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Abstract 

Performing a secondary task while driving causes a decline in driving performance. As 

an important case of dual-task interference, this may generate lethal consequences. 

Previous investigations on the neural correlates of dual-task interference used simple and 

artificial stimuli. The neural mechanism of this effect in real-world tasks such as driving, 

is not yet fully understood. Using fMRI, we aimed to investigate the neural underpinnings 

of dual-task interference in driving. Participants performed a lane change task in a 

simulated driving environment, along with a tone discrimination task with either short or 

long time onset difference (Stimulus Onset Asynchrony, SOA) between the two tasks. 

Behavioral results indicated a strong dual-task effect on driving reaction times. The 

univariate analysis of fMRI data uncovered the modulation of the HRF in the sensory, 

central, and motor regions of the brain across different SOA conditions. To investigate 

the effect of dual-task interference on the spatial pattern of brain activity in the regions 

involved in driving, we used multi-voxel pattern analysis (MVPA) with a linear classifier to 

decode driving directions. Above chance decoding accuracies were observed in visual 

and motor regions as well as a central superior parietal lobe (SPL). Comparing accuracies 

across SOAs, no effect of SOA on accuracies was observed in the visual and motor 

regions. The SPL region, however, showed a drop in decoding accuracy in short 

compared to long SOA. Also, the classification accuracy in this region was inversely 

correlated with participants’ reaction time in the driving task. These results suggest a 

direct link between the information content of the central region SPL and dual-task 

interference in a naturalistic simulated driving task. 
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Introduction 

Performing a secondary task during driving causes a decline in driving performance (i.e., 

Hibberd, Jamson, & Carsten, 2013; Levy, Pashler, & Boer, 2006). Especially, when time 

lag between the onsets of driving task and the secondary task (henceforth referred to as 

the Stimulus Onset Asynchrony, SOA) decreases, reaction times and the accuracies are 

deteriorated. This decline in performance as a function of SOA is used as a measure of 

dual-task interference (Pashler, 1994). Although dual-task interference has been widely 

studied using behavioral techniques, its underlying neural mechanisms are not well 

understood. In this study, we explored underlying neural mechanisms of dual-task 

interference using fMRI and a well-controlled simulated driving task. To find brain regions 

that could account for behavioral decline during dual-task interference, we investigated 

changes in average activity as well as information content of multiple cortical regions 

across short and long SOA conditions. 

Most previous dual-task studies have used artificial dual-task paradigms for 

characterizing source of interference (Dux, Ivanoff, Asplund, & Marois, 2006; 

Hesselmann, Flandin, & Dehaene, 2011; Jiang, Saxe, & Kanwisher, 2004; Nijboer, Borst, 

van Rijn, & Taatgen, 2014; Sigman & Dehaene, 2008). Based on these studies, it is not 

clear whether identical neural regions are also associated with the decline in performance 

during real-world conditions such as performing a secondary task while driving. A dual-

task paradigm similar to a real-world situation in which the parameters in traditional tasks 

are still finely controlled might likely evoke mental states more typical to the ones seen in 

real-world situations. A few studies have investigated brain regions involved in dual-task 
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interference in a simulated driving environment by comparing dual-task with single-task 

conditions (i.e.(Al-Hashimi, Zanto, & Gazzaley, 2015; Just, Keller, & Cynkar, 2008)) and 

they reported modulations in the activity of the parietal and frontal cortices. Interpreting 

findings from these studies is difficult, as the single-task condition is not a clean control 

for isolating the dual-task effect. For isolating the dual-task effect, it is better to compare 

short SOA and long SOA conditions, as these two conditions are only different in timing 

between the two tasks. The manipulation of SOA provides the possibility to localize 

regions that their activation correlates with the magnitude of dual-task interference 

(Herath et al., 2005). Therefore, regions isolated by comparing short and long SOA 

conditions are potentially more specific than regions isolated by comparing dual- and 

single-task conditions. In this study, we used this approach to isolate regions affected 

during dual-task interference. 

Previous fMRI studies of dual-task, including ones that have used simple tasks as well as 

driving studies, have focused on univariate methods for investigating neural correlates of 

dual-task interference, looking at either the peak or time-course of the BOLD response. 

From these results, it is not clear whether overall modulations in brain activity is a result 

of general effects such as task difficulty, attentional modulations, and mental effort, or it 

is caused by a specific change in neural responses to each condition due to interference 

in perceptual and cognitive information. To overcome this limitation, in addition to 

univariate analyses, we investigated changes in patterns of responses of brain regions in 

short compared to long SOAs. To the best of our knowledge, there is no fMRI study that 

has used multivariate methods (e.g., Cox and Savoy (2003)) to investigate neural 

underpinnings of dual-task interference.  
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In sum, two main questions were addressed in the current study. First, is there any brain 

region that its mean activity changes in short compared to long SOA conditions? Second, 

is there any brain region in which the information for driving direction is disrupted in short 

compared to long SOA conditions? We used a dual-task paradigm in which a driving task 

was performed concurrently with a tone discrimination task in two SOA conditions. This 

paradigm allows us to investigate how response in various brain regions changes across 

the time when two tasks tightly compete with each other for the resources. 

