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Abstract4

Background: Random walks (RWs) have proved to be a powerful modelling tool in ecology, particu-5

larly in the study of animal movement. An application of RW concerns trapping which is the predomi-6

nantsampling method to date in insect ecology, invasive species, and agricultural pest management. A7

lot of research effort has been directed towards modelling ground-dwelling insects by simulating their8

movement in 2D, and computing pitfall trap counts, but comparatively very little for flying insects with9

3D elevated traps.10

Methods: We introduce the mathematics behind 3D RWs and present key metrics such as the mean11

squareddisplacement (MSD) and path sinuosity, which are already well known in 2D. We develop the12
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mathematicaltheory behind the 3D correlated random walk (CRW) which involves short-term direc-13

tionalpersistence and the 3D Biased random walk (BRW) which introduces a long-term directional bias14

in the movement so that there is an overall preferred movement direction. In this study, we consider15

threetypes of shape of 3D traps, which are commonly used in ecological field studies; a spheroidal16

trap,a cylindrical trap and a rectangular cuboidal trap. By simulating movement in 3D space, we in-17

vestigated the effect of 3D trap shapes and sizes and of movement diffusion on trapping efficiency.18

Results: We found that there is a non-linear dependence of trap counts on the trap surface area or vol-19

ume,but the effect of volume appeared to be a simple consequence of changes in area. Nevertheless,20

thereis a slight but clear hierarchy of trap shapes in terms of capture efficiency, with the spheroidal21

trap retaining more counts than a cylinder, followed by the cuboidal type for a given area. We also22

showed that there is no effect of short-term persistence when diffusion is kept constant, but trap counts23

significantlydecrease with increasing diffusion.24

Conclusion: Ourresults provide a better understanding of the interplay between the movement pattern,25

trapgeometry and impacts on trapping efficiency, which leads to improved trap count interpretations,26

andmore broadly, has implications for spatial ecology and population dynamics.27

1 Introduction28

Modelling individual animal movement and navigation strategies using random walks has long been a29

successfultradition in movement ecology (Nathan et al., 2008). The earliest models considered animal30

pathsas uncorrelated and unbiased, e.g. Simple Random Walks (SRW) (Lin and Segel, 1974;Okubo,31

1980). A natural extension known as the Correlated Random Walk (CRW), firstly conceived byPatlak32

(1953)and later developed by others (Hall, 1977;Kareiva and Shigesada,1983;Bovet and Benhamou,33

1988;Benhamou,2004),allows for correlation between the orientations of successive steps, resulting in34

a short term localized directional bias known as ‘forward persistence’. This provides a more realistic35

description,as animals in the short term are more likely to keep moving in the same direction than to36

performabrupt turns. Alternatively, a movement can show a consistent long term directional bias reflecting37

anoverall preferred direction. This type of movement is known as a Biased Random Walk (BRW) (Marsh38

andJones,1988). If both short and long term biases are combined we obtain a Biased Correlated Random39

Walk (BCRW), (Benhamou,2006;Codling et al., 2008;Bailey et al.,2018).40
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A tractable link between the 2D balanced CRW (i.e. left and right turns are equiprobable) and the41

meansquared displacement (MSD) was introduced byTchen(1952) with constant step length, and later42

by Hall (1977) for variable step length. This helped bridge the gap between theory and field data, by43

providing a measure of the spatial spread of a population with the path length in terms of simple statistical44

moments.Kareiva and Shigesada(1983) further extended these results for a non-balanced 2D CRW. By45

comparingthe observed MSD against that computed from theory, one could determine how well the CRW46

modelpredicted real animal movement (Weiss, 1994;Codling et al.,2008). This gave rise to a multitude47

of studies which successfully modelled the movement of a variety of species using the CRW, with many48

examples, including beetles (Byers,2001), butterflies (Schultz and Crone, 2001), Elk (Morales et al., 2004;49

Fortin et al., 2005), grey seals (McClintock et al., 2012), and many others.50

With cutting-edge developments in tagging and sensor technology, it is now possible to obtain ac-51

curateand refined 3D movement data, used to infer individual posture and heading (or 3D orientation).52

Measuresof azimuthal, elevation and bank angles can be obtained through the usage of accelerometers53

andmagnetometers, whereas, gyrometers can provide direct measures of rotations such as yaw, pitch and54

roll (Williams et al., 2020). Alongside this, there has been an increase in the number of studies which55

focuson 3D animal movements (Voesenek et al., 2016;Le Bras et al.,2017;de Margerie et al., 2018).56

In light of the above context, an extension to the results conceived byHall (1977) to 3D is evidently due.57

Recently, Benhamou(2018) derived a mathematical expression for a key metric, namely, the MSD of the58

balancedCRW in 3D space (which can easily be extended to BRWs), and also path sinuosity, which is59

directly linked to the MSD of CRWs and expresses the amount of turning associated with a given path60

length. This sets the stage for 3D CRWs and 3D BRWs to be tested as null models that could hypothet-61

ically provide a more realistic framework for swimming, burrowing and flying animals - due to the mere62

fact that movement is exercised in an additional (third) direction. Once the above movement models are63

formalised,these can then be used as a baseline for a theoretical insight into the dynamics of trap counts.64

