure assessment. All these tools are based on Bayesian statistical
models and established validation methods from that field. We consider such
visualizations as useful additions to the current toolbox for protein structure
validation. We notice that we are using these Bayesian model comparison
tools differently from standard Bayesian model comparison routines. That is
to say, the statistical models are kept fixed and the 3D structural models vary.
Thus, when observing a potential problem we are directly attributing it to the
structure’s quality, as we consider that the hierarchical linear model and the
method to compute 13Cα Chemical Shifts are in general good enough for our
purposes.

As different observables reveal different aspects of protein structures, we
encourage researchers to perform similar analyses to the ones presented here
using other observable than 13Cα Chemical Shifts. Finally, we want to
emphasize that the tools and visualization presented here are not intended
to provide categorical answers about the quality of proteins but instead help
experts explore the quality of structures and, when possible, guide them to
make improvements of such models.
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