Material and methods 

Participants 

Twenty-four right-handed volunteers (16 females), 20-36 years old with normal or 

corrected-to-normal vision and no history of neurological or psychiatric disorders 

participated in the experiment. Participants gave informed consent and received payment 

for their participation. The ethics committee at the Institute for Research in Fundamental 

Sciences (IPM) approved the experiment. Four participants were excluded from the 

analysis due to excessive head movement (> 5 mm) during the scan and the results of 

20 participants (12 females) were analyzed. 

Experimental design and procedure 

Apparatus: Stimuli were presented on a 32” monitor placed at the back of the fMRI 

scanner bore and viewed via a head coil-mounted mirror. Participants responded to the 

tasks using two fMRI compatible Current Designs four button response pads, one for each 

hand. They responded to the driving task with their left index and middle fingers and to 

the tone task with their right index and middle fingers. 
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Stimuli and Paradigm: The fMRI dual-task paradigm consisted of a driving lane change 

task and a tone discrimination task. The Unity 3D game engine was used to design the 

driving environment. The driving environment included a highway with infinite lanes on 

the two sides, without left/right turns or inclining/declining hills. This was to equalize all 

trials in terms of visual appearance for the purpose of the experiment (see Figure 1). The 

driving stimulus was composed of two rows of traffic cones with three cones in each row 

(Figure 1). In each trial, traffic cones were unexpectedly displayed on both sides of one 

of the lanes, and the participants had to steer the vehicle immediately to the lane with the 

cones and drive through them. The distance between the two rows of cones was such 

that the vehicle could easily drive through them without collisions. The cones were always 

presented immediately to the left or the right lane so that the participants had to change 

only one lane per trial. The lane change was performed gradually, and the participants 

had to hold the corresponding key to direct the vehicle in between the two rows of cones, 

and then release the key when the vehicle was situated correctly. Any collision with the 

cones would be registered as an error. The fixation cross was jittered for 100 ms to 

provide online feedback in case of a collision with the traffic cones. 

The driving started with a given initial speed which was kept constant. During the 

experiment, the participant moved to the right or left lanes by pressing the keys using the 

middle and index fingers of their left hand, respectively. For the tone task, a single pure 

tone of either a high (800 Hz) or low (400 Hz) frequency was presented for 200 

milliseconds. Participants pressed the keys with the middle and index fingers of their right 

hand to determine whether the tone was a high frequency or a low frequency, 

respectively. To provide feedback, if participants responded incorrectly, the green fixation 
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cross turned red. The onset of each trial was set to be the presentation time of tone 

stimulus and the end of each trial was set to be when the rear end of the car reached the 

end of the set of traffic cones. Participants were told to focus on the fixation cross at the 

center of the page and respond as fast as possible to each task that was presented. The 

performance in the driving task was calculated as the percentage of trials in which the 

participant passed through the cones without collision. The performance in the tone task 

was calculated as the number of correct identifications. 

 

 

Figure 1. The sequence of events for a sample trial of dual-task paradigm. The Inter trial interval 

(ITI) lasted between 3 to 11 s. The tone lasted for 200ms and the driving trigger was presented 

100 or 600 after the tone stimulus. Participants had to perform a tone discrimination task 

immediately after the presentation of the tone and a lane change immediately after the driving 

stimulus (two rows of cones). 
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The experiment consisted of the dual-task and single-task conditions. In the dual-task 

trials, the two tasks were presented with either a short (100 ms) or long (600 ms) SOAs. 

In the single-task trials either the driving or the tone task was presented alone. There 

were a total of eight dual-task conditions: two SOAs x two driving directions (turn right/turn 

left) x and two tone conditions (low/high frequency); and four single-task conditions: two 

directions x two tone conditions. In the dual-task conditions the order of the presentation 

of tasks was fixed so that the tone task was always presented first and the driving task 

was presented second. Each condition was repeated four times in each run resulting in a 

total of 48 trials in every run. Each trial lasted for 3s with an inter-trial interval varying from 

3s to 11s. We used optseq software (Dale, 1999) for optimizing the presentation order of 

trials in each run. The participants completed 12 runs and each lasting 4.8 min (288 sec). 

In all dual-task trials the tone task was presented first. Before performing the main 

experiment, all participants performed two training runs similar to the main experiments. 

If their performance was 80% or higher, they would proceed to the main experimental 

runs. All participants could reach this threshold. 

Image acquisition 

Structural and functional images were acquired using a Prisma Siemens 3T MRI scanner 

at National Brain Mapping Laboratory with a 64 channel head coil for 4 of the participants 

and a Tim Trio Siemens 3T MRI scanner with 32 channel head coil at the IPM Imaging 

Center for all other participants. The IPM Imaging Center scanner was originally 

unavailable due to technical reasons, therefore we started the experiments at the National 

Brain Mapping Laboratory. After the IPM scanner became available we switched to 

collecting data at IPM.  The imaging parameters were kept the same across scanners 
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and the results were similar. T1-weighted images were acquired with gradient echo 

sequence with 1900 ms repetition time (TR), echo time (TE) = 2.52, field of view (FOV) = 

256 mm, matrix size of 256 x 256, with 192 slices with 1mm thickness, iso voxel size  of 

1 mm, and flip angle of 9 degrees. These high-resolution images were used for surface 

reconstruction. Blood oxygenation level-dependent (BOLD) functional images were 

acquired using a single-shot gradient EPI sequence with TR = 2000 ms, TE = 26 ms, flip 

angle = 90 degree, matrix size of 64 x 64, FOV = 192 mm, 33 slices  with 0.3 mm slice 

gap, and voxel size of 3 x 3 x 3 mm. 