Trapping is the predominant sampling method in insect ecology, invasive species, and agricultural pest65

management.Their usage covers a wide scope of ecological scenarios, including; general survey of in-66

sectdiversity, detection of new invasive pests, delimitation of area of infestation, suppressing population67

buildup, monitoring populations of established pests, or even as a direct control measure, etc. (Southwood,68

1978;Radcliffe et al., 2008). Since their original conception, many traps have been designed with mod-69
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ificationsto cater for particular species, habitats, and research requirements (Muirhead-Thomson,1991).70

Considerableprogress has been made in modelling 2D pitfall trapping systems (Petrovskii et al., 2014),71

with recent efforts to standardize methodology (Brown and Matthews,2016), however, few attempts can72

befound in the literature which analyse 3D elevated traps, albeit some efforts entirely based on simulations73

(Byers,2011,2012). We are interested in those traps used for flying insects. For this purpose, the main74

two types which are used in ecological studies are the ‘interception’ trap in the form of a net-like structure75

e.g. Malaise trap (tent-shaped;Lamarre et al., 2012), or ‘sticky’ traps usually coated with an adhesive.76

We focus on the latter, which, from a mathematical perspective, constitutes an enclosed shape with ab-77

sorbingsurface. In agricultural studies, the most commonly used traps are sticky spheroidal, cylindrical,78

andcuboidal traps, particularly for faunal surveys (Taylor, 1962;Sivinski,1990;Robacker and Rodriguez,79

2004;Epsky et al., 2004). Amongst these, the default choice is usually the sticky spherical trap, which is80

known to effectively trap a variety of taxa, e.g.Tephritid fruit flies, such as; apple maggot flies (Rhago-81

letis pomonella), blueberry maggot flies (Rhagoletis mendax), papaya fruit flies (Toxotrypana curvicauda82

Gerstaecker) and biting flies in the familyTabanidae(Sivinski, 1990;Duan and Prokopy, 1994;Mondor,83

1995;Kirkpatrick et al., 2017). It is also worth mentioning that other trap types do exist, but are used less84

frequently, for e.g. triangle (or wedge), diamond, cones and some others (Epsky et al., 2004), but usage85

largely depends on the target species.86

In this paper, we provide the mathematical details behind modelling individual animal movement87

using a 3D SRW, and demonstrate how short/long term persistence mechanisms can be incorporated,88

for a more general and realistic 3D CRW or 3D BRW. Using the results fromBenhamou(2018), we89

summarizeimportant metrics, such as the MSD, and show how these RWs can be made equivalent in90

termsof diffusion. Using this 3D RW framework, we model the movement of animals in 3D space,91

with focus on trapping. We reveal that trap counts vary non-linearly as a function of trap surface area or92

volume, and provide analytic expressions useful for trap count estimation. Furthermore, we investigate the93

interplaybetween the trap shape and elongation of 3D traps, the movement behaviour and how this can94

inducechanges in trapping efficiency. More specifically, we analyse the impact of trap geometry and how95

short-termcorrelations (‘micro-structure’) or diffusion (‘macro-structure’) can affect capture rates. Better96

understandingof trap count dynamics and catch patterns lead to improved trap count interpretations. More97

generally, the implications of our results are also relevant in other ecological contexts, for e.g. where trap98
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sizecan be thought of as odour plume reach (Miller et al., 2015).99

2 Methods100

2.1 3D Random Walks in Cartesian and Spherical co-ordinates101

Individual animal movement can be modelled in 3D as a time series of locationsxi = (xi ,yi ,zi) recorded102

at discrete timesti = {t0, t1, t2, ...}. The movement can therefore be seen as a series of discrete steps103

∆xi = xi − xi−1. Any 3D RW can be described in spherical coordinates, by expressing the step vector in104

termsof step lengthsli = ||∆xi ||, azimuthal angleθi (equivalent to longitude) and polar angleφi (equivalent105

to co-latitude), using the transformation:106

∆x = l cos(θ)sin(φ), ∆y = l sin(θ)sin(φ), ∆z= l cos(φ), l ∈ [0,∞), θ ∈ (−π,π], φ ∈ [0,π] (2.1.1)

The change of direction of an animal from heading(θi ,φi), between locationsxi−1 andxi , to heading107

(θi+1,φi+1), between locationsxi andxi+1, can be modelled as an orthodromic (or great circle) arc, char-108

acterizedby two angles: the initial arc orientationβi, measured between−π andπ in the frontal plane109

with respect to the horizontal level, and the arc sizeωi , measured between 0 andπ in the plane defined by110

thetwo headings:111

ωi = cos−1[cos(φi)cos(φi+1)+ sin(φi)sin(φi+1)cos(θi+1−θi)] (2.1.2)

For a balanced CRW (including SRW as a special case) or BRW, the random variableβ is independent112

of ω, and its distribution must also be centrally symmetric so that its mean sine and cosine are both null.113

Whethershort or long term directional persistence is incorporated into the RW can be realised through the114

meancosine ofω, cω : one getscω > 0 for a balanced CRW and BRW andcω = 0 for a SRW. CRW and115

BRW can be further distinguished based on how the heading at any step is determined. For both types of116

walks it is drawn at random around a predefined 3D directionµ. For a CRW,µ corresponds to the heading117

at the previous step, whereas for a BRW,µ corresponds to the target direction. In this case, the arc size118

correspondingto the angular discrepancy between a given heading and the target direction will be referred119
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to asν , which is statistically related to the arc size between successive headingsω throughthe relationship120

cω = c2
ν asoccurs with 2D BRW (Marsh and Jones, 1988;Benhamou,2006;Codling et al.,2008).121

