
Unsupervised analysis of multi-experiment transcriptomic
patterns with SegRNA identifies unannotated transcripts

Mickaël Mendez (0000-0003-4634-1268)1,2, FANTOMConsortiumMain Contributors*,
Michelle S. Scott (0000-0001-6231-7714)3, and

Michael M. Hoffman (0000-0002-4517-1562)1,2,4,5,†

1Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
2Department of Computer Science, University of Toronto, Toronto, ON, Canada

3Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
4Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada

5Vector Institute, Toronto, ON, Canada
*RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan:

Jasmine Li Ching Ooi (0000-0002-8166-9624), ChiWai Yip (0000-0003-3327-5695),
Jordan A. Ramilowski (0000-0002-3156-6416), Chung-Chau Hon (0000-0002-3741-7577),

Masayoshi Itoh (0000-0002-1772-318X), Naoto Kondo (0000-0001-9576-7615),
Takeya Kasukawa (0000-0001-5085-0802), Harukazu Suzuki (0000-0002-8087-0836),
Michiel de Hoon (0000-0003-0489-2352), JayW. Shin (0000-0003-4037-3533), and

Piero Carninci (0000-0001-7202-7243)
†Corresponding author

November 22, 2021

Abstract

Background: Exploratory analysis of complex transcriptomic data presentsmultiple challenges.Many
methods often rely on preexisting gene annotations, impeding identification and characterization of
new transcripts. Even for a single cell type, comprehending the diversity of RNA species transcribed at
each genomic region requires combining multiple datasets, each enriched for specific types of RNA.
Currently, examining combinatorial patterns in these data requires time-consuming visual inspection
using a genome browser.

Method: We developed a new segmentation and genome annotation (SAGA) method, SegRNA, that
integrates data frommultiple transcriptome profiling assays. SegRNA identifies recurring combinations
of signals acrossmultiple datasetsmeasuring the abundance of transcribedRNAs.Using complementary
techniques, SegRNA builds on the Segway SAGA framework by learning parameters from both the
forward and reverse DNA strands. SegRNA’s unsupervised approach allows exploring patterns in these
data without relying on pre-existing transcript models.

Results: We used SegRNA to generate the first unsupervised transcriptome annotation of the K562
chronic myeloid leukemia cell line, integrating multiple types of RNA data. Combining RNA-seq, CAGE,
and PRO-seq experiments together captured a diverse population of RNAs throughout the genome. As
expected, SegRNA annotated patterns associated with gene components such as promoters, exons,
and introns. Additionally, we identified a pattern enriched for novel small RNAs transcribed within
intergenic, intronic, and exonic regions.We applied SegRNA to FANTOM6 CAGE data characterizing
285 lncRNA knockdowns. Overall, SegRNA efficiently summarizes diverse multi-experiment data.
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1 Introduction

Researchers often need to compare the abundance of RNAs between genomic regions or between cell
types. Most available RNA sequencing data, however, only contain a subset of all the types of RNAs one
might find in a cell. For example, a dataset often contains RNAs filtered by attributes such as length,
subcellular localization, 5′-capping, or 3′-polyadenylation. To more accurately perceive all the RNAs
and their abundance in a given cell type, one must first acquire multiple types of RNA sequencing data.
Then, one must painstakingly tweak a genome browser view to make the data easy to visualize and
interpret. Finding and visualizing datasets becomes tedious as the number of datasets grows. To simplify
and facilitate exploratory analysis of the transcriptome, we need computational methods to simplify the
visualization of multiple datasets of the same cell type and indicating the location and abundance of
specific RNAs.

Typically, RNA-seq allows sequencing fragments of RNAs indicating the boundaries of exons and
introns1,2. Most public RNA-seq datasets enrich for polyadenylated RNAs3,4. By using different en-
richment strategies, one can use additional RNA-seq experiments to characterize non-polyadenylated
RNAs. Other RNA sequencing variants target particular variants or aspects of RNA expression. The
capped analysis of gene expression (CAGE)5 assay captures the 5′ end of capped RNAs. A single CAGE
experiment identifies transcription start sites of both polyadenylated and non-polyadenylated RNAs.
Precision nuclear run-on sequencing (PRO-seq)6 captures fragments of nascent RNAs transcribed by
RNA polymerase II. Often, one finds PRO-seq signals along with transcribed genes.

Many computational methods can process, analyze, and annotate datasets from similar assays. For
example, MiTranscriptome7 annotates human transcripts over 6500 datasets. The annotation, however,
remains incomplete because the datasets contain only long poly(A)+ RNAs. Other methods, such as
GRIT8, combine different assays. To identify transcript starts and ends, GRIT uses CAGE and RNA-seq
together with poly(A)-site-seq9, which captures the 3′ end of polyadenylated transcripts. GRIT helps
identify transcript isoforms, but it does not use datasets from other RNA sequencing assays, such as
those that indicate subcellular localization.

The Encyclopedia of DNA Elements (ENCODE)10 and Functional Annotation of the Mammalian
Genome (FANTOM)11,12 consortia have processed a diverse set of epigenomic and transcriptomic data.
For the K562 myeloid leukemia cell line, ENCODE have produced the most datasets with different RNA.
ENCODE curated transcriptomic data enriched for long RNAs (>∼ 200bp) and short RNAs (<∼ 200bp),
polyadenylated and non-polyadenylated RNAs, cytosolic and nuclear RNAs, and sequenced with both
CAGE and RNA-seq. FANTOM6 generated CAGE datasets from 340 experiments examining transcrip-
tome-wide effects of knocking down the expression of single long non-coding RNAs (lncRNAs). For
both the ENCODE and FANTOM6 datasets, previous computationalmethods for transcriptome analysis
cannot integrate all the diversity of existing data.

