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Abstract 
COVID-19 pandemy has ignited a broad scientific interest in coronavirus research. The 

identification of coronaviridae species in natural reservoirs often requires de novo assembly. 
However, existing transcriptome assemblers often are not able to assemble coronaviruses 

into a single contig. We developed coronaSPAdes, a new module for SPAdes assembler for 
coronavirus species recovery. coronaSPAdes uses the knowledge about coronaviridae 

genome structure to improve assembly. We have shown that coronaSPAdes outperforms 
existing SPAdes modes and other popular short-read assemblers in the recovery of 

full-length coronavirus genomes. This should allow to better understand the coronaviridae 
spread and diversity. 
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Background 

COVID-19 pandemy has increased a scientific interest in coronavirus research. The analysis            
of coronavirus dataset starts with obtaining full-length virus genome sequence that can be             
performed using read alignment[1,2] or de novo assembly[1,3]. The assembly pipeline based            
on read alignment is a tool of choice for the same strains of the close species, e.g. for                  
SARS-CoV-2 SNP profiling of confirmed COVID-19 patients. De novo assembly is better            
suited for novel species recovery since read alignment for distant species is unreliable.             
Recently, there were multiple studies that used MEGAHIT[4] assembler to recover full-length            
sequence of the SARS-CoV-2 genome. Though previous studies show that different           
SPAdes[5] modes also perform well in virus recovery[6]. Nevertheless, none of these            
assemblers was initially designed for viral assemblies in general and for coronaviridae            
species recovery in particular. MEGAHIT and metaSPAdes[7] are metagenomic assemblers,          
SPAdes[8] is designed to assemble single-cell and isolate bacterial datasets. All these            
assemblers can produce fragmented assemblies due to sequencing artifacts, coverage          
variations, host contamination, multiple strains presence, and coronavirus splice events[9].          
Fast and correct characterization of virus datasets might be a key step in predicting and               
preventing the future outbreaks. Coronaviruses have a conserved gene structure[10] that           
can help to better assemble full-length genomes. In this study, we present coronaSPAdes - a               
new mode for SPAdes assembler designed to assemble coronaviridae species.          
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coronaSPAdes borrows its algorithmic ideas from the existing SPAdes[11] modes          
(metaSPAdes[7], rnaSPAdes[12], metaviralSPAdes[13]), and includes HMM-guided      
assembly inspired by biosyntheticSPAdes[14]. We show that coronaSPAdes is able to           
recover novel full-length genomes from publicly available datasets where other popular           
assemblers produce fragmented assembly. 
 

Results and Discussion 

coronaSPAdes was used by the Serratus project [15] to assemble more than 10,000 putative 
coronaviral genomes out of 3.6 million SRA datasets. The Serratus benchmarking and 
results will be provided elsewhere. Here we highlight the features of coronaSPAdes using 
the range of publicly available transcriptome and metatranscriptome datasets that include 
novel and known species. 
Fr4nk ​is a putative novel Alphocoronavirus detected in a metatranscriptome sequencing 
library from a Peruvian vampire bat (​Desmodus rotundus​, SRA:ERR2756788). Assembly of 
this sequencing library with coronaSPAdes yielded a 29264 nt viral genome. The average 
coverage is 110x with variation from 2x to 1500x in different regions of the genome. This is a 
new species of Coronavirus based on RdRP, nucleoprotein, membrane protein and 
replicase 1a, which all classify this virus an Alphacoronavirus outside of all named 
sub-genera and most similar to a Pedacovirus. 
Ginger ​ is a putative novel Alphacoronavirus detected in a transcriptome sequencing library 
from a Wildcat (​Felis silvestris​, SRA:SRR72871109). Assembly of this sequencing library 
with coronaSPAdes yielded a 29277 nt viral genome (see Fig. 1). The average coverage is 
20x with variation from 230x to 6x in different parts of the genome. 
 