TheMean Squared Displacement (MSD),E
[
R2

n

]
, which is defined as the expected value of the squared122

beelinedistance between an animals’ initial and final locations aftern steps, serves as a useful metric to123

analysemovement patterns. The general MSD formulation for 2D CRW (Kareiva and Shigesada, 1983;124

Benhamou,2006),in which left and right turns are not necessarily balanced, is extremely complex. We125

will consider here its extension in 3D space only for balanced CRW, developed byBenhamou(2018), and126

which reads:127

E
[
R2

n

]
= nE

[
l2
]

+ 2E[l ]2
cω

1−cω

(

n−
1−cn

ω
1−cω

)

, (2.1.3)

For a large step numbern, the MSD approaches:128

E
[
R2

n

]
a = n

(

E
[
l2
]

+ 2E[l ]2
cω

1−cω

)

= LE[l ]

(
1+ cω
1−cω

+ γ2
)

, (2.1.4)

whereL = nE[l ] is the mean path length andγ =
√
E[l2]
E[l ]2 −1 is the coefficient of variation of step length.129

For a 3D SRW, withcω = 0, the MSD reduces toE
[
R2

n

]
= nE

[
l2
]
, whatever the step number. It is130

readily seen from equation (2.1.4) that the MSD is asymptotically proportional ton, and therefore the131

walk becomes isotropically diffusive in the long term. The subscript ‘a’ is included here to represent the132

asymptoticvalue to which the MSD tends whenn increases indefinitely. For an isotropically diffusive133

RW, the MSD is related to the diffusion coefficientD as follows:E
[
R2

n

]
= 2qDTn whereTn is the duration134

of then step RW andq = 1,2,3 corresponds to the number of dimensions (Crank,1975;Turchin, 1998;135

Sornette,2004;Codlinget al., 2008). The amount of turning in a random search path can be quantified by136

thesinuosity index:137

S=

√
s
D

=

√
2qnE[l ]
E [R2

n]a
, (2.1.5)

wheres is the mean speed, withq = 3 for a random walk in 3D space (Benhamou,2006,2018).138

In the case of a BRW, headings are drawn independently of each other in the target direction. This139
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leadsto the following expression for the MSD:140

E
[
R2

n

]
= nE

[
l2
]

+ n(n−1)E[l ]2cω = n
(
E
[
l2
]
−E[l ]2c2

ν
)

︸ ︷︷ ︸
diffusion term

+ n2E[l ]2c2
ν︸ ︷︷ ︸

advection term

(2.1.6)

whereν is the arc size between an heading and the target direction, which is statistically related to the arc141

sizebetween successive headingsω throughthe relationshipcω = c2
ν . This expression highlights that a142

BRW is essentially a combination of the diffusive random walk and a drift, and its MSD is dominated in143

the long-term by the contribution of the drift. It is worth noting that the MSD expressions for balanced144

CRW and BRW in 3D space are similar to those obtained in 2D space (Hall, 1977;Marsh and Jones,145

1988).The only difference is that the mean cosine of turning angles that is used in 2D space is replaced by146

themean cosine of orthodromic arcs corresponding to the reorientations between successive 3D headings.147

We can derive the conditions under which two 3D balanced CRWs are ‘equivalent’, in the sense that148

they have the same MSD aftern steps, given thatn is sufficiently large. In particular, if we consider a SRW149

with step lengthl∗ andmean cosinec∗ω = 0, assuming the same coefficient of variation of step length and150

thesame mean path lengthL, we obtain the following ‘condition of equivalence’:151

E[l∗]
E[l ]

=
1+
(

1−γ2

1+γ2

)
cω

1−cω
. (2.1.7)

Now consider a SRW and a BRW with step lengthsl∗ andl ′ andmean cosinesc∗ω = 0 andc′ω , respectively.152

Thecondition of equivalence between these RWs in terms of diffusion is obtained with:153

E[l∗]
E[l ′]

= 1−
c′ω

1+ γ2 . (2.1.8)

2.2 Mathematical bases for simulations of 3D RW154

We relied on a distribution of step length so that the distributions of increments∆x, ∆y, and∆z, when155

reorientationsare purely random (SRW), are zero-centred Gaussian distributions with the same standard-156

deviationσ , which represents the mobility of the animal. For a SRW with such increments, the probability157

that the animal moves into an (infinitesimally) small vicinity of the current locationx, i.e within volume158
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dV = d∆xd∆yd∆z= l2sin(φ)dldθdφ , is:159

dP =
l2

(
σ
√

2π
)3 exp

(

−
l2

2σ2

)

sin(φ)dldθdφ . (2.2.1)

As l , θ andφ aremutually independent random variables, one gets the following probability distribution160

functionsfor these variables:161

λ (l) =
2l2

σ3
√

2π
exp

(

−
l2

2σ2

)

, ψ(θ) =
1

2π
, η(φ) =

sin(φ)
2

. (2.2.2)

The mean step length isE [l ] = 4σ√
2π and mean squared step lengthE

[
l2
]

= 3σ2. The coefficient of162

variation is thereforeγ =
√

3π
8 −1. Note that, as expected,λ (l) canbe considered a transformation of the163