SAGAmethods13 like Segway14 and ChromHMM15 simultaneously segment the genome and clus-
ter the segments into labels with similar patterns across multiple datasets. Typically, SAGA methods
work with unstranded epigenomic data.We consider most epigenomic sequencing assays unstranded,
meaning that the DNA strand to which a readmaps provides no information about the properties of
the assayed cells. These SAGA methods annotate chromosomes in a single direction from the 5′ end
to the 3′ end of the +DNA strand.With transcriptome data, however, we can distinguish the direction
in which transcription occurs based on the DNA strand that a transcript maps to. Strand information
allows, for example, identifying regions with protein-coding transcripts on the conventional + strand
with overlapping lncRNA transcripts on the − strand16. Both Segway and ChromHMM can annotate
transcriptomic data but in only one direction.

To annotate combinations of stranded transcriptomic signal we added a strandedmodel to Segway’s
dynamic Bayesian network. Our method, SegRNA, takes as input multiple and diverse transcriptome
datasets from a given cell type. SegRNA (1) trains a model on a subset of the genome by updating both
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emission and transition parameters, and then (2) annotates the whole genome using the model.
During training, SegRNA discovers a fixed number of recurring patterns of transcriptomic signals

across datasets. In randomly selected training regions, SegRNA uses multivariate transcriptomic signals
to update the parameters of a Gaussian distribution for each label. SegRNA also updates the probabil-
ities of transitioning between labels based on the strand it reads the data from. It updates transition
probabilities in the forward direction when reading the data from the forward strand, and in the reverse
direction when reading the data from the reverse strand.

During annotation, SegRNA uses the trainedmodel to segment both strands of the genome. SegRNA
assigns a label to each segment based on the observed transcriptomic signals and the label of the
upstream segment. SegRNA benefits from all the advantages of the Segway framework such as mini-
batch17 training, inference at one–base-pair resolution, rigoroushandlingofmissingdata, andaduration
model that specifies theminimum andmaximum segment length.The output of SegRNA consists of one
annotation per strand of the genome. SegRNA generates both annotations using the same trainedmodel.
Unlike methods such as GRIT andMiTranscriptome, SegRNA uses RNA signal data which quantifies the
number of reads mapping at each base rather than individual read alignments.

Here, we show how SegRNA summarizes diverse transcriptomic data for a cell type with an inter-
pretable annotation.This annotation identifies main gene components such as promoters, exons or
introns as well as putative novel short RNAs.The annotation also facilitates exploratory data analysis
of combinations of transcriptomic signal from different experimental conditions.Then, we show that
SegRNA summarizes large collections of transcriptomic data from FANTOM6 to simplify visualization
of the effects of lncRNA knockdown experiments.

2 Results

2.1 SegRNA summarizes the transcriptome of the K562 cell line using RNA-seq, CAGE,
and PRO-seq

SegRNA identified combinations of transcriptomic signals across multiple assays (Figure 1).We visually
identified labels by characteristic signal for assay type, RNA size, and subcellular localization.We named
the labels to summarize these properties as follows:

Promoter promoter with CAGE signal
ExonHigh high signal from long RNA-seq datasets
ExonMed medium signal from long RNA-seq datasets
ExonNuc high signal from nuclear and long RNA-seq datasets

ExonNucPam high signal from long non-polyadenylated and nuclear RNA-seq dataset
ProMed medium signal from PRO-seq dataset
ProHigh high signal from PRO-seq dataset

Nop high signal from short RNAs of the nucleoplasm
Short high signal from short RNA-seq datasets

Quiescent low or no signal in all datasets

The Promoter label occurred at promoters with high CAGE expression, measured in tags per million
(TPM),withmedian>17 TPM.The labels ExonHighandExonMedhad thehighest longpoly(A)+ RNA-seq
expression in reads permillion (RPM) in both nucleus and cytoplasm (Figure 1). Both overlappedmainly
with exons (Figure 2).

The ExonNuc label mainly overlapped with exons and had higher median expression in nuclear
RNA-seq (>1.5 RPM) than in cytosolic RNA-seq (<1.5 RPM).The ExonNucPam label overlapped with
both exons and introns. Median expression of nuclear RNA-seq (>0.7 RPM) exceeded that of cytosolic
RNA-seq (<0.3 RPM) for segments with the ExonNucPam label (Figure 2). Themean parameter of the
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Figure 1: Input metadata and trained parameters. (a) Heatmap of 15 RNA datasets used as input
for SegRNA. Columns: Metadata describing the properties of the RNAs enriched in each dataset. Size
selection indicates RNA sizes targeted per each dataset: approximately 200 nt and longer (L), approx-
imately 200 nt and shorter (S). (b) Heatmap of the learned Gaussian mean parameter for each of
10 labels across the 15 datasets, transformed by inverse hyperbolic sine14 and row-normalized to better
highlight differences between labels. (c) Heatmap of the 10 most common patterns obtained from
a baseline method. The baseline method identifies combinatorial patterns based on whether each
dataset exceeds (black) or does not exceed (grey) a discrete threshold of 1 RPM in each non-overlapping
200 bp window.
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Figure 2: Bar chart of base-pair overlap of SegRNA segments with gene components for each label.
In parentheses: total number of base pairs overlapping between SegRNA labels and gene components.
Bar height: fraction of base pairs overlapping SegRNA label. Flanking 5′: 500 bp region upstream of
GENCODE transcription start sites. Initial exon: first exon from each transcript. Initial intron: first intron
from each transcript. Internal exon: all exons between the first and the last exons. Internal intron: all
introns between the first and the last introns. Terminal exon: last exon from each transcript. Terminal
intron: last intron from each transcript. Flanking 3′: 500 bp region downstream of transcription end
sites.‘ For genes with multiple isoforms, we used only the longest transcript.

Gaussian for the ExonNucPam label and the long nuclear poly(A)− RNA-seq dataset has the second
highest value (Figure 1).

The ProMed and ProHigh labels indicated transcription with PRO-seq signal. Similarly, the label Nop
also showed high PRO-seq signal and high short nucleoplasmic RNA-seq signal.

The label Short had lowmedian signal across all datasets (<1 RPM) andhighermedian short RNA-seq
signal (>2 RPM) than long RNA-seq signal. The label Quiescent represented non-transcribed regions
and covered 98% of the annotated transcriptome (Figure 3). The non-transcribed regions consist of
intergenic regions and genic regions of either non-expressed gene or long intronic regions.We expect
most intergenic regions to have no signal thus most of them should have the label Quiescent. For the
genic regions, non-expressed genes should also have the Quiescent annotation, and we also found this
label within most introns (Figure 2).