Image Preprocessing 

Initial image analysis was performed using the Freesurfer image analysis suite, 

(http://surfer.nmr.mgh.harvard.edu/) and fsfast (Dale, Fischl, & Sereno, 1999). Pattern 

classification was performed using CoSMoMVPA toolbox in MATLAB (Oosterhof, 

Connolly, & Haxby, 2016) and in-house MATLAB code. FMRI preprocessing included 3D 

motion correction, slice timing correction and linear and quadratic trend removal. For the 

whole brain group-level analysis, the anatomical T1-weighted images of each participant 

were transformed into standardized Freesurfer fsaverage space (Evans et al., 1993). For 

GLM analysis data were spatially smoothed with a Gaussian kernel of 6 mm FWHM for 

univariate analysis, but non-smoothed data were used for multivariate analysis. For every 

condition, we used a finite impulse response (FIR) basis function (Henson, Rugg, & 

Friston, 2001) to examine the changes of BOLD response across time. For this purpose, 

the BOLD response was quantified for 10 post-stimulus time bins with each time bin 

representing one full-brain volume of 2 s duration. These time bins were time-locked to 
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the onset of the tone stimulus in the dual-task trials and with the onset of the tone stimulus 

or the driving cones in the single-task tone and driving trials, respectively. 

Univariate analysis 

A general linear model was used to estimate beta values for each vertex and each FIR 

time bin. As mentioned in the previous section, there were 10 post-stimulus FIR time bins 

that were time-locked to the onset of the stimulus. For the GLM model, we used twelve 

regressors of interest: eight for the dual-task conditions (two driving lane change 

directions x two tone types x two SOAs) and four for the single-task conditions (two driving 

lane change direction and two tone types). The focus of the current study was to compare 

the short and long SOA conditions; therefore, the result of single-task conditions was 

excluded from the analysis in this paper. To compare the mean activity of short and long 

SOA conditions, we contrasted the short versus long SOA conditions in time bins 2 to 4 

to generate a contrast map for each participant and each time bin.  

These maps were used to create regions of interest. To avoid double-dipping, we used a 

leave-one-subject-out procedure (Esterman, Tamber-Rosenau, Chiu, & Yantis, 2010; 

Loose, Wisniewski, Rusconi, Goschke, & Haynes, 2017). For this procedure, we left one 

participant out and performed the group analysis on all other participants to find clusters 

that show a significant difference in activity between the two SOA conditions. This 

procedure was performed for each participant in time bins 2 to 4. The output was three 

p-value maps for each participant. Using a union analysis, we calculated a p-value map 

equal to the minimum p-value across the three FIR time bins. Next, the union p-value 

map was corrected for multiple comparisons using cluster-extent thresholding with p < 
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0.001 at the voxel level and p < 0.05 at the cluster level. The significant clusters on the 

19 participants were selected as ROIs for the left-out 20th participant. We repeated this 

procedure, leaving one participant out at a time, to create independent ROIs for all 

participants. Finally, we compared the mean activity for short and long SOA conditions in 

all FIR time bins in these ROIs. The left and right hemispheres ROIs were merged for all 

ROIs that were in two hemispheres. To statistically compare the mean activation of each 

ROI for short and long SOAs, we ran a two-way repeated measure ANOVA with SOA 

(short and long) and FIR time bins as two factors and p-values were corrected for multiple 

comparisons with False Discovery Rate (FDR,(Benjamini & Hochberg, 1995) q < 0.05 

across the ROIs. The paired t-test was used to compare the mean activity for the short 

and long SOA conditions in each ROI and each time bin. The p-values were corrected for 

multiple comparisons with FDR q < 0.05 across time bins for each ROI. 

Multivariate pattern analysis (MVPA) 

In this analysis, we assessed whether information about the driving direction is encoded 

differently in the short and long SOA conditions. First, using a searchlight approach we 

identified the regions that coded the driving direction in either the short SOA or the long 

SOA conditions. Next, we quantified the differences between the decoding accuracies in 

the short and long SOA conditions in an ROI analysis.  

Using CoSMoMVPA ((Oosterhof et al., 2016)), we ran a surface-based searchlight 

analysis (Oosterhof, Wiggett, Diedrichsen, Tipper, & Downing, 2010) on the beta maps 

of FIR time bin 3 (the peak hemodynamic time-bin) for each individual participant. The 

surface-based searchlight was restricted to a mask containing only voxels between the 
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pail and white surfaces of the brain. The pail and white surfaces were generated using 

Freesurfer. Using the pial and white surfaces an intermediate surface was estimated 

which placed between two surfaces. A center vertex on the intermediate surface was 

selected and then 100 neighboring voxels around the center vertex were chosen based 

on the geodesic distance as a region. The procedure was performed for all vertices on 

the intermediate surface that included the entire volume of the gray matter of the brain. 