Chi distribution with 3 degrees of freedom, for re-scaled step lengthsl̃ = l
σ (Walck, 2007).164

To specify the distributions of initial arc orientationβ andarc sizeω in our simulations, we used the165

von-Mises Fisher distribution (vMF), which is the simplest type amongst the Generalized Fisher-Bingham166

family of spherical distributions (Kent,1982). The vMF distribution on the(q−1)-dimensional sphere167

Sq−1 in Rq of the unit random vectorz = (z1,z2, ...,zq) is given by:168

υq(z;µ,κ) =
κ

q
2−1

(2π)
q
2 I q

2−1(κ)
exp(κµ ·z) (2.2.3)

whereµ is the mean direction with norm||µ|| = 1 andκ > 0 is a measure of the concentration about169

themean direction, andIm denotesthe modified Bessel function of the first kind of orderm. Forq = 2,170

this corresponds to a particular type of distribution on a circle, known as the von Mises distribution. For171

q = 3 on the sphereS2, with I1/2(κ) = 2sinh(κ)√
2πκ (Mardiaet al.,1979), the probability density function of172

theendpoint ofz falling within the infinitesimal surface element with surface areads is:173

υ3(z;µ,κ)ds=
κ

4π sinh(κ)
exp(κµ ·z)ds (2.2.4)

Given thatµ andz are two unit vectors which deviate byζ from each other, one getsµ ·z = cos(ζ ), with174

ζ = ω for a balanced 3D CRW, whereµ corresponds to the previous heading, orζ = ν for a 3D BRW,175

whereµ correspondsto the target direction. Furthermore, by setting the pole of the sphere at the endpoint176
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of µ, the infinitesimal surface elementdscan be rewritten without loss of generality as sin(ζ )dβdζ asit177

appearsthatζ thenbehaves as a co-latitude andβ asa longitude. Withβ uniformly distributed between178

–π andπ, one gets:179

ψ(β ) =
1

2π
, η(ζ ;κ) =

κ
2sinh(κ)

eκ cos(ζ ) sin(ζ ) (2.2.5)

whereψ andη correspondto the probability distribution functions of the initial arc orientation and arc180

size,respectively (Fisher et al., 1981;Mardia and Jupp, 2000), with:181

cζ = coth(κ)−
1
κ
, κ > 0. (2.2.6)

In the limit κ → 0, the distribution of the arc size simplifies toη(ζ ) = sin(ζ )
2 with mean cosinecζ = 0, as182

expected for a SRW.183

Figure2.2.1: Random samples from the vMF distribution on a unit sphereS2 with the pole as the mean

directionµ= (0,0,1), with increasing concentration parameterκ , based on 1000 simulated points.

In the case of a SRW, the points are uniformly distributed on the whole surface. For increasingκ184

values, the points are more concentrated towards the poleµ. Directional correlation is introduced to get185

a 3D balanced CRW, by randomly generating a heading from a distribution where the mean directionµ186

correspondsto the previous heading, whereas a 3D BRW is obtained by randomly generating a heading187

from a distribution where the mean directionµ corresponds to the target direction.188

To tune the scale parameters of various CRW so that they are equivalent in terms of diffusion, we can189

express equation (2.1.7) as:190

σ∗

σ
=

1+
( 16

3π −1
)

cω

1−cω
. (2.2.7)

In the long term, a CRW with scale parameterσ behaves as a SRW with scale parameterσ∗. The sinuosity191
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of both walks can therefore be expressed as:192

S=
2
√

σ∗

(
2
π

) 1
4

. (2.2.8)

Similarly, for a BRW with step length distribution parameterσ ′ andlong term persistence parameterκ ′193

onegets:194

σ∗

σ ′
= 1−

8
3π

c2
ν . (2.2.9)

with cν = coth(κ ′)− 1
κ ′ .195

2.3 Modelling trapping196

In 3D trapping scenarios, consider a population ofN individuals moving independently of each other. The197

pathof each individual is modelled as a 3D RW in unbounded space, with initial locationx0 = (x0,y0,z0)198

in proximity of a 3D trap. Each subsequent step is determined by the recurrence relationxi = xi−1 + ∆xi ,199

resultingin a RW which is governed by the type of probability distribution for the step vector(∆x), and its200

properties.We assume that each walker moves until it is trapped or has travelled a path of lengthL, which201

canbe easily converted into time by considering the mean speeds. We introduce the concept of trapping202

by stating that at each stepi, any individual which is within the confines of a trap is removed from the203

system,leading to trap counts or captures. Under such conditions, the trap surface is absorbing and the204

simulationallows cumulative trap countsT to be recorded. In our simulations, we assume the absence205

of mortality or reproduction, so that the population at each step can only decrease, due to trapping, or206

otherwiseremains stable. As an example, Fig.2.3.1shows the distribution of the individuals over the 3D207

spaceafter performing the random walk of a given lengthL.208
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Figure2.3.1: Evolution of the 3D spatial distribution for a population ofN = 1000 individuals, uniformly

distributed at (a)L = 0 (initial condition), within a distanceR= 10 from the centre of the spherical trap of

radiusrs = 4. Each individual walker performs a SRW with Gaussian increments and mobility parameter

σ∗= 1 (corresponding to sinuosityS= 1.79). Individual location is plotted until it is trapped or it travelled

a path of maximum length (b)L = 50 and (c)L = 500, corresponding to approximatelyn = 31,313 steps,

respectively. Plots (a)-(c) present a 3D view and (d)-(f) presents a top-down view of the above. The black

circle in (d) is included to illustrate that the walkers are confined within the vicinity atL = 0, but later

move in unbounded space.