2.2 SegRNA identifies putative novel small RNAs

Weused SegRNAannotations to characterize small nucleolar RNAs (snoRNAs) genome-wide.Theparam-
eters for the label Short include overlap with strong short RNA-seq signal (Figure 1). Visual inspection of
the SegRNA annotation on a genome browser also indicated Short segments overlapping with short
RNA-seq data and snoRNAs (Figure 4).

We sub-classified GENCODE snoRNAs by examining their surrounding SegRNA annotations (Fig-
ure 5). Using patterns of surrounding SegRNA labels, we divided the snoRNAs into five groups.These
groups reflect well-established divisions of human snoRNAs and also indicate whether a snoRNA has
expression in K562.

More of the 332 snoRNAs expressed in K562 belong to the intronic group (𝑛 = 146) than any other
group. SegRNA annotated these snoRNAs as Short with surrounding segments annotated ProMed or
ProHigh.This group’s prevalence reflects the large proportion of human snoRNAs that reside in introns
and require expression of the host for their own expression22,23. Most snoRNAs of this group (138/146)
overlap with at least one other, longer gene.The surrounding ProMed and ProHigh segments indicated
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Figure 3: Segment count and length distribution. (a) SinaPlot18 of segment lengths for each SegRNA
label. Black dots: mean segment length. (b) Bar chart of the number of segments for each label, over-
printed with the exact number of segments. Total number of segments: 10 154 386.

active transcription of the overlapping longer genes, as one would expect for snoRNAs host genes22,23.
The second-largest expressed snoRNA group is the exonic group (𝑛 = 125). SegRNA annotated

these snoRNAs as Short with surrounding segments annotated ExonHigh, ExonMed, ExonNucPam, or
ExonNuc, all associated with signal from long RNA-seq.These represent snoRNAs in short introns sur-
rounded by expressed host gene exons, known as a common context for human snoRNAs24. GENCODE
has identified many of these patterns as retained introns24, such as at the small nucleolar RNA host
gene SNHG1.

The intergenic group (𝑛 = 61) contains the remainder of the expressed snoRNAs. These snoRNAs
have both the labels Short and Quiescent. Of the intergenic snoRNAs, 21 represent copies of 3 genes:
U3 (SNORD3), U8 (SNORD118), and U13 (SNORD13). These genes have intergenic promoters with
known independence from any longer host gene22.

The two remaining snoRNA groups have no expression in K562. The host-expressed group (𝑛 =
247) includes regions with snoRNAs not annotated Short, but within transcribed genes annotated
ProMed or ProHigh. The quiescent group (𝑛 = 363) represents untranscribed regions annotated as
almost exclusively quiescent. The host-expressed and quiescent groups include snoRNAs from five
families known to bemainly expressed in the brain: SNORD108, SNORD109, SNORD114, SNORD115
and SNORD116 25,26.We would not expect these snoRNA to have expression in the K562 leukemia cell
line.

As described above, SegRNA labels at snoRNA loci (Figure 5) reflected well-known patterns of
snoRNA expression. Some snoRNAs have strong expression, but the genomic context of other snoRNA
loci means they likely remain unexpressed. A subset of snoRNAs have expression in specific tissues,
particularly the brain25,26. Most snoRNAs, however, behave like housekeeping genes, having broad
expression in multiple tissues22.

To investigate whether SegRNA annotates broadly-expressed or tissue-specific snoRNAs, we com-
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Figure 4: University of California, Santa Cruz (UCSC) Genome Browser19 display of input RNA
datasets and SegRNA annotations on the reverse strand.The ATP5B gene contains two expressed
snoRNAs within its introns. GENCODE : basic transcript annotation set20 v29. RefSeq: Curated set re-
lease 10921. PRO-seq (salmon)/CAGE (green)/RNA-seq (blue): RPM-normalized signal on the reverse
strand only. Values shown range between 0RPM and 10RPM, with values above 10 RPM truncated and
markedwithmagenta rectangles. Each experiment characterizes a subcellular component: cytosol (dark)
or nucleus (light). SegRNA (-): Unsupervised annotation on the reverse strand with 10 labels. Each row
represents a label and thicker regions indicate the most likely path between labels. Colors indicate the-
matic groupings of labels. Red: high CAGE signal; yellow: high RNA-seq signal; blue: high short RNA-seq
signal; purple: high nucleoplasm signal; green: only PRO-seq signal; grey: Quiescent.

pared SegRNA labels at snoRNA loci to expression data from snoDB27. SnoDB’s data come from the
low-structure-bias RNA-seq approach thermostable group II intron reverse transcriptase sequenc-
ing (TGIRT-seq)28. TGIRT-seq accurately quantifies all cellular RNAs, including highly structured and
chemicallymodified RNAs such as snoRNAs and transfer RNAs (tRNAs)29. SnoDBhas TGIRT-seq expres-
sion data for 4 different tissues: liver, ovary, prostate, and breast. Using these data, we classified snoRNAs
into two groups: (1) those expressed in at least one tissue with an abundance of at least 1 TPM, and
(2) those not expressed in any tissue.We expected that housekeeping snoRNAs would have expression
in at least one of these 4 tissues, and possibly all 4.

Independent expression data support the SegRNAmodel of snoRNAs presented here. Most of the
snoRNA loci from the intergenic group (86%) have expression in snoDB tissues, with even higher
proportions from the intronic group (95%) and the exonic group (98%). In contrast, only 62% of host-
expressed snoRNAs and 44% of quiescent-labeled snoRNAs have expression in snoDB tissues.