The estimated beta value patterns were extracted in every region. Then, in each region, 

the presence of information about the driving direction was assessed by a linear support 

vector machine classifier. A leave-one-run-out cross-validation procedure was used to 

evaluate the classification performance (Kamitani & Tong, 2005). The classifier was 

trained to discriminate between the two classes (turn left vs turn right) from all but one 

run and tested on the left-out run. This process was repeated for the 12 runs and the 

resulting performances were averaged to generate the mean classification accuracy for 

each searchlight center vertex. This analysis was performed separately for the short and 

long SOA conditions to produce a whole-brain classification accuracy map for each 

participant and each SOA condition. The average accuracy maps were normalized to a 

common space (fsaverage). A Gaussian kernel with 6 mm full-width at half maximum was 

used to smooth the accuracy maps.  

 To compare the information of the driving task in the short and long SOAs, we performed 

an ROI analysis using the accuracy maps of the short and long SOA. To define the ROIs, 

we performed a leave-one-subject-out procedure (Esterman et al., 2010) to avoid double-

dipping (Kriegeskorte, Simmons, Bellgowan, & Baker, 2009). One participant was left out 

and by using the remaining participants, a group-level analysis was performed to find 
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clusters that their decoding accuracies were significantly above chance separately for 

short and long SOAs. Then using a union analysis, we obtained a p-value map equal to 

the minimum p-value of the short and long SOA. This p-value map was then corrected for 

multiple comparisons with voxel-wise p < 0.001 and cluster thresholded at p < 0.05). 

These clusters related to the 19 participants were selected as ROIs for the left out 20th 

participants and the procedure was repeated to obtain independent ROIs for all 

participants. The mean accuracies across SOAs were compared in these ROIs. To 

statistically compare the mean accuracy of each ROI for short and long SOAs, we ran a 

two-way repeated measure ANOVA with SOA (short and long) and FIR time bins as two 

factors and p-values were corrected for multiple comparisons with FDR q < 0.05 across 

the ROIs. The comparison of p-value with the chance level (50%) was performed by a 

one-sample t-test for each ROI and each time bin. The pairwise comparison of accuracy 

for the short and long SOA conditions was performed by paired t-test in each ROI and 

each time bin. The p-values were corrected for multiple comparisons with FDR q < 0.05 

across time bins for each ROI. 

Results 

Behavioral results               

We compared the mean RT and accuracy across long and short SOA conditions for the 

driving and the tone task (Figure 2). For the driving task which was always presented 

second, mean RT was significantly greater in the short SOA trials than the long SOA trials 

(t(19) = -13.23, p < 0.0001, paired t-test). Although the participants had high accuracy in 

the driving task (accuracy > 95%), the participants’ accuracy was significantly lower in 
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short compared to long SOA condition (t(19) = -4.06, p < 0.001, paired t-test). For the 

tone task, the RT did not significantly change SOA conditions (ps > 0.05), while the 

accuracy was significantly lower in the short compared to the long SOA trials (t (19) = 

4.11, p < 0.001, paired t-test). These findings show that the performance of two tasks 

influenced by dual-task interference, although the effect is stranger for the reaction time 

of driving task (t (19) = -4.63, p < 0.0001, paired t-test). These findings are consistent with 

previous studies (Abbas-Zadeh, Hossein-Zadeh, & Vaziri-Pashkam, 2019; Hibberd et al., 

2013) and indicate a strong effect of dual-task interference. 

 

Figure 2. A) Reaction times and B) Accuracies for the short SOA (dark gray bars) and long SOA 
(light gray bars) conditions in the driving and the tone tasks. Barplots and errorbars show the 
mean and standard error, respectively, for each condition.  

Univariate Analysis              

To investigate the changes of BOLD response during dual-task interference, we 

performed a univariate analysis to explore whether any brain region shows a different 

activation in the short compared to long SOA conditions across time. For this purpose, 

we performed a time-resolved FIR analysis. The beta maps related to FIR time bins 2 to 
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4 (corresponding to 2-8 s from the start of the trial) were used to extract the regions that 

their activity changed in the short compared to the long SOA condition. 

Using a union analysis, we extracted all regions that showed a significant change of 

activation in the short compared to the long SOA condition in any of the time bins 2 to 4. 

To avoid non-independence error, we used a leave-one subject-out procedure (see 

methods, (Esterman et al., 2010; Loose et al., 2017) to extract the mean activation of 

ROIs in selected time bins for the short and long SOA conditions. The overlay of ROIs for 

all participants that were created with the leave-one-subject-out procedure is shown in 

Figure 3. Each subplot shows the change of beta values across time bins for the short 

and long SOA conditions. The ROIs that showed modulation of activity in two SOA 

conditions could be divided into three groups: 1) sensory regions (bilateral visual cortex 

and bilateral auditory cortex); 2) decision and response selection related regions (bilateral 

inferior frontal gyrus (IFG), left inferior frontal junction (IFJ); left medial frontal gyrus, 

bilateral Insula, bilateral superior frontal gyrus, bilateral cingulate cortex); 3) motor 

planning and execution regions (bilateral precentral and postcentral gyri). 