In this study, we consider three shapes of 3D traps, namely the spheroid, cylindrical and rectangular209

cuboidtypes with trap geometryD defined by the following:210

1. Spheroid (i.e. ellipsoid of revolution) trap with equatorial radiusrs andpolar radiushs,211

Ds =

{

(x,y,z)

∣
∣
∣
∣

x2 + y2

r2
s

+
z2

h2
s
< 1

}

. (2.3.1)

with the specific casers = hs reducesto a spherical shaped trap.212

2. Cylindrical trap with radiusrc andheighthc,213

Dc =

{

(x,y,z)

∣
∣
∣
∣ x2 + y2 < r2

c, |z|<
hc

2

}

. (2.3.2)
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3. Rectangular cuboid trap with square base of side lengtheb andheighthb,214

Db =

{

(x,y,z)

∣
∣
∣
∣ |x|<

eb

2
, |y|<

eb

2
, |z|<

hb

2

}

, (2.3.3)

with the specific caseeb = hb reducesto a cube shaped trap.215

Subscripts‘s,c,b’ refer to the spheroid, cylindrical, cuboid types, respectively.216

For any trap type, we can specify its shape by introducing dimensionless elongation parameters. For the217

spheroid,we considered the ratio of polar to equatorial radiiεs = hs
rs

, whereεs< 1 corresponds to an oblate218

spheroidandεs> 1 to a prolate spheroid. For the cuboid we considered the ratio of height to base side219

lengthεb = hb
eb

, whereεb = 1 corresponds to a cube, and for the cylinder we considered the ratio of height220

to base diameterεc = hc
2rc

.221

We can then write expressions for the total surface area as:222

As = 4πr2
s f (εs) where f (εs) =






1
2

[

1+ ε2
s√

1−ε2
s

artanh
(√

1− ε2
s

)]

, εs< 1

1, εs = 1

1
2

[

1+ ε2
s√

ε2
s−1

arcsin

(√
ε2

s−1
εs

)]

, εs> 1

(2.3.4)

223

Ac = 2πr2
c(1+ 2εc), Ab = 2e2

b(1+ 2εb), (2.3.5)

andfor volume:224

Vs =
4
3

πεsr
3
s, Vc = 2πεcr

3
c, Vb = εbe3

b. (2.3.6)

We can also express volume as a function of area as:225

Vs =
εs

6
√

π

(
As

f (εs)

) 3
2

, Vc =
εc√
2π

(
Ac

1+ 2εc

) 3
2

, Vb = εb

(
Ab

2(1+ 2εb)

) 3
2

. (2.3.7)
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Figure2.3.2: Illustration of the different trap shapes. (a) (Prolate) Spheroid trap: radiusrs = 3.27, hs =

5.56, εs = 1.7, (b) Cylindrical trap: radiusrc = 2.82, hc = 8.46, εc = 1.5, (c) Cuboid trap: base length

eb = 7.07, hb = 3.54, εb = 0.5. N = 100 individuals are initially uniformly distributed over the vicinity

between the trap and a radial distance ofR = 10 measured from the centre of the trap. The dimensions

are chosen so that the surface area,A, of each trap is approximately equal to 200, which is a necessary

requirement to compare between these geometries (see explanation in§3.1).

The initial distribution of individual location is considered to be uniform over a vicinity, which is226

definedas the space between the trap and some fixed outer distanceR, measured from the centre of the227

trap. In the case of a spherical trap, we can think of this as the 3D extension of uniformly distributed points228

onan annulus, i.e. between two concentric spheres. If we describe initial location in spherical co-ordinates229

asx0 = (r0,θ0,φ0), then the corresponding probability density functions can be written explicitly as:230

R(r0) =
3r2

0

R3− r3
s
, Θ(θ0) =

1
2π
, Φ(φ0) =

sinφ0

2
. (2.3.8)

Usingthe inverse transform technique (Grimmet and Stirzaker,2001), the initial location of each individ-231

ual can then easily be simulated by:232

x0∼

(
3
√

(R3− r3
s)U + r3

s, 2πU, arccos(1−2U)

)

(2.3.9)

whereU is a random variable drawn from the uniform distribution between 0 and 1.233

In the case of other trap shape, the vicinity no longer has an infinite number of symmetry axes and234

therefore,to simulate a homogeneous population is not as straightforward. In these cases, we drawn the235

initial locations at random in the whole sphere of radiusR, and removed those occurring within the trap.236
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3 Results237

3.1 Effect of trap shape type238

Considerthe usual simulation setting outlined in §2.3, for a spherical trap (εs = 1) with increasing trap239

size.240

Figure3.1.1: Snapshots of the spatial distribution in the case of spherical traps with radiirs = 0.5,2,4,

(surface areaA = 3.14,50.27,201.06), after a maximum path length of (a)-(c)L = 100 and (d)-(f)L = 500

has been reached. Each individual executes a SRW in unbounded space with mobility parameterσ∗ = 1

(S= 1.79).