Of 352 segments with high small RNA-seq expression (>10 RPM), a plurality (32/352) overlapped
with a combination of protein-coding gene introns and snoRNAs (Figure 6). The next-most frequent
combination (31/352) contains lncRNA introns and exons, and snoRNAs.The third-most (23/352) and
fourth-most frequent combinations (15/352) involve snoRNAs overlapping both protein-coding genes
and lncRNAs.The frequency of these combinations accords well with the high abundance of snoRNAs
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Figure 5: Heatmap of SegRNA labels at snoRNA loci. (a) Rows: 942 snoRNAs from GENCODE v32
on both forward and reverse strands, ordered by hierarchical clustering using Hamming distance of
SegRNA annotations. Columns: Position relative to GENCODE snoRNA centers. Colors: SegRNA labels.
(b)Groupingof the snoRNAsbasedon theobservedSegRNAannotations.Host-expressed (𝑛 = 247): non-
expressed snoRNA within an expressed host gene. Exonic (𝑛 = 125): expressed snoRNA flanked by
segments annotated with an exon-associated label. Intergenic (𝑛 = 61): expressed snoRNA flanked by
segments annotated Quiescent. Intronic (𝑛 = 146): expressed snoRNA flanked by segments annotated
with PRO-seq associated labels. Quiescent (𝑛 = 363): non-expressed snoRNA annotated Quiescent.
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Figure 6: Association of segments with small RNA signals. (a) Bar chart of segments overlapping
with a combination of one or multiple gene biotypes. We only show the segments overlapping with
datasets expressed at >10 RPM in at least 3/5 small RNA datasets. Biotypes include GENCODE protein-
coding genes (*) and 17 types of non-coding RNAs from RNAcentral. (b)Matrix of combinations30 of
biotypes overlapping with SegRNA segments. Color indicates the overlap between a segment and a
gene component: no overlap (grey), exon (green), intron (orange), both exon and intron (yellow), and
intergenic (red).

and the context of most human snoRNAs within introns of host genes23. The ninth-most frequent
combination (8/352) may highlight snoRNA-derived PIWI-interacting RNAs (piRNAs)31 as it overlaps
genes annotated with either of these RNA types. Overall, 45 regions in the K562 cell line overlapped both
highly-expressed snoRNAs and highly-expressed piRNAs.

Most of the segments (304/352) overlapped with at least one short RNA.These 304 segments mainly
overlapped with snoRNAs (218 segments), piRNAs (56 segments), andmicroRNAs (miRNAs) (43 seg-
ments).

Of the 352 segments, we identified 48 unannotated as short RNAs in either GENCODE or RNA-
central. These 48 segments included 42 segments in the 10 combinations overlapping with long RNAs
(protein-coding and lncRNA).The remaining 6 unannotated segments overlapped with the intergenic
combination. We further compared these 48 unannotated regions against specialized databases of
short RNAs and found 11 matches. These matches consist in 3 regions overlapping tRNAs, 3 regions
overlapping small nuclear RNAs (snRNAs) from the DASHR2 database32 v2.0, and 5 regions overlapping
with piRNAs from piRNAdb33 v1.8.

Of the 48 segments, we deemed 9 unlikely to represent novel RNAs. Included in those 9, SegRNA
assigned the label Promoter to 5 regions that resemble promoter-associated RNAs (paRNAs)34. These
regions overlap both strong CAGE signals and strong short RNA-seq signals. SegRNA also assigned
ExonNucPam to segments adjacent to 2 snoRNAs (SNORA9, SNORA57 ) and ExonNuc to 1 segment
adjacent to SNORA70. Only one base of these 3 adjacent segments overlapped any short RNA-seq
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reads. These may represent cases where curated snoRNA annotations fall short of the full extent of the
transcribed snoRNA24. SegRNA also assigned ExonNucPam to a segment adjacent to a Short segment
unannotated as short in either GENCODE or RNAcentral.

To characterize the 39 remaining unannotated regions further, we used de novo non-coding RNA
finding methods on their DNA sequences.We searched for snoRNAs and tRNAs with Snoscan35 and
tRNAscan-SE35. Neither tool returned any results.

We used HMMER36 v3.3 nhmmer to search for sequence homology with known non-coding RNAs in
other species from RNAcentral. Of the 39 segments, 3 had significant HMMERmatches with their host
genes (e-value< 0.005). After excluding the 11 unannotated regions matching specialized databases,
the 4 paRNAs, and the 4 regions annotated ExonNuc, SegRNA identified 29 novel short RNAs highly
expressed in K562.

2.3 SegRNA annotates gene components with specific labels

Segments with particular labels overlapped with specific gene components, as SegRNA annotated the
segments from flanking regions, exons, and introns with different labels. Four labels mostly overlapped
with GENCODE exons (Figure 2): ExonHigh (84% of segments intersecting genes overlapped with
exons), ExonMed (85%), ExonNuc (84%), and ExonNucPam (57%). In distinction, the following labels
mostly overlapped with intronic regions: Short (92%), ProHigh (91%), ProMed (93%), Nop (96%), and
Quiescent (93%). ExonNucPamoverlappedwith both exons (57%) and introns (39%).The label Promoter
mainly overlapped with first exons (48%) and 5′ flanking regions (23%).

2.4 SegRNA annotates gene biotypes with specific sets of labels

Labels of segments overlapping GENCODE genes significantly differed between gene biotypes. For
each gene in the GENCODE37 comprehensive gene set v32, we calculated the fraction of base pairs
annotated with each SegRNA label. This fraction differed significantly (corrected 𝑝 < 0.005; Mann-
Whitney rank test, Holm-Bonferroni38 correction for multiple testing) between protein-coding genes
and lncRNAs (Figure 7).

We calculated the frequency of each combination of labels overlap with GENCODE protein-coding
genes and lncRNAs. Both gene types mostly overlapped with a combination of ProMed and Quiescent,
including 3229 protein-coding genes and 5416 lncRNAs (Figure 8). This indicated low transcription of
most genes in K562. The second-most-frequent label combination, however, differed between the gene
biotypes. For lncRNAs, 2998 overlapped ProMed, Quiescent, and ProHigh. Of protein-coding genes,
2235 overlapped all labels except ExonHigh.