To statistically investigate the temporal changes of BOLD response in the short and long 

SOA conditions in every ROI, we ran a two-way repeated-measure ANOVA with SOA 

(short and long) and FIR time bins (time bins 1 to 10) as two factors. The details of 

statistical testing for all ROIs are reported in table 1. The main effect of SOA was only 

significant for the bilateral visual cortex (F(1,19) = 23.51, p = 0.002, two-way repeated-

measures ANOVA). However, the interaction of SOA and FIR time bins was significant 

for all regions (ps < 0.0001, corrected for multiple comparisons across ROIs). Using 

paired t-test, we also compared the BOLD response in each FIR time bin across short 
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and long SOAs for all ROIs and details of statistical testing can be seen in table 2. The 

results showed that in most regions, the difference between short and long SOAs for time 

bins 4 and 5 was significant (ps < 0.05, corrected for multiple comparisons across time 

bins). As it is evident in the subplots of Figure 3, although for most of the regions the third 

FIR time bin is the peak of the hemodynamic response function (HRF) for both short and 

long SOA conditions, the difference between conditions manifests in the time bin after the 

peak of the response, where the BOLD response is higher for the short compared to the 

long SOA condition (ts > 4.21, ps < 0.005, paired-test). In addition, the results revealed a 

delay in the rise of the  HRF (lower response in the time bin before the peak) in the short 

SOA compared to the long SOA in the auditory, precentral, postcentral and posterior part 

of superior medial frontal regions (ts < -3.46, ps < 0.017, paired-test). The results indicate 

that the dual-task interference causes the change in the shape of the BOLD signal rather 

than the change in the peak of the BOLD signal in most modulated ROIs.  
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Figure 3. Overlay map of all ROIs for all participants (n = 20) extracted by leave-one-subject-out 

approach. The vertices in the maps are colored based on the number participants for whom a 

vertex was included in ROIs. Subplots show the mean and standard error of mean (SE) of beta-

values for FIR time bins in short (red) and long (blue) SOA conditions. Dashed lines connect the 

subplots to corresponding ROIs. Stars indicate the FIR time bins in which the mean beta-value 

significantly differed across the short and long SOA conditions (p < 0.05, corrected for multiple 

comparisons). Abbreviations: IFG = inferior frontal gyrus, pSMFC = posterior superior medial 

frontal cortex, dMFC = dorsal medial frontal cortex, IFJ= inferior frontal junction, IPG = inferior 

parietal gyrus, CS-inferior = central sulcus inferior part. L = left hemisphere, R = right hemisphere. 

  

Table 1. List of ROIs that were extracted by leave-one-subject-out approach for all participants. 

BA denotes the Brodmann area, VN denotes the number of vertices in each ROI. All p-values are 

corrected for multiple comparisons across regions for the main effect and the interaction using 

FDR at q < 0.05.  

Region Name hemi MIN coordinate BA NV SOA SOA x Time 

  x y z   F p F p 

Visual  L 

R 

2 

17 

-80 

-69 

3 

13 

17,18 

 

8597 23.51 0.002 17.11 < 0.001 

Auditory L 

R 

54 

55 

-28 

-24 

6 

7 

42 1485 0.001 0.973 11.78 < 0.001 

IFG L 

R 

33 

41 

27 

14 

-12 

7 

44 1541 6.217 0.103 8.03 < 0.001 

Insula L 

R 

26 

44 

22 

-70 

-10 

-5 

- 2787 5.446 0.109 10.5 < 0.001 

Cingulate  L 

R 

11 

11 

20 

47 

26 

32 

6,24 3621 0.99 0.593 11.21 < 0.001 

pSMFC L 

R 

10 

24 

-3 

-26 

56 

51 

6,8 2684 0.679 0.923 12.13 < 0.001 

Precentral L 

R 

62 

30 

-26 

-11 

-11 

56 

4,6 3033 0.127 0.923 12.88 < 0.001 

Postcentral L 

R 

44 

40 

33 

-61 

1 

10 

1,2,3 4875 0.023 0.947 17.55 < 0.001 

dMFC L 30 37 16 46 1855 6.866 0.103 6.519 < 0.001 

IFJ L 34 26 -9 6 2084 1.219 0.593 7.887 < 0.001 

Supramarginal  L 59 -11 -1 40 4893 3.288 0.240 11.16 < 0.001 

IPG L 59 -10 -1 39 909 0.804 0.593 8.737 < 0.001 

CS-inferior L 38 28 2 1,2,3 689 0.052 0.947 5.302 < 0.001 

 Abbreviations: IFG = inferior frontal gyrus, pSMFC = posterior superior medial frontal cortex, 

dMFC = dorsal medial frontal cortex, IFJ= inferior frontal junction, IPG = inferior parietal gyrus, 

CS-inferior = central sulcus inferior part. L = left hemisphere, R = right hemisphere. 
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Table 3.2. Pairwise comparison of mean activities between the short and long SOA conditions for 

each time bin and each region. All p-values are corrected for multiple comparisons across time 

bins using FDR at q < 0.05.  