[insert Figure 1 around here] 
 
PEDV​ is a known Alphacoronavirus that causes porcine epidemic diarrhea. It was 
assembled from a transcriptome sequencing library of epithelial cells of pig intestine (​Sus 
scrofa​, SRA:SRR10829953). Assembly of this sequencing library with coronaSPAdes 
resulted in a 27973 nt viral genome. The average coverage is 470x with variation from 30x to 
8000x in different parts of the genome. 
We benchmark ​Fr4nk​, ​Ginger ​ and ​PEDV​ using several specialized virus assemblers (IVA, 
PRICE), generic metagenome and transcriptome assemblers (MEGAHIT, metaSPAdes, 
rnaSPAdes) and coronaSPAdes. The overview of the results could be found in Table 1. 
Conventional RNA assemblers (IVA and PRICE) are using a seed-and-extend approach, 
therefore a seed sequence was required. This property greatly reduces their applicability for 
nover species search. In addition, it seems they were unable to deal with the specifics of 
large transcriptome and metatranscriptome datasets. Other assemblers (MEGAHIT, 
metaSPAdes, rnaSPAdes) overall have shown acceptable results, however their 
performance was not uniform, as none of them was able to assemble complete virus 
genomes out of all 3 datasets. coronaSPAdes was able to produce whole genomes in all 
cases. 
 
[insert Table 1 around here] 
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Conclusions 

In summary, we developed coronaSPAdes, a specialized assembler for coronaviridae          
genomes. coronaSPAdes allows to recover coronaviridae genomes with lower fragmentation          
and higher contiguity from the datasets of different nature. Moreover, our results prove the              
utility of a HMM-guided assembly approach that can be adapted to other genome types.  

Methods 
 

RNA virus assemblers [16], 17], 18] have to face a number of challenges in order to assemble the 
sequence data into a consensus sequence. These challenges stem from the nature of the sequencing 
data due to the biases in the reverse transcription and polymerase chain reaction amplification 
process that current sequencing methods rely on. These biases are further aggravated by enormous 
viral population diversity causing lots of SNPs as well as structural variations. These properties of the 
data cause assembly fragmentation or, even worse, make certain regions disappear from the 
assembly. Additionally, coronaviruses are known to use discontinuous extension of negative strands 
to produce multiple mRNAs [19]. So, even in case of a single virus in the sample, assemblers should 
be able to deal with multiple produced “isoforms”. 
Over the years SPAdes team produced several assembly pipelines aimed for different kinds of 
sequencing data and tasks. This includes metaSPAdes for assembly of consensus genomes from 
metagenomes, rnaSPAdes centered around reconstruction of multiple isoforms from eukaryotic data 
as well as more specialized versions such as metaplasmidSPAdes and metaviralSPAdes. The latter 
pipeline uses coverage-based heuristics in order to detect putative DNA virus sequences (cyclic and 
linear) from assembly graphs. 
It turned out that none of these pipelines could cope with all the challenges connected with RNA viral 
data, however, each of it contains some useful algorithms and approaches. The modular structure of 
SPAdes allowed deep reuse and extension of the existing algorithms to be combined into a 
coronaSPAdes pipeline. 
Essentially, the coronaSPAdes pipeline consists of two main steps: rnaviralSPAdes and 
HMMPathExtension. 
rnaviralSPAdes constructs assembly graph from input RNA viral dataset (transcriptome, 
meta-transcriptome, virome and meta-virome datasets are expected and supported). Briefly, it is 
based on metaSPAdes pipeline with several important additions and changes adopted from other 
SPAdes pipelines: 

1. Removal of low-complexity (poly-A / poly-T) tips and edges and RNA-seq specific chimeric 
connections. rnaSPAdes introduced extensive procedures to remove from the de Bruijn graph 
artifacts that are specific to RNA data. As stated in [12] the majority of the chimeric 
connections in RNA-Seq data are either single-strand chimeric loops or double-strand 
hairpins. They are detected by analyzing the graph topology rather than nucleotide 
sequences or coverage. Another characteristic of RNA-Seq datasets is the large number of 
low-complexity regions that originate from poly-A tails resulting from polyadenylation at the 
ends of mRNAs. To avoid chimeric connections and non-informative sequences 
low-complexity edges are removed from the de Bruijn graph.  

2. Removal of subspecies-bases variation. As rnaviralSPAdes like metaviralSPAdes aims for 
species-level assemblies (as opposed to strain-level assemblies that are certainly infeasible 
due to high level of variation), the bulge removal procedure was refined to collapse this 
variation. Specifically, it collapses long and similar (with respect to the edit distance) parallel 
edges in the assembly graph. 