We further measured the difference in combinations of labels using cosine similarity between all
pairs of GENCODE gene biotypes (Figure 9). In the resulting pairwise similarity matrix we identified two
main clusters. The small cluster contained 3 types of small RNAs: small cytoplasmic RNAs (scRNAs),
small RNAs (sRNAs), and vault RNAs.The large cluster of 29 biotypes containsmultiple subclusters. One
subcluster contains two RNAs biotypes, snoRNAs and small Cajal body-specific snoRNAs (scaRNAs),
which represent a specific type of snoRNA40 (cosine similarity= 0.9). Another subcluster of 22 biotypes
containsmainly non-coding RNAs such as pseudogenes (12/22), orT-cell receptor and immunoglobulin-
related genes (7/22).

SegRNA annotates with the same combination of labels genes with similar functions, such as
snoRNAs and scaRNAs.When visualizing data froma cell type in a genomebrowser, SegRNAannotations
alone can provide a useful characterization of transcripts.
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Figure 7: SinaPlot overlap between SegRNA segments and gene biotypes. Each point represents a
segment overlapping protein-coding genes (blue) or lncRNA genes (orange). Black points: mean overlap
between SegRNA segments and gene biotypes. The width of each distribution represents the density of
points.
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2.5 SegRNA better summarizes multimodal transcriptome data than a discrete baseline
method

To examine the benefits of SegRNA’s probabilistic model for unsupervised exploratory analysis, we
compared its results against the patterns obtained from a discrete baseline method. First, the baseline
method splits the genome into fixed non-overlapping 200 bp windows. Second, the baseline method
binarizes the signal from each dataset in each window, based on whether the signal exceeds 1 RPM in
that window (subsection 3.3). Third, the baseline method sorts binary vectors over different datasets by
howmany windows they occur in.

The baselinemethod found less complex patterns than Segway.Themost common pattern indicated
regions with no signal across datasets (Figure 1c), similar to the SegRNA label Quiescent. All of the other
10 most common baseline patterns, indicated signal from PRO-seq data. As PRO-seq indicates the sites
of active transcription, we expected that most common pattern had signal from PRO-seq.The second
most common pattern indicated only signal from PRO-seq data. The 4 patterns ranked 3 to 6 provided
redundant information: transcription from PRO-seq and transcription from one other assay.

Overall, the top 6 patterns from the baseline method did not correspond to a combination of
more than two datasets. SegRNA had 4 similar patterns (Nop, ProMed, ProHigh, Quiescent), but the
probabilistic model provided more information on PRO-seq data than the patterns from the discrete
baseline method.The 6 other patterns from SegRNA corresponded to combinations of more than two
datasets. The baseline method identified redundant combinations that involved the same subset of
datasets multiple times. Only 6 out of the 15 datasets had signal in the baseline’s top 10 most common
patterns.

In contrast, SegRNA’s patterns involve all 15 input datasets. These results suggest that SegRNA
identified patterns that better summarized the input data than the baseline method.

2.6 SegRNA annotates clusters of CAGE peaks and the effects of lncRNA knockdown

To identify lncRNAs affecting growth and other cellular phenotypes, the FANTOM612 consortium sys-
tematically knocked down 285 lncRNAs. Specifically, they transfected human dermal fibroblast cells
with 2021 antisense oligonucleotides41. To observe underlying transcriptomic changes, they selected
the 340 antisense oligonucleotide knockdown experiments with the highest knockdown efficiency for
CAGE sequencing (Figure 10). These experiments knocked down 154 lncRNAs in total, each targeted by
up to 5 independent antisense oligonucleotides.

To interpret the effect of the lncRNA knockdown in specific genomic regions researchers often view
genomic assay data in a genome browser43 and compare their signal with a negative control or data from
another assay. To facilitate interpretation of the effects of the knockdown experiments, we generated a
SegRNA annotation of CAGE signal for each knockdown sample. Each annotation has 4 labels. Instead
of training with expectation-maximization (EM), we fixed the model emission parameters such that the
4 labels capture different expression patterns:

Up increased expression after knockdown
Down decreased expression after knockdown

Consistent unchanged expression after knockdown
Quiescent no expression before or after knockdown

To further reduce the data and enable visualizations summarizingmany datasets, we created unified
annotations for 99 knocked down lncRNAs. We did this only for the 99/154 lncRNAs targeted in a
single batch to avoid counting the lncRNAs multiple times when targeted by antisense oligonucleotides
from different batches. To create these unified annotations, we combined the SegRNA annotations of
knockdown samples targeting the same lncRNA using amajority vote approach. For each position in the
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+

Figure 10: Summary of SegRNA segments for the FANTOM6 A1BG-AS1 knockdown. (a) Gaussian
mean parameters for each pair of label and sample, transformed by inverse hyperbolic sine (asinh).
(b) (Top)Heatmap of the summary statistics for each label: segment mean length, segment median
length, standard deviation of segment length, percentage of base pairs covered, percentage of segments,
and G+C content. (Bottom)Minimum andmaximum values of the color scale used for each column
above. (c)Heatmap of the percentage of SegRNA segments overlapping with genic or intergenic regions.
(d)Heatmap of overlap between SegRNA segments and idealized transcripts42 representing the start,
middle, and end of GENCODE lncRNA genes. Row values add up to 100 to highlight the proportion of
each segment label overlapping within across different gene parts42.

genome, we assigned the unified annotation to have the label found most often in constituent SegRNA
annotations.

In addition to the label indicating the knockdown effect, we appendMax to a unified segment’s label
if SegRNA assigned the same label unanimously across all knockdown samples. Otherwise, if SegRNA
assigned most of the time the same label to a genomic region but not always, we append Maj to the
unified label. In case of a tie, we used a new label, Inconsistent. Of 99 unified annotations, 54 contained
the DownMax label at at least one promoter of the knocked down lncRNA, 4 contained the DownMaj
label, and 33 contained the Quiescent label. This indicates that 92% of the knockdowns either reduced
expression of the knocked down lncRNA itself, or the targeted lncRNA had little expression in human
dermal fibroblasts to begin with.