Regions name  FIR time points 

  1 2 3 4 5 6 7 

Visual  t 3.395 3.401 2.827 6.089 6.297 1.125 -1.094 

p 0.017 0.017 0.042 0.000 0.000 0.412 0.415 

Auditory  t 3.750 -4.121 1.767 5.322 1.519 -1.593 -2.388 

p 0.010 0.005 0.196 < 0.001 0.268 0.242 0.087 

IFG t 1.825 0.197 0.318 5.698 3.863 0.909 0.776 

p 0.187 0.890 0.825 < 0.001 0.008 0.509 0.591 

Insula t 1.823 0.455 1.279 6.271 3.170 0.304 -0.207 

p 0.187 0.751 0.352 < 0.001 0.021 0.826 0.889 

Cingulate 

 

t 0.531 -1.333 1.401 5.713 2.143 -1.056 -1.763 

p 0.720 0.334 0.306 < 0.001 0.120 0.435 0.196 

pSMFC  t 1.166 -3.992 1.309 5.061 2.278 -1.105 -1.716 

p 0.401 0.006 0.342 0.001 0.097 0.412 0.208 

Precentral 

 

t 1.811 -3.617 -0.012 5.386 3.170 -1.261 -2.500 

p 0.188 0.013 0.990 < 0.001 0.021 0.354 0.076 

Postcentral 

 

t 2.201 -3.467 1.749 6.374 2.437 -2.518 -3.328 

p 0.111 0.017 0.199 < 0.001 0.083 0.076 0.018 

L DMFC  t 0.611 0.612 1.854 4.217 3.406 0.725 0.300 

p 0.668 0.668 0.182 0.004 0.017 0.613 0.826 

L IFJ t 2.104 -2.317 -0.331 5.442 2.872 -0.120 -0.645 

p 0.126 0.095 0.820 < 0.001 0.039 0.925 0.659 

L Supramarginal  t 3.365 0.727 -0.174 5.531 3.243 0.155 -1.111 

p 0.018 0.613 0.903 < 0.001 0.021 0.911 0.412 

L IPG  t -0.495 5.655 3.173 -1.616 -2.606 -2.508 -2.047 

p 0.743 < 0.001 0.021 0.238 0.066 0.076 0.130 

L CS-inferior  t 2.089 5.823 0.666 0.393 0.617 -1.414 -1.452 

p 0.126 < 0.001 0.648 0.789 0.668 0.305 0.293 

Abbreviations: IFG = inferior frontal gyrus, pSMFC = posterior superior medial frontal cortex, 

dMFC = dorsal medial frontal cortex, IFJ= inferior frontal junction, IPG = inferior parietal gyrus, 

CS-inferior = central sulcus inferior part. L = left hemisphere. 

Multivariate pattern analysis: 

To compare the driving task decoding accuracy in short and long SOAs, we followed a 

leave-one-subject-out approach and a union analysis, to extract ROIs from the clusters 

that decode the driving task above chance level in either the short or the long SOA 

conditions for the FIR time bin 3. The mean accuracy of the ROIs was then compared for 

two SOA conditions in FIR time bins 2 to 5. Figure 4 shows an overlay of the ROIs of all 
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participants. Four main regions can be seen in Figure 4 including the left and right visual 

cortex, right superior parietal lobe (SPL) and right motor cortex. First, we ran a two-way 

repeated-measure ANOVA with SOA and FIR time bins as two factors to compare the 

accuracy for each ROI in two SOA across FIR time bins 2 to 5 (Figure 3, panel B). The 

details of statistical tests can be seen in table 3. The main effect of SOA was not 

significant in any of the ROIs (ps > 0.05). The interaction of SOA and time bins was 

significant for the right SPL (F(3,57) = 9.32, p < 0.0001, two-way repeated measures 

ANOVA). 

Focusing on individual time bins in the SPL region, we next compared the accuracy for 

each time bin in each condition to chance level. The accuracy for decoding the driving 

direction was above chance level in the third and fourth time bins in the long SOA 

condition (ts > 6.01, ps < 0.001, paired t-test) and was not significantly greater from 

chance in any of the time bins in the short SOA condition (ps > 0.05). Further pairwise 

comparisons between short and long SOA conditions in each time bin showed that the 

decoding the driving direction for long SOA was significantly higher than the short SOA 

in time bins third and fourth for SPL (ts > 3.02, ps < 0.014, paired t-test, see table 4). 

These results show that although the amount of information about the driving task does 

not change in the visual and motor regions, it decreases significantly in the SPL region. 

Furthermore, a Pearson correlation analysis revealed a negative correlation between the 

turn direction decoding accuracy in the SPL region and the reaction time of the driving 

task obtained from the behavioral results (r = -0.507, p = 0.032, corrected for multiple 

comparisons). This correlation was not significant for the other three regions (Figure 3, 

panel c). The drop of information in the SPL region could play a role in dual-task 
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interference and the drop in performance when the two tasks are performed concurrently. 

Our further exploration in data cleared that removing the error trials did not qualitatively 

change the results.  
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Figure 4. A) Overlay of ROIs for all participants (n = 20) for the decoding of driving direction. The 

vertices in the maps are colored based on the number participants for whom a vertex was included 

in ROIs. Dashed lines connect the subplots to corresponding ROIs. B) Subplots show the mean 

and SE of driving direction decoding accuracy for FIR time bins 2-5 for short (red) and long (blue) 

SOA conditions extracted ROIs. Dashed lines show the chance level (50%). Stars indicate the 

FIR time bins in which accuracy significantly differed across the short and long SOA conditions 

(p < 0.05, corrected for multiple comparisons). C) The Pearson correlation between the decoding 

accuracy of the driving direction and behavioral reaction time of driving direction for ROIs. 

Abbreviations: L = Left hemisphere, R = Right hemisphere. 