3. Additionally, we relaxed the metagenomic edge disconnector condition (see [7] for more info) 
due to coronavirus genome size and drastically increased coverage variation compared with 
metagenomic samples. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 28, 2020. ; https://doi.org/10.1101/2020.07.28.224584doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.28.224584
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

rnaviralSPAdes pipeline allows for removal of the majority of RNA sequencing artifacts and collapsing 
the variation. However, still there are cases when an assembler could not remove the errors neither 
using the coverage-based heuristic nor the graph topology. The GINGER dataset outlined above is a 
good example. Certainly, it might be possible to tune various assembler heuristics to deal with this 
particular case, however, the solution will unlikely work on other datasets and would require extensive 
benchmarking in order not to be overly-aggressive in error elimination. 
The second step of coronaSPAdes pipeline, HMMtraversal, deals with outlined problems in a 
completely different way and tries to use the information about coronaviral genome organization to 
distinguish between putative genomic sequences from uncleaned artifacts.  
HMMPathExtension extends HMM-based algorithms of biosyntheticSPAdes. Similarly with 
biosyntheticSPAdes, HMMtraversal tries to find paths on the assembly graph that go through all 
significant HMM matches in order and agree with rnaviralSPAdes contigs. On contig breakpoints (e.g. 
in the case of remaining erroneous connections or variations), HMMtraversal is able to do a search for 
the nearest feasible match. This way the extracted genomic sequence is supported both by the graph 
topology and the structure of the genome. 
coronaSPAdes is bundled with the Pfam SARS-CoV-2 set of HMMs [20]. Note that despite the name, 
these HMMs are quite general and represent the profiles of various proteins that belong to 
coronaviruses as well as more conserved ones like RdRp that is conserved across all RNA viruses 
[21]. Hits from these HMMs uniformly cover the genome of coronaviruses, allowing to reconstruct 
strains mixtures and splice variants. 
We explicitly note that the approach of HMMPathExtension is not limited to coronaviral genomes.  
HMMPathExtension step allows for custom HMM database specification effectively enabling 
HMM-guided assemblies of other genomes using their internal structure. 
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(Vancouver style) 
 
 
 

 MEGAHIT metaSPAdes rnaSPAdes coronaSPAde
s 

IVA PRICE 

Fr4nk Longest 29219 26321 20607 29164 N/A**,^ 8504* 

 CheckV 
completeness 

105.2 94.85 72.48 101.7 N/A 31.1 

 CheckV AA 
avg ID% 

55.71 56.13 63.34 54.84 N/A 75.8 

Ginger Longest 23905 19453 29301 29277 3186** 15691* 

 CheckV 
completeness 

91.1 69.0 103.66 103.5 N/A 55.9 

 CheckV AA 
avg ID% 

85.3 93.93 85.58 85.58 N/A 95.73 

PEDV Longest 28530 26316 23312 27973 N/A**,^ 23559* 
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 CheckV 
completeness 

101.4 93.6 82.93 99.5 N/A 83.02 

 CheckV AA 
avg ID% 

97.55 97.96 97.92 97.5 N/A 97.9 

 
Table 1: Benchmarking of assemblers on several datasets. Shown are: longest viral contig assembled, its 
completeness as estimated by CheckV[22] and the average amino acid identity to the closest reference in 
CheckV database. The best results are shown in bold. 
*Seed was required, 1 kbp of coronaSPAdes assembly was used 
**IVA failed to select seed automatically. 1 kbp of coronaSPAdes assembly was provided as a seed 
^Failed to extend the seed 
 

 
Figure 1: Part of Ginger assembly graph produced with coronaSPAdes. rnaviralSPAdes produced 8 contigs from 
this subgraph (red, green and blue paths on the graph and 5 black edges), therefore splitting the coronavirus 
genome into three parts. coronaSPAdes matched viral edges of the graph with domain (rectangles of different 
color). Path along these matches spells a full-length viral genome.  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 28, 2020. ; https://doi.org/10.1101/2020.07.28.224584doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.28.224584
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 28, 2020. ; https://doi.org/10.1101/2020.07.28.224584doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.28.224584
http://creativecommons.org/licenses/by-nc-nd/4.0/