By simulating trap count data for different sized spherical traps, we can investigate whether captures241

arebetter correlated with trap surface area or trap volume. This approach can also be applied to cuboid242

andcylindrical traps.243
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Figure3.1.2: Cumulative trap counts as a function of (a) trap volume and (b) trap surface area, using

non-linear regression. Solid curves are for the spherical trap, dashed-and-dotted curves are the cylindrical

trap and dotted curves are for the cube trap. (a)T(V) = 100[1−exp(−c0
√

V)] with c0 = 0.0297for the

sphere with radiirs = 0.5,1,...,7, c0 = 0.0317for the cylinder with radiirc = 0.5,1,...,6 (εc = 1), and

c0 = 0.0328for the cube with base lengthseb = 1,2,...,11 (εb = 1). (b) Same formula as in (a) withV

expressed in terms ofA, given by the equations in (2.3.7). The values noted alongside each curve are the

squared correlation coefficients. The range of volumes/area considered are found from the upper bounds

in (3.1.2). Simulation details: the movement type used is a SRW withσ∗ = 1 (S= 1.79). Trap counts are

recorded after a maximum path length ofL = 500 has been reached.

We considered a cube traphb = eb (εb = 1), and a ‘normalized’ cylinder where the height is equal to the244

basediameterhc = 2rc (εc = 1). The normalized cylinder and the cube lie within a sphere of radiusR245

provided that the following inequalities apply:246

rc <
R
√

2
, Ac < 3πR2, Vc < 2π

(
R
√

2

)3

, (3.1.1)

247

eb < R

√
4
3
, Ab < 8R2, Vb <

(
2R
√

3

)3

, (3.1.2)

whichwe use to determine the range of trap dimensions, areas and volumes.248

The simulated trap counts are shown in Fig.3.1.2. It is readily seen that the cumulative trap count249
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is a monotonously increasing, nonlinear function of trap surface area and volume. Note that the order of250

trapshapes, in terms of capture efficiency, is reversed depending on whether we consider the traps to have251

equaltotal area or volume.252

3.2 Effect of trap elongation253

In the following, we investigate the variation in trap counts for different configurations of spheroidal,254

cylindrical and cuboid traps, assuming the same total surface area or volume.255

Figure3.2.1: Trap captures (%) for spheroid, cylindrical and cuboid traps. (a) Each trap type has the same

volume: spheroidV = 265.96, cylinderV = 217.16 and cuboidV = 192.45, corresponding to an area

A = 200 for elongation parameter equal to 1. (b) All traps have the same surface areaA = 200.The range

of ε values considered has upper boundsεs≤ 5, εc ≤ 6.5 andεb ≤ 8 so that all traps lie within a sphere

of radiusR= 10. The movement type considered is a SRW withσ∗ = 1 (S= 1.79), and each walker is

allowed to travel up to a maximum path lengthL = 500. All other details regarding the simulation setting

are the same as in the caption of Fig.3.3.1.

Trap counts for a given volume and a given trap shape (Fig.3.2.1a) varies a lot, but the variation as a256

functionof the elongation parameter is mainly due to a variation of area. Indeed, the sharp increase in the257

trapcount seen in Fig,3.2.1a for smallε is an immediate consequence of the fact that the decrease inε to258
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valuesε � 1 makes the shape almost flat. In order to preserve the volume, the area then becomes large.259

Onthe contrary, when the area is kept constant for all trap shape types and elongation parameter, we found260

that the number of captures does not vary much (Fig.3.2.1b). In this context, spheroidal traps slightly261

outperformcylindrical and cuboid traps in terms of capture efficiency. As elongation has no noticeable262

effect (for each type of trap) whereas this factor changes the volume for a given area, it makes sense to263

considertraps with the same area for subsequent analyses of the possible effects of short-term persistence,264

long-termdirectional bias and diffusion of the walk.265

3.3 No effect of short-term persistence when diffusion is kept constant266

Figure3.3.1: Captures (%) plotted against path lengthL. Trap geometries considered are (a) spherical

rs = 3.9894(εs = 1), (b) cylindrical rc = 3.2574(εc = 1) and(c) cubeeb = 5.7735(εb = 1) with equal

surface areaA = 200. Initial population is homogeneously distributed over the volume outside the trap

and within a sphere of radiusR = 10. Movement types considered are SRW with mean cosinec∗ω = 0,

κ∗ = 0 andσ∗ = 1, CRW with cω = 0.5, κ = 1.7968,σ = 0.3707,and CRW withcω = 0.8, κ = 4.9977,

σ = 0.1284. Scale parameters are chosen so that each movement type has the same sinuosity (S= 1.79)

and therefore the same MSD after a large number of steps for a given path length (see equations (2.2.7)

and (2.2.8)).
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Fig. 3.3.1demonstratesthat the inclusion of short-term persistence results in identical trap counts, assum-267

ing that all individuals perform a path with the same diffusion and same maximum path length irrespective268

of trap geometry.269

3.4 Effect of diffusion270

Figure3.4.1: Captures (%) plotted as a function of path length for a Spherical, Cube and Cylindrical trap

with mean cosines (a)S= 1.79 (c∗ω = 0), (b) S= 1.09 (cω = 0.5) and(c) S= 0.64 (cω = 0.8). Contrary

to what occurs in Fig.3.3.1, the scaling parameter was the same for all walks (σ∗ = σ = 1) so that the

diffusion increases withcω .