 

Table 3.3. Two-way repeated-measure ANOVA for the effect of SOA and time on accuracies in 

each ROI. BA denotes the Brodmann area, VN denotes the number of vertices in each ROI. All 

p-values were corrected for multiple comparisons across ROIs using FDR at q < 0.05, significant 

p-values are shown in bold text. 

Region names BA MNI coordinate NV SOA SOA x Time 

   x y z   F p F p 

L Visual cortex 17, 18 -8 -92 7 6663 0.147 0.704 0.649 0.782 

R Visual cortex 17, 18 11 -76 5 5560 0.437 0.516 0.308 0.819 

R Motor cortex 1, 3 46 -17 52 1200 0.578 0.456 3.460 0.051 

R Superior 
parietal lobe 

7 15 -71 46 925 1.970 0.176 9.327 < 0.001 

Abbreviations: L = left hemisphere, R = right hemisphere. 
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Table 3.4. Comparison of accuracy with chance level (50%) for SOA conditions and pairwise 

comparison of accuracies between the short and long SOA conditions for each time bin and each 

region. All p-values were corrected for multiple comparisons across time bins using FDR at q < 

0.05.  Significant p-values are shown in bold text.  

 Region names  FIR time bins 

   2 3 4 5 

L Visual cortex Long > 0.5 t 2.770 9.998 5.972 1.347 

p 0.016 < 0.001 < 0.001 0.194 

Short > 0.5 t 2.387 7.143 4.947 2.307 

p 0.032 < 0.001 < 0.001 0.032 

Long > Short t 0.552 1.647 0.006 -0.635 

p 0.783 0.464 0.995 0.783 

R Visual cortex Long > 0.5 t 1.168 7.188 5.754 2.092 

p 0.257 < 0.001 < 0.001 0.067 

Short > 0.5 t 1.855 6.552 9.503 1.937 

p 0.079 < 0.001 < 0.001 0.079 

Long > Short t -0.545 0.295 -1.004 -0.275 

p 0.786 0.786 0.786 0.786 

R Motor cortex Long > 0.5 t 3.211 6.451 6.310 -0.023 

p 0.006 < 0.001 < 0.001 0.982 

Short > 0.5 t 1.994 5.194 4.732 3.596 

p 0.061 < 0.001 < 0.001 0.003 

Long > Short t 0.900 1.841 0.901 -1.981 

p 0.379 0.162 0.379 0.162 

R Superior 

parietal lobe 

 

Long > 0.5 t 0.209 6.001 6.796 -0.702 

p 0.837 < 0.001 < 0.001 0.655 

Short > 0.5 t 2.216 1.401 1.651 1.959 

p 0.130 0.177 0.154 0.130 

Long > Short t -1.718 3.935 3.024 -1.872 

p 0.102 0.004 0.014 0.102 

Abbreviations: L = left hemisphere, R = right hemisphere. 

Discussion  

Here, we investigated the effect of dual-task interference on the BOLD response in a dual-

task paradigm in which participants performed a driving turn in a simulated driving 

environment along with a tone discrimination task. The two tasks were either presented 

close together (short SOA) or far from each other (long SOA) in time. The behavioral 

results showed an increase in RT and a decrease in accuracy of the driving task in the 
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short SOA compared to the long SOA trials consistent with previous studies (Hibberd et 

al., 2013; Levy et al., 2006), confirming that the performance is influenced by dual-task 

interference. We performed a time-resolved fMRI analysis by investigating the mean and 

patterns of brain activity at multiple time bins after the stimulus onset. In the univariate 

analysis we showed that although the peak of the hemodynamic response is at the same 

time point for both short and long SOA conditions, in the short SOA condition, the 

hemodynamic response drops with a gentler slope compared to the long SOA condition. 

This effect was observed in a large swath of brain regions including sensory, decision-

related, and motor regions. The results of multivariate pattern analysis, revealed regions 

that carry information about the driving direction including superior parietal lobe (SPL), 

visual and motor regions. Comparing the decoding accuracies across short and long SOA 

conditions, we showed for the first time that the information for the driving direction gets 

disrupted by dual-task interference in the right SPL but not in the visual and motor regions.  

Although we observed a modulation in the BOLD response in numerous brain regions 

across SOA conditions, only a few regions including the bilateral visual cortex, right motor 

cortex, and right SPL carried information for the driving direction. In other words, the 

accuracy for decoding the driving direction was significantly above chance level only in 

those three regions. Further investigations revealed that the accuracy for decoding the 

driving direction was not different across SOA conditions in the visual and motor cortices, 

but it significantly decreased in the short compared to the long SOAs in the SPL. In 

addition, the brain-behavior correlations also showed that there was a negative 

correlation between the reaction time of the driving turn and the decoding accuracy of the 

driving direction in the SPL region. These findings imply that the information for the driving 
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direction is disturbed in the SPL during dual-task interference. To the best of our 

knowledge, this finding is novel and has not been reported in previous studies. 

A recent Magnetoencephalography (MEG) study by Marti, King, and Dehaene (2015), 

showed that the information is disturbed during the central processing stage (about 200-

400 ms after the onset of the stimulus). However, the location of the distortion of 

information was not precisely clear due to limitation in the spatial resolution of MEG signal. 

The findings of the current study reveal that the source of disturbance of information 

during the dual-task interference could be the SPL region.  

