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Abstract

With an aperiodic, self-similar distribution of two-dimensional arrangement
of atrial cells, it is possible to simulate such phenomena as Fibrillation, Flut-
tering, and a sequence of Fibrillation-Fluttering. The topology of a network
of cells may facilitate the initiation and development of arrhythmias such
as Fluttering and Fibrillation. Using a GPU parallel architecture, two ba-
sic cell topologies were considered in this simulation, an aperiodic, fractal
distribution of connections among 462 cells, and a chessboard-like geometry
of 60×60 and 600×600 cells. With a complex set of initial conditions, it is
possible to produce tissue behavior that may be identified with arrhythmias.
Finally, we found several sets of initial conditions that show how a mesh of
cells may exhibit Fibrillation that evolves into Fluttering.

Keywords: Fibrillation, Fluttering, Arrhythmia, Pseudo-Electrogram,
Mathematical modeling.

1. Introduction1

For the sake of mathematical simplicity, we define only two types of ar-2

rhythmia in excitable media. One type is known as Fluttering and is related3

to reentrant waves of excitation, which remain in a self-perpetuating steady4

state. The second and more complex type of arrhythmia considered in this ar-5

ticle is known as Fibrillation. Meanwhile, Fluttering is adequately described6

employing continuous or cell-to-cell modeling; the Fibrillation phenomenon is7
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more difficult to simulate with deterministic models. Since the first research8

papers, some authors, [5], [38], considered that Fibrillation could only be9

approached mathematically on a statistical basis, mainly due to the random10

distribution of anastomosis fibers in the heart. This standpoint is still in use11

[33], [34], [36], [42], but the primary mechanisms of flutter and Fibrillation12

are not fully understood. The researchers still have incomplete knowledge13

of how arrhythmias, such as ventricular Fibrillation, begin and develop. In14

opposition to the statistical basis thesis, we present a deterministic model15

in which we introduce complexity in the cellular network geometry as a fac-16

tor for the generation of arrhythmias. In a network with simple topology,17

we produce Fibrillation by adding a set of complex initial conditions in a18

completely deterministic set of ordinary differential equations.19

In this article, we study some of the consequences obtained by modeling20

weakly connected networks through different distributions of excitable cells21

within the mesh, what we call the geometry of the network. In this context,22

we argue in subsection 3 why cell-to-cell modeling fits better than the con-23

tinuous model, at least to model the arrhythmia. We will illustrate in the24

Methods section 2, that neither the diffusivity provided by partial differential25

equations nor by the cell-to-cell coupling requires a complex dynamics in the26

cells to produce fibrillation and flutter phenomena. Elliptic-type operators27

give diffusivity in continuous mathematical modeling and also in cell-to-cell28

modeling using weakly coupled variables (see section 3.0.1). Nevertheless, we29

show in silico that fibrillation and Fluttering can be modeled even by using30

the simplest excitable cell models including only a few variables and “realistic31

models of heart cells” and compare the silico experiments of both realistic32

vs. few variables models [22], [24].33

The main difference between flutter and Fibrillation, according to the34

classic definitions [38], is the randomness of Fibrillation as opposed to the35

regularity of flutter. Randomness precludes sharp, well-defined wavefronts.36

One contribution of our work is to introduce some degree of complexity (the37

tiling of Figure 5) instead of randomness to present an in silico phenomena,38

which can be identified with Fibrillation. We simulated Fibrillation in a39

simple Chessboard geometry in a mesh of 60 × 60 and a mesh of 600 × 60040

cells by introducing a complex set of initial conditions. This Fibrillation is41

achieved with both models, two variables and Nygren model of the human42

heart. Another novelty in the present paper is that, contrary to the commonly43

established, Fluttering can be produced at a cellular level by a dynamic44

obstacle formed with a few cells and also by fixed non-dynamical obstacles45
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(for a definition see section 2.2.1). Finally, we found several sets of initial46

conditions that show how, even in the simplest mesh of cells, they may exhibit47

Fibrillation that evolves into Fluttering. This phenomenon that is well known48

in medical literature, for the best of our knowledge, is for the first time shown49

with human heart cell models.50

2. Methods51

2.1. Individual Cell models52

In this work, we use two-variable models of excitable cells [1], [4], [12],53

[24], as well as a physiologically accurate model of Nygren and coworkers54

[27]. The idea of using two variables vs. many variables models is to extract55

the properties of a net of cells that depend only on the excitable media and56

do not depend on the limitations of individual cell models.57

The models of excitable cells included here, as usual, go through four58

stages [40]: resting, exciting, excited, and refractory states; also, the models59

of coupled cells provide solitary waves flexible enough to flutter and fibrillate.60