The unified annotation approach summarizes multiple kinds of gene expression changes from a
complex array of experiments. For example, one can easily identify a block around the promoter of
LSP1P4 with non-Quiescent labels for knockdowns with 19 different targets (Figure 11). One can see at a
glance that knockdowns of a plurality of targets result in decreased expression at distal transcription start
sites upstream of LSP1P4. Most of the unified annotations have DownMax labels at those transcription
start sites. One can also identify the knockdowns which result in increased expression, and the locations
of signal boundaries indicating distinct clusters of transcription start sites with varying response to the
knockdowns. Unassisted, one can find all of this information in the original data, but only with great
difficulty.This demonstrates how SegRNA annotations, and a unified annotation constructed from them,
can summarize great quantities of complex data for researcher understanding, while retaining up to
single-nucleotide precision.
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CAGE KD A1BG-AS1 (ASO_G0268895_01) (-)
CAGE KD A1BG-AS1 (ASO_G0268895_03) (-)

CAGE KD SPRY4-AS1 (ASO_G0231185_02) (-)
CAGE KD SPRY4-AS1 (ASO_G0231185_03) (-)

CAGE KD MYOSLID (ASO_G0229647_06) (-)
CAGE KD AC016747.3 (ASO_G0212978_01) (-)
CAGE KD AC016747.3 (ASO_G0212978_02) (-)
CAGE KD AC016747.3 (ASO_G0212978_03) (-)
CAGE KD AC016747.3 (ASO_G0212978_04) (-)

CAGE KD LSP1P4 (ASO_G0143429_05) (-)
CAGE KD BX322557.10 (ASO_G0215447_01) (-)
CAGE KD BX322557.10 (ASO_G0215447_03) (-)

CAGE KD CATG00000089639.1 (ASO_G0223811_04) (-)
CAGE KD CATG00000089639.1 (ASO_G0223811_06) (-)
CAGE KD CATG00000108369.1 (ASO_C014559_06) (-)

CAGE KD CTD-3131K8.2 (ASO_G0269439_09) (-)
CAGE KD LINC00630 (ASO_G0223546_01) (-)
CAGE KD LINC00630 (ASO_G0223546_02) (-)
CAGE KD LINC00654 (ASO_G0205181_01) (-)

CAGE KD RP11-115C21.2 (ASO_G0212978_01) (-)
CAGE KD LINC01605 (ASO_C013368_01) (-)
CAGE KD LINC01605 (ASO_C013368_02) (-)

CAGE KD RP11-195F19.9 (ASO_G0230074_05) (-)
CAGE KD RP11-195F19.9 (ASO_G0230074_07) (-)

CAGE KD LINC01719 (ASO_G0233396_02) (-)
CAGE KD LINC01719 (ASO_G0233396_07) (-)

CAGE KD ZNF213-AS1 (ASO_G0263072_01) (-)
CAGE KD ZNF213-AS1 (ASO_G0263072_02) (-)
CAGE KD ZNF213-AS1 (ASO_G0263072_05) (-)
CAGE KD ZNF213-AS1 (ASO_G0263072_06) (-)

CAGE KD LINC01503 (ASO_G0233901_02) (-)
CAGE KD LINC01503 (ASO_G0233901_04) (-)
CAGE KD LINC01503 (ASO_G0233901_05) (-)

CAGE KD SERTAD4-AS1 (ASO_G0203706_01) (-)
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RefSeq 109 LSP1P4
SegRNA A1BG-AS1 (-)

SegRNA SPRY4-AS1 (-)
SegRNA AC016747.3 (-)
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SegRNA ZNF213-AS1 (-)
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SegRNA SERTAD4-AS1 (-)

Figure 11: UCSC Genome Browser19 view of CAGE signals and SegRNA unified annotations for
37 lncRNA knockdown experiments sequenced together.The 37 experiments represent knockdowns
of 19 different lncRNA, each targeted by one ormore antisense oligonucleotides, and a selected negative
control from the same CAGE sequencing batch (2445 NC). (Top) Green bar plots: CAGE signals on the
reverse strand (−), at 1 bp resolution (green), for each knockdown experiment. Values shown range
between 0TPM and 10 TPM, with values above 10 TPM truncated and marked in magenta. RefSeq
Curated set release 10921 (purple). (Bottom)Unified SegRNA annotations for each lncRNA knockdown
with labels: Down (blue), Up (red), Consistent (yellow), Inconsistent (grey), and Quiescent (white). Color
saturation indicates the fraction of SegRNA annotation agreeing between SegRNA annotations from
multiple knockdowns targeting the same lncRNA. High saturation: 100%; low saturation: > 50%.
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3 Methods

3.1 Input data for the K562 annotation

We annotated the transcriptome of the K562 cell line with CAGE, RNA-seq, and PRO-seq data. We
downloaded CAGE and RNA-seq data for the following ENCODE experiments: ENCSR000CIL,
ENCSR000CIM, ENCSR000COK, ENCSR000CPS, ENCSR000CQL, ENCSR000CQM, ENCSR000CQX,
ENCSR000CQY, ENCSR000CQZ, ENCSR000CRA, ENCSR000CRB, ENCSR384ZXD, ENCSR530NHO,
ENCSR594NJP, and ENCSR596ACL. For these experiments, we selected the datasets mapped using
STAR44 v2.5.1b on GRCh38/hg3845 (Supplementary Table 1). For each experiment, we obtained both
the datasets that used all reads and those that used uniquely mapped reads only from the ENCODE
Data Coordination Center (DCC)4 in bigWig46 format.We merged biological replicates by summing the
number of reads at each base usingWiggleTools47 v1.1.

Like Segway14, SegRNA assigns a weight to each dataset based on its number of data points—the
number of positions with non-missing data.These weights allow each dataset to contribute equally to
the overall likelihood of the model.We anticipated fewer data points around gene promoters in CAGE
datasets, and more data points within genes in PRO-seq and RNA-seq datasets. Under this scenario, we
expected SegRNA to assign a large weight to CAGE datasets. This could have led to SegRNA annotating
all CAGE data points as Promoter, including data points with low expression. To avoid annotating all the
data points from CAGE with the same label, we set the same weight to each dataset by replacing the
value of the missing data with zero.