Even though it is not possible to pinpoint the exact cause of this decline in classification 

accuracy in the SPL region from the current study, we may speculate about its possible 

sources. On the one hand, the SPL region found in our study overlaps with a region 

suggested to be the holomologe of Lateral Intraparietal (LIP) in non-human primates 

(Grefkes & Fink, 2005) that is involved in evidence accumulation for visual perceptual 

decision making (Shadlen & Newsome, 2001). The reduced classification accuracies in 

the SPL region during dual-task interference, therefore, could be related to the 

disturbance in the process of decision making for the driving turn. This alternative is in 

line with recent behavioral modeling studies (Abbas-Zadeh et al., 2019; Zylberberg et al., 

2012) that have suggested changes in the decision processes during dual-task 

interference. 

On the other hand, SPL region has been implicated in maintaining information during 

visual working memory (Rowe et al., 2000; Xu & Chun, 2006) and contains more 

information about an attended compared to an unattended item (Vaziri-Pashkam & Xu, 
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2017). Considering these findings, another possibility for the drop in classification 

accuracy in the SPL could be the impairment in the maintenance of the information for 

the driving direction due to the distractions caused by the secondary task. Future studies 

could elucidate processes that lead to the drop in classification accuracy in SPL.  

The univariate analysis indicated a significant interaction between SOA and time bins on 

the BOLD response in the frontal regions such as inferior frontal gyrus, inferior frontal 

junction, dorsal medial frontal cortex, superior medial frontal cortex, insula, anterior 

cingulate, and middle cingulate cortex. In these regions a change in the fall of HRF (an 

increase in the activation of the fourth and fifth-time bins) was observed in the short SOA 

compared to the long SOA conditions. No difference was found in the rise and peak of 

the HRF across SOA conditions in these regions. Several previous dual-task studies that 

have examined the changes in the BOLD signal, during dual-task interference, have 

reported an increase in the activation in the frontal regions (Erickson et al., 2005; Jiang 

et al., 2004; Nijboer et al., 2014; Sigman & Dehaene, 2008; Stelzel, Brandt, & Schubert, 

2009). These studies have not investigated the changes in the shape of HRF across 

SOAs. Our results extend these findings to show the changes in the shape of HRF 

suggesting that the increase of activity in these regions may have resulted from the later 

fall of the HRF during dual-task interference.  

A few studies have investigated the changes in the shape of HRF during dual-task 

interference using artificial dual-task paradigms (Dux et al., 2006; Dux et al., 2009; Tombu 

et al., 2011). These studies have shown a modulation in the shape of HRF in the frontal 

and parietal regions, although they have only focused on specific fronto-parietal regions 

and have not investigated the changes in the shape of HRF in sensory and motor regions. 
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Unlike these studies, here, we used a well-controlled lane change driving scenario close 

to real-world dual-task conditions and observed similar modulations in the HRF shape in 

the sensory, central and motor regions.  

The univariate analysis revealed clear signs of the change in the shape of HRF in sensory 

cortices during dual-task interference. Nevertheless, the information for the driving 

direction was not significantly affected in the visual cortex. The increase of activity of 

sensory regions in the short compared to the long SOA might be due to top-down 

feedback signals to sensory regions to keep these regions active for longer durations and 

increase their activity in order to compensate for the noise caused by dual-task 

interference. 

Our results also indicated a change in the shape (a slow rise and a shallow slope in the 

fall) of HRF in motor regions without any change in the information content for driving 

direction. These changes in the fMRI signal might be related to a delay in the processing 

of the motor stage during dual-task interference. These results are novel and to the best 

of our knowledge have not been reported in previous fMRI studies of dual-task 

interference. The delays in the motor stage of processing have been proposed in previous 

behavioral modeling studies (Zylberberg et al., 2012) and are in line with our previous 

behavioral and modeling findings (Abbas-Zadeh et al., 2019).     

Taken together, the results from our univariate and multivariate analyses are 

complementary. Our multivariate analysis, looking at classification accuracy for the 

driving direction, reveals regions that are specific for the individual tasks (in this case the 

driving turn) as it carves out the information content of each region for a particular sensory 
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input, decision, or motor output. The univariate analysis, on the other hand, can uncover 

regions that are implicated in domain general processes such as cognitive control and 

task management. In fact, our study demonstrates that the regions found in the analyses 

are complementary. Frontal regions show changes in univariate response across SOAs 

but do not carry information about the driving task suggesting their involvement in domain 

general processes. On the other hand, the SPL region shows changes in classification 

accuracy, with no difference in univariate response across SOA, suggesting its 

involvement in information processing of the driving turn. A comprehensive understanding 

of the neural correlates of dual-task interference thus requires gathering evidence from 

both univariate and multivariate analyses.    

Taken together, we used a controlled paradigm to study dual-task interference in a 

realistic setup to investigate the behavioral and neural signatures of dual-task 

interference. The performance of the driving and the secondary task was influenced by 

dual-task interference. The shape of HRF was modulated by SOA in sensory, decision-

related, and motor regions. The information content for driving direction did not 

significantly change in the sensory and motor regions, but it decreased in the SPL in short 

compared to long SOA trials. These results extended our understanding of the neural 

correlates of dual-task interference and are informative for formulating biologically 

plausible models of dual-task interference. They also have potential applications in 

improving the quality of driving behavior and reducing the number of accidents caused by 

driver distraction. 
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