In this way, the models represent observables in real tissue to some extent (for61

a mathematical definition of observable see section 3.0.1). The convenience62

and relevance of utilizing more complex models of individual cells is discussed63

in sections 5 and 6.64

2.1.1. Realistic Models65

There are many physiologically accurate models of excitable cells in the66

Heart, among them: Courtemanche et al., [8], Nygren et al., [27]; Lindblad67

et al., [21]. In this paper, we use Nygren et al. model (N), taking into68

account that the N model reconstructs action potential data that represent69

recordings from human atrial cells. In the N model, the sustained outward K+
70

current determines the duration of the action potential (AP). On the other71

hand, the AP shape during the peak and plateau phases is determined by72

transient outward K+ current, Isus, and L-type Ca2 current. The N model has73

29 variables: 12 transmembrane currents, a two-compartment sarcoplasmic74

reticulum (SR), and restricted subsarcolemmal space for calcium dynamics75

handling and calcium buffering.76

Regarding the number of variables, simulating a system of 360 000 cells,77

as we do in this work, is somehow onerous in computational terms. For78

example, 360 000 times 29 gives a system of ODE of 104 400 variables. For79

instance, simulating 15 seconds with step-size of the order of milliseconds may80
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Figure (1) Color code of the AP corresponding to Nygren’s model. In the video captures
and videos, the deep blue color corresponds to a rest state and deep red to a maximum of
the action potential in the Nygren et al. cell model.

illustrate what we mean by “onerous computationally”. To accomplish this81

task, we employed parallel architecture using Nvidia GPU (RTX 2080 Ti),82

and we developed it with C-CUDA libraries. The Procedures and Algorithms83

that we used are described in Nicolás and coworkers [25]. To solve the ODE84

systems, we implemented a Runge-Kutta numerical method of order four85

with absolute error tolerances of 10−6.86

2.1.2. Modeling Atrial fibrilation87

For the Nygren model, we used the data in Cherry et al. [7] and refer-88

ences therein to simulate electrophysiological changes that occur as a result of89

sustained Atrial Fibrillation. Specifically, ICa,L is decreased 30 percent of its90

original value, and Ito and IKur are both decreased to 50 percent of their orig-91

inal values. As mentioned in Cherry et al., APs are triangular in morphology92

at all cycle lengths and are shorter under these conditions. Additionally, rate93

adaptation is largely abolished. The reduction in rate adaptation shown by94

the model is in agreement with some experimental studies of chronic Atrial95

Fibrillation (AF) and tissues obtained from right atrial appendage tissue of96

patients with chronic AF (see references therein [7]). Low conductivity of97

cells in the heart is associated with ischemia [18], and in experiments, con-98

ductivity may be lowered pharmacologically by heptanol [5].99

Finally, to simulate Fibrillation as those in Figure 15, we found sets of100

initial conditions by implementing a random search in both models N and101
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B. In generating in the net the initial conditions, we alternate stimulated102

cells with refractory state cells. These complex sets of initial conditions103

in continuous media modeled with partial differential equations represent104

a discontinuous function and, therefore, highly improbable sets. However,105

modeling cell-to-cell such complex sets of initial conditions is not improbable106

since its discontinuity is inherent to the heart tissue structure. Discontinuity107

in the real tissue is another argument that favors ODE modeling over PDE108

modeling. Summarizing, we consider two types of initial conditions: (a) One109

small connected set of exciting cells surrounded by refractory cells; ( b) Many110

small islands of exciting cells scattered throughout the entire net mixed with111

refractory cells. The interested reader may obtain our data on the sets of112

initial conditions under request to the corresponding author.113

A vast difference exists among two-variable models and realistic ones,114

regarding, for instance, the number of observable phenomena. Nevertheless,115

all ordinary differential equations models we used have four states. A rest116

state corresponding to a minimum value of the AP variable; an exciting state,117

which corresponds to a negative derivative of the AP profile; an excited state,118