Fig. 3.4.1confirmsthat spherical traps are, on average, the most efficient. Trap counts decrease with271

increasingdiffusion, as soon as the maximum path length is sufficiently long. We observe small but272

noticeabledifferences in efficiencies on comparing the cube and cylindrical traps. This indicates that the273

impactof trap geometry can be important in this case. Also, we note that trap counts accumulate much274

slower if diffusion is low, and given that the path length is small. This has an intuitive interpretation that275

individuals, on average, do not have enough time to approach the trap.276
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Figure 3.4.2: Captures (%) as a function of mean cosines for a Spherical, Cube and Cylindrical trap.

Sinuosity values range fromS= 1.79 forc∗ω = 0 to S= 0.44 forcω = 0.9. All details are the same as that

described in the caption of Fig.3.4.1.

Fig. 3.4.2shows that trap counts decrease, on average, with increasing mean cosine (i.e. increasing277

short-termpersistence/diffusion), for all trap shapes. It is worth noting that, when diffusion is large,278

trapcount differences decrease, implying that the impact of trap geometry is then not that important. For279

relatively smaller values of diffusion, there is a clear hierarchy of trap shape in terms of trapping efficiency,280

with the spherical trap retaining the most counts, followed by the cylindrical trap, and then the cube.281
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3.5 Effect of long-term bias282

Figure3.5.1: Captures (%) plotted against path lengthL for different trap types. Movement types con-

sidered: (a) SRW with mean cosinec∗ν = 0, κ∗ = 0 andσ∗ = 1, (b) BRW cν = 0.04, κ ′ = 0.1201,σ ′ =
1.0009,(c) BRW cν = 0.08, κ ′ = 0.2409,σ ′ = 1.0038,(d) BRW cν = 0.16, κ ′ = 0.4876,σ ′ = 1.0233.

Scaleparameters are chosen so that the BRW is asymptotically equivalent to a SRW in terms of diffusion.

All other details, such as trap dimensions, are exactly the same as in the caption of Fig.3.4.1.

Fig. 3.5.1shows that the presence of long-term bias towards the trap, as expected, dramatically increases283

captures.There is a clear hierarchy of trap shapes in terms of capture efficiency.284

4 Discussion285

Dispersaland movement are fundamental for understanding the distribution and abundance of species in286

ecosystems.All species change their location in space at least during some stages of their life. Movement287

is known to have fundamental implications for individual survival, behaviours and reproduction, the pop-288

ulationdynamics, and on fitness and evolution (Clobert et al., 2001;Bullock et al., 2002). The capacity289

for movement is prolific across different species. For instance, while plants do not normally move, their290

seedsand spores do and can cover considerable distances before settling down. Insect eggs and pupae do291
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not move, but larvae and/or adults move most of the time, e.g. to forage for food. Most vertebrates move292

practicallyall their life, e.g. to forage, to avoid predators, to look for a mating partner, etc. Understanding293

of the typical movement patterns is therefore a major focus of ecology and population biology (Turchin,294

1998).295

Amongmany research tools available to study individual animal movement, mathematical modelling296

plays an increasingly important role (Turchin, 1998; Codling et al., 2008). Random walks (RWs) are297

appropriateapproaches for understanding species movement patterns particularly as a stochastic or sta-298

tistical description of dispersal. They are easy to implement: it is rather straightforward to investigate299

movement paths using computer simulations based on RWs. More importantly, by considering individual300

movement as a stochastic process, it is often possible to obtain a general analytical description, in terms of301

thedispersal kernel and/or the statistical moments, as functions of time, and thus to reveal generic prop-302

ertiesof different movement behaviours (Reynolds, 2010;Codling and Plank, 2011;James et al., 2011;303

McClintock et al., 2012;Tilles and Petrovskii, 2015;Tilles et al., 2017). While there has recently been304

considerableprogress in understanding these issues, most theoretical studies on animal movement have305

beenpredominantly limited to 2D cases. Meanwhile, in the real-world application of monitoring flying306

insects(e.g. different taxa of fruit flies), traps are usually elevated above the ground, sometimes at a signif-307

icantheight, for e.g. 1-10 metres (Epsky et al.,2004). Thus, the movement of flying insects in the vicinity308

of an elevated trap is essentially performed in 3D space, and hence it should be modelled as such.309

Understandingthe efficiency of trapping resulting from the interplay between the movement pattern310

(asdescribed by the SRW, CRW and BRW) and the shape of the trap was the focus of this study. We311

first derived the expression for the MSD as a function of time (or number of steps), and conditions of312

equivalence between RWs with different step size distributions were obtained in terms of diffusion. We313

thenproceeded to numerical simulations of trap counts with traps of different shapes commonly used in314

ecologicalstudies, i.e. spheroid, cylinder and cuboid. As one result of immediate practical importance, we315

revealed the non-linear dependence of trap counts on the geometry of traps, quantified by either the area316

of the trap surface or the trap volume, and provided corresponding analytical expressions useful for trap317

countestimations (see Fig.3.1.2). On considering trap elongation, we found that trap counts do not vary318

muchgiven that the surface area is fixed, and that there is a clear hierarchy in terms of which traps are more319

efficient, with the spheroidal trap outperforming the cylindrical trap, followed by the cuboidal trap (see320
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Fig. 3.2.1). Also, rather counter-intuitively, we showed that the short-term persistence of the individual321

movement (‘micro-structure’) does not have any notable effect on the trap counts when the diffusion is322

kept constant (see Fig.3.3.1), and it turns out that only the ‘macro-structure’ is important (see Figs.3.4.1323

and3.4.2).324

One application of movement models arises from the needs of ecological monitoring (Greenslade,325