Genomic regions with high similarity to other parts of the reference genome can attract dispropor-
tionately high read counts in sequence census methods. These artefactually high read counts arise from
an unknown number of copies of repetitive sequence in the true genome of a sample in excess of the
copies represented in the reference genome.This applies even for individual subregions that appear
uniquely mappable, because these subregions may be a small edit distance away from widely repeated
sequence. Genetic variants or even sequencing error can easily traverse this small edit distance48 and
add systematic bias to signal estimates.

In each dataset, we identified and excluded repetitive regions with disproportionately high read
counts.We identified these regions by calculating at each base the ratio of signal from uniquelymapping
reads only to signal from all reads. For regions where this ratio exceeded 1/4, we set signal to zero.

We downloaded the PRO-seq dataset of uniquely mapped reads on GRCh37/hg1949 from Gene
Expression Omnibus (GEO)50 (GSM148032751).We used UCSC Genome Browser19 liftOver52 to map
the reads from GRCh37/hg19 to GRCh38/hg38. For this signal dataset without multi-mapping reads
available, we used Umap48 which assigns a low mappability score to repetitive regions.We used the
Umap single-mappability score for reads of length 𝑘 = 36, the read length of the PRO-seq dataset. To
remove the least reliable regions we set regions with a score below 0.75 to 0.

Finally, we converted the processed ENCODE and GEO files to a Genomedata53 archive to use them
as input for Segway14.

3.2 SegRNAmodel

SegRNA extends Segway’s14 dynamic Bayesian network, implemented with the GraphicalModels Toolkit
(GMTK)54. Segway models the emission parameters with a multivariate Gaussian distribution. Segway’s
default transition model encodes the probability of a label following another label. Segway trains the
dynamic Bayesian network on a subset of the genome with the EM55 algorithm.

SegRNA performs EM mini-batch training on a random subset of genomic regions. Mini-batch
training reduces the risks of overfitting by training the model’s parameters on random short genomic
regions instead of a fixed region17. For each genomic region, SegRNA performs training and inference
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twice: once on forward strand signals in the forward direction, and once on the reverse strand signals in
the reverse direction.

Here, we trained a SegRNAmodelwith 10 labels to keep the results interpretable.Weused a resolution
of 10 bp. The fineness of this resolution lets us model small clusters of CAGE peaks or miRNAs from
small RNA-seq.This resolution also allows training a SegRNAmodel faster than one at 1 bp.

3.3 Discrete baselinemethod

We designed a discrete baseline method to identify patterns from transcriptomic data using common
bioinformatics tools. We split autosomes and sex chromosomes from GRCh38/hg38 into fixed non-
overlapping 200 bpwindows usingbedtools makewindows -w 200.We used Segtools42 to compute
the mean signal for each window in the same Genomedata archives used for the K562 SegRNA annota-
tion. For each window, we binarized the mean signal value for each dataset, using 0 for mean signal
values ≤1 RPM, and 1 for mean signal values >1 RPM.This yielded a binary vector across all datasets for
each fixed window.

3.4 SegRNA annotation overlap with gene components

SegRNA annotates gene components such as promoter, exons, and introns with different labels. To
calculate the frequency of each label across gene components we overlapped the GENCODE20 v32
comprehensive gene set37 with SegRNA segments. For each gene, we used only the longest transcript to
include the maximum number of SegRNA segments in this analysis without double-counting for genes
with multiple annotated transcripts.

We defined terms that describe the components of an idealized gene from 5′ to 3′. Initial refers to
the first exon or intron, terminal refers to the last exon or intron, and internal refers to the exons and
introns between42. The component 5′ flanking describes the 500 bp upstream of gene starts and the
component 3′ flanking describes the 500 bp downstream of gene ends.

3.5 SegRNA annotation overlap with snoRNAs

To group snoRNAs identified by SegRNA,we collected the SegRNA annotations surrounding 942 snoRNA
centers (Figure 5).We selected the snoRNA genes from GENCODE v32 comprehensive gene set37.We
used pybedtools56 v0.7.10 to create 1000 bp extended windows around the center of each snoRNA.We
used BEDTools57 v2.27.1 to intersect the K562 SegRNA annotation with the snoRNA extended windows
using the command bedtools intersect -wao -sorted.We assigned each snoRNA to the first
of 5 non-overlapping groups that the snoRNA’s properties satisfy (Figure 5b).

We defined as expressed the snoRNAs containing a Short label within 150 bp of the snoRNA center.
The exonic group contains expressed snoRNAs flanked by at least 500 bp of exon-like labels (ExonNuc-
Pam, ExonNuc, ExonMed, or ExonHigh).The intronic group contains expressed snoRNAs flanked by
at least 250 bp annotated ProMed or ProHigh.The intergenic group contains the remaining expressed
snoRNAs.

We defined as non-expressed the snoRNAs without Short labels within 150 bp of the snoRNA center.
The host-expressed group contains non-expressed snoRNAs flanked by≥20 bp annotated with any label
other than Quiescent. The quiescent group contains the remaining non-expressed snoRNAs.

3.6 SegRNA Short segments overlap with exons and introns

To identify putative novel short RNAs, we overlapped SegRNA Short segments with introns and exons
from gene annotations. For the annotations, we extracted the protein-coding exons from the GEN-
CODE v32 comprehensive gene set37 and non-coding transcript exons from RNAcentral58 v1359.We
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computed intron locations for both GENCODE and RNAcentral annotations with gffutils60 v0.10.1.
We selected segments from the SegRNA annotation of the K562 cell line (subsection 3.2) containing
any signal values ≥10 TPM in at least 3/5 short RNA input datasets (ENCSR000CRA, ENCSR000CRB,
ENCSR000CQX, ENCSR000CQY, and ENCSR000CQZ).We overlapped the selected segments against
the exons and introns with the BEDTools57 v2.27.1 bedtools intersect -wao -s command and
pybedtools56 v0.7.10.

3.7 Characterization of unannotated sequences

We used Snoscan server35 v1.0, tRNAscan-SE35 v2.0, and HMMER36 v3.3 with default parameters.