corresponding to the maximum of the AP profile; and a refractory state,119

associated to a positive derivative of the AP profile. In figures 1 and 2(b),120

the rest state is represented in the deepest blue color, and the excited state121

is represented in the darkest red.122

2.1.3. Simple ordinary differential equations models123

For this part, although only the experiments with the Barkley [4] model124

are reported, the Fitzhugh-Nagumo model and the Aliev-Panfilov model125

whose description is elsewhere [12], [24], [1] were also subject of experimenta-126

tion. Since results obtained for Fluttering and Fibrillation are similar to those127

obtained with the Barkley model, Fitzhugh-Nagumo, and Aliev-Panfilov, we128

do not include plots of the last two, and from now on we will only refer to129

the Barkley model when we talk about two-variable models. If a suitable130

geometry of the cell system is introduced (see section 2.2), it is possible to131

represent Fibrillation and flutter phenomena with all these models. They132

are two-variable models, as is well known, and they are dynamical bi-stable133

systems. For these systems, the existence of limit cycles is well established134

in the mathematical theory, and even analytical approximations of physio-135

logically relevant limit cycles in a region between heteroclinic trajectories are136

possible to calculate [17].137
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Figure (2) The AP corresponding to the Barkley model of equation (1), recall that x
and t are adimensional for this model. Each value of x of the plot in the left corresponds
a color to each height. The color bar corresponds to the Barkley model’s states in the
videos and two-dimensional plots shown in this paper. Deep blue corresponds to rest state
x(t) = 0 and the darkest red corresponds to x(t) = 1.

The Barkley model used in this paper is the following138

dx

dt
=

1

ε
x (1− x)

(
x− y + b

a

)
(1)

dy

dt
= gx− y,

where a, b, g, ε are fixed parameters. Figure 2 shows an AP of Barkley model139

with initial conditions x(0) = 0.4, y(0) = 0. The variable x in this arti-140

cle corresponds to an adimensional voltage, and may be identified with the141

variable V of the Nygren model.142

2.2. Cell-to-cell Nets Geometry143

The geometry in cellular systems can be determined by considering the144

geometry of the individual cells and how they are connected. For example,145

the working cells in the auricula in the heart are mostly cylindrical and are146

connected in a way that favors the longitudinal transmission of Action Po-147

tentials [35]. By comparison, brain cells have extremely branched forms, and148

their connections can reach a complexity that is far from being understood149

in its entirety [31]. In the following system,150
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α̇i = Gi(αi) + εij
∑
j 6=i

(αj − αi), αi ∈ Rn, (2)

where n represents the number of variables of each cell. The geometry of151

the network (and hence the diffusivity) is determined by the values of εij152

different from zero. So, equation (2) can be written as a vectorial equation153

with α = (α1, . . . , αn), G(α) = (G1(α), . . . , Gn(α)). So, as an illustration,154

for two variables with the Barkley model in equation (1), the system (2) has155

the form156

dxi
dt

=
1

ε
xi (1− xi)

(
xi −

yi + b

a

)
+ εij

∑
i6=j

(xj − xi), (3)

dyi
dt

= gxi − yi, i = 1, . . . , N,

whereN is the number of cells in the system and εij = 0 for unconnected cells.157

Notice that only the xi variables are coupled to each other as corresponds to158

variables related to the Action Potential in the heart’s cells. Similarly, for159

the N model of atrial cells of 28 variables, only the voltage is coupled.160

In practice, the use of rectangular and cubic matrices are the most com-161

monly used [9], [13], [28], [41], without considering the complex geometry of162

the cytoarchitecture of the network that exists in the tissues of living be-163

ings. Systems made of systems of equations of the form (2) are known as164

weakly connected networks (WCN) and have a vast number of applications in165

neurophysiology [14]; cardiology [41], [9], [28]; and many other sciences. In166

general, WCN have applications in every system of cells connected through167

gap junctions, such as those in atrial tissue in the human heart.168

2.2.1. Obstacles169

There are two types of obstacles to be considered: dynamical and static.170

Dynamical obstacles are formed by individuals or groups of cells in a refrac-171

tory or excitable or excited state. Static obstacles are formed by objects that172

do not change in time. They may correspond to fibroblast, adiposity in real173

tissue, or dead tissue due to heart attacks. In this article, we consider only174

dynamic obstacles.175

2.2.2. Tiling176

One of the central thesis of this work is that, under certain circumstances,177

an intricate connection between cells is essential in the generation of flutter178
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Figure (3) The procedure presented in the Figure is repeated several times to produce
the tiling of Figure 5. Note the fractal structure obtained.

Figure (4) Here is shown one of many possible representations of working cells in the
heart. They are not distributed randomly but following the distribution described in
Figure 5, where the reader can find the color’s code. The arrangement here presented
corresponds to the up and left corner of Figure 5.

and Fibrillation. We take as a paradigm of cell connections, hence the in-179

trinsic geometry of the cells, those of the working cells in the auricula, and180

the ventricle in the heart. In the literature, histological studies of heart’s181

cells are available [35]. Nevertheless, mathematical models, including the182

real geometry of the cells, are more scarce. Spach and Heidlage [36, Fig. 1]183

give a schematic representation myocardial architecture of 33 cells in a two-184

dimensional array. Following their representation, Figure 4 depicts a two185

dimensional model of cells, but our model is not based in real cells as in [36]186

but in a distribution generated by an aperiodic tiling called “ Table” which187

we describe below. After the cells’ connectivity is fixed, it is possible to estab-188

lish a correspondent cell geometry, as in Figure 4. Note that the random-like189

distribution of the cells is not for real; in Figure 4 are represented in the up190

and left corner in Figure 5. This distribution can be verified, noting that the191

code of colors corresponds to the same cells, meaning green for cells with six192

connections, pink for cells with five connections, and so on. Observe that in193

our figure, cell connections occur only in the vertical edges where most of the194

standard electrical coupling between cells have place [35].195

The values εi,j different from zero in equation (2) give an adjacency ma-196
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Figure (5) Example of a “Table” tiling showing the number of connections of each cell.
Cells in green are connected with six cells, cells in pink are connected with five cells, and
so on, as indicated in the figure’s left-hand side.

trix between cells which represents the geometry of the entire net. In this197

paper, we use a “Table” distribution of connections among cells. A Table198

is a polygon belonging to the class that can be tiled by a finite number199

of smaller, congruent copies of itself (see [32], where the properties of the200

“Table” as tiling-dynamical-system are studied). We used this tiling for the201

following reasons. a) It is an aperiodic tiling of the plane so that some degree202

of complexity is intrinsic in the adjacency matrix. b) The tiling is self-similar,203

so it does possess a fractal structure. c) Each cell is connected to an average204

of 4.86 cells, which is a good 2D approximation compared with an average205

of 9.1 reported from experimental data measures by Hoyt et al. [15] for206

three-dimensional structures. Besides, the connectivity approaches that of207

the cells in the Spach diagrams of Figure 1 in [36], which represents a sample208

of two-dimensional tissue cells with average two-dimensional connectivity of209

4.66 cells. d) The “Table” aperiodic setting provides the more simple ar-210

rangement in the authors’ opinion, which satisfies the mentioned properties.211

212

Figure 5 shows a tiling (see Figure 5) used in our in silico experiments.213

This arrangement is only one sample of an infinite number of such aperiodic214

tilings. It is necessary to assign each cell a number to set a matrix corre-215
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sponding to the tiling in Figure 5. Then, once the assignment is completed,216

the adjacency matrix can be settled down. Algorithms to construct the Table217

and other aperiodic tilings are well known, but finding algorithms to set the218

associated adjacency matrix of such tilings is still an open problem, to the219

best of the authors’ knowledge. The recursive procedure for the self-similar220

aperiodic tiling is shown in Figure 3.221

2.3. Flutter, Fibrillation, and pseudo-EG mathematical definitions222

In this paper, we depart from the classical definitions of Flutter and223

Fibrillation in use to formulate the following definition that applies to the224

rest of the article.225

Definition. Flutter and Fibrillation are reentrant waves of excitation which226

remain in a self-perpetuating steady-state; flutter having a periodic (or nearly227

periodic) pseudo-electrogram (pseudo-EG), and Fibrillation having a non-228

periodic pseudo-