1964; Byers, 2012; Siewers et al., 2014; Miller et al., 2015). Monitoring of invertebrates, insects in326

particular, is often performed by installing traps and then interpreting trap counts (catches). The latter,327

however, appears to be a challenging problem. It is deceptively easy to interpret the trap counts in the328

relative way, i.e. ‘larger count implies larger population’, but this can be misleading or simply wrong329

becauseof the interplay between the movement activity and the population density: a small population330

of fast moving animals can result in the same trap count as a large population of slower moving animals331

(cf. ‘activity-density paradigm’ (Thomas et al., 1998). An absolute interpretation of trap counts relating332

themto the population density in the vicinity of the trap is possible (Petrovskii et al.,2012,2014;Ahmed333

andPetrovskii,2019) but it requires a succession of several trap counts and some information about the334

movement pattern such as the frequency distribution of step sizes and turning angles along the path (also335

the distribution of different movement modes, rest time, etc., in case of more complicated movement336

behaviours) as well as a good understanding of the effect of trap geometry (Ahmed and Petrovskii, 2019).337

Furthermore,in the statistical application of models to ecological data, a pervasive and recurrent prob-338

lem is understanding the biases introduced through the measurement or observation of the ecological339

system(e.g.Hilborn and Mangel, 1998;de Valpine and Hastings, 2002). More accurate estimates of the340

numberof individuals that move or are present in a given location require the use of mathematical tools.341

Many distance sampling methods have been developed (Buckland et al.,2015) to link observations on342

countsof individuals to estimates of population size. More recently Bayesian hierarchical methods (e.g343

Doucetet al., 2001;Bonsall et al., 2014;Kantas et al., 2015;Bonsall et al., 2020) have been developed344

andapplied in an ecological context to approach the decomposition of error into measurement and process345

components.The mathematical frameworks we develop here, provide a richer set of tools to be able to346

relatehow the biases in individual behaviours influence measurement error problems and hence provide347

morerobust determinants of population level measures. With a more detailed understanding of the effects348

of different trap geometries on capturing/detecting individuals in a population will provide more robust349
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ways in which to discern broad scale ecological patterns.350

Coupledmovement and dynamical models such as integro-difference approaches (Kot and Schaffer,351

1986; Lutscher,2019) have widespread application in ecology for understanding invasion speeds (e.g.352

Kot, 1992), Allee effects (e.g.Wang et al.,2002), climate change (e.g.Zhou and Kot,2011) and invasive353

speciescontrol (e.g.Kura et al., 2019). All rely on a dispersal kernel to relate movement from one location354

to another (e.g.Reimer et al.,2016,2017) and the influence this has on the population dynamics. This355

dispersalkernel is critical for ensuring model predictions can be accurately validated against experiments356

and/orobservations. Our work on 3D RWs now provides a way in which to scale up from individual move-357

mentrules to generate appropriately formulated dispersal kernels. Furthermore, the individual basis to the358

movement and dispersal patterns provides an alternative approach to link movement and the population359

dynamicswithout recourse to simpler mean-field approaches.360

A question may arise as to why one should use RWs to model explicitly hundreds or thousands of361

randomlymoving animals rather than the corresponding mean-field mathematical description instead. If362

thepotential ecological applications of our work is somewhat obvious, several methodological questions363

remainunresolved. It is well-known that, for the SRW, the dynamics of the population density distribution364

over space is described by the diffusion equation (Kareiva and Shigesada,1983;Ahmed,2015) and for365

theCRW, by the Telegraph equation, (e.g. seeTurchin, 1998;Codling et al., 2008). However, note that366

theanalytical solution of the diffusion equation, from which the average trap count can be calculated (see367

Petrovskii et al.,2012,2014;Ahmed and Petrovskii,2015) is, even in case of relatively simple trap shapes368

suchas a spheroid or cylinder, only available as a Fourier series where the exponents (the eigenvalues of369

thecorresponding boundary problem) still need to be found numerically. With the reliancy on numerical370

approximationsand approaches, the ‘analytical’ description of trap counts is not much different from that371

derived from the individual based model. In the case of more realistic movement described by the CRW,372

thesituation is actually much more complex, as the solutions of the boundary problem for the Telegraph373

equationin the general case are not positively defined (Tilles and Petrovskii, 2019). Simulation of trap374

countsusing individual based models therefore provides a robust and plausible alternative to analytical375

approaches.376
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5 Conclusion377

In conclusion, these issues notwithstanding, we have shown how different trap geometries and the 3D378

movement of individuals can bias trapping efficiency. Understanding how diffusion, directed movement379

andtrap shape can affect counts, estimates and observations has critical implications for spatial ecology380

andfor understanding the distribution and abundance of species. These individual based, geometric ap-381

proacheswarrant further investigation and application in problems in contemporary spatial ecology. The382

next natural step that we hope to see in the near future, is analyses of real flying animal movements using383

3D RW models.384
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