3.8 Biotype comparison

We used UpSet plots30 from intervene61 v0.5.8 to visualize the 336 different combinations of labels
that SegRNA used to annotate different gene biotypes (Figure 8). For each biotype, we created a 336-
component vector containing the frequency of each combination of labels among the number of
segments overlapping this biotype.Then,we generated a similaritymatrix between biotypes (Figure 9) by
calculating cosine similarity between each vector of frequencies.We computed the cosine similarity cos𝜃
between every pair of frequency vectors 𝐀 and 𝐁 as

cos𝜃 =
𝐀 ⋅𝐁

||𝐀|| ||𝐁||
.

3.9 FANTOM6 data and pre-processing

To annotate the effects on expression after lncRNA knockdown, we applied SegRNA to FANTOM612

CAGE datasets.We downloaded lncRNA knockdown and negative control CAGE datasets from human
dermal fibroblasts from FANTOM6.

We split the CAGE datasets by strand and performed the steps below on each strand separately.We
used BEDTools57 v2.27.1 bedtools unionbedg and bedtools complementwith pybedtools56

v0.7.10 and pandas v0.2562,63 to merge biological replicates, averaging the number of reads at each base.
We generated a difference signal by subtracting negative control signal from knockdown signal at 1 bp
resolution.The sign of the difference signal indicates the direction of change of expression in the knock-
down sample: increase from negative control (positive) or decrease from negative control (negative).

We converted themergedbiological replicates anddifference signal frombedGraph19 to theGenome-
data53 archive format to efficiently query signals at specific genomic coordinates.

3.10 SegRNAmodel for FANTOM6 lncRNA knockdown effect annotation

We used SegRNA to annotate changes in the transcriptome after knockdown of multiple lncRNAs from
FANTOM612 CAGE data (Supplementary Table 2). We used SegRNA with the --dry-run option to
initialize the dynamic Bayesian networkwith default parameters for a 4-labelmodelwith 3 input datasets
per DNA strand.The 3 datasets consist of (1) themerged signal of the knockdown sample, (2) themerged
signal of the negative control, and (3) the difference signal.The sign of the difference signal indicates the
direction of the changes. To interpret the value of the difference signal, however, we had to compare it
with the signals of the CAGE samples. Specifically, whether the knockdown signal had low or high signal
might yield a different interpretation of a high difference signal.

We named the 4 labels Up, Down, Consistent, and Quiescent and set their Gaussian parameters with
a stratified sampling approach.This approach sets parameters based on summary statistics of regions
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selected using a simple criterion.We define the criteria for the labels in terms of the difference signal’s
absolute median𝑚d, defined as the median of the absolute values of the difference signal 𝑋d:

𝑚d =med𝑡𝑋d,𝑡.

Stratified sampling makes the parameter setting robust to deviations from normality in the selected
regions.

For the label Up, we selected the genomic regions with the difference signal values >𝑚d. To reduce
biases arising from highly expressed transcription start sites, we divided the regions into 10 bins of
equal size, where each bin contains the regions with signal values of the knockdown dataset between
deciles. Then, we selected 10 000 regions by sampling 1000 regions from each bin. For each of the
knockdown, negative control, and difference signal datasets, we used the mean and standard deviation
of the 10 000 regions as Gaussian parameters of the label Up.

For Down, we used a similar approach as for Up to calculate the Gaussian parameters, selecting
regions with difference signal values < −𝑚d. For Consistent, we used a similar approach, selecting
genomic regions with difference signal values ≤𝑚d and ≥−𝑚d. For Quiescent, we set the mean to zero
to represent no activity.

We annotated both the forward and reverse strands with SegRNA and the parameters described
above. To automate the annotation of the lncRNA knockdown CAGE we used the Luigi workflowman-
ager64 v2.8.11.

4 Discussion

SegRNA annotates combinations of transcriptomic signals from diverse CAGE, PRO-seq, and RNA-seq
datasets. SegRNA uses only transcriptomic data as input and annotates each strand independently.
The dsHMM65 model has some similarities, modeling transcription directionality using one stranded
tiling array dataset and multiple unstranded ChIP-chip experiments. SegRNA, instead, generates a
transcriptome annotation that integrates multiple transcriptomic assays, allowing the identification of
novel RNAs.

We used a 10-label SegRNAmodel to annotate transcriptomic patterns of K562 from diverse datasets
includingCAGE,RNA-seq, andPRO-seq.Thedistributions learned for each label highlighted thediversity
of RNAs from the input datasets. For example, we found labels mainly overlapping with exons and
RNA-seq, and one label overlapping with gene promoters and CAGE.

SegRNA annotatedwith the label Short regionswith high short RNA-seq signals.This term represents
the diversity of short RNAs present in the human genome.We identified 39 putative novel short RNAs
annotated with the label Short and not overlapping previous annotations in short RNA databases.
lncRNAs with evidence of transcriptional activity overlapped with a much less diverse set of labels than
protein-coding genes.

In this study, we used a maximum of 10 labels. One could increase the number of labels to identify
novel patterns for different types of RNAs, especially for under-represented datasets such as non-
polyadenylated RNAs.

As the number of transcriptomic datasets generated keeps increasing, it becomes more complex
to analyze these datasets together. SegRNA uses multiple transcriptome datasets to generate a simple
annotation. These annotations allow biologists to rapidly generate and examine hypotheses about
patterns of transcription across the genome. As we showed here, SegRNA annotations can also serve
as building blocks that, when combined, simplify transcriptomic datasets across multiple dimensions.
Using SegRNA to summarizing multiple datasets for each of multiple conditions, one can visualize and
comprehend vast quantities of data.
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SegRNA can generate unsupervised annotations using data types beyond those used here. For
example, one might integrate data from polyadenylation site cleavages66 to help identify transcription
end sites. Using SegRNA to integrate these data with CAGE data could lead to an annotation that better
identifies transcript boundaries and patterns related to genic or intergenic regions.There are limitless
opportunities to integrate transcriptomic and genomic data with SegRNA.

5 Availability

Segway with the SegRNAmodel is available at https://segway.hoffmanlab.org.We deposited the version
of the SegRNA source with which we ran our experiments is available at https://doi.org/10.5281/zenodo.
3630670. We deposited other analysis code at https://doi.org/10.5281/zenodo.3951739, and results
at https://doi.org/10.5281/zenodo.3951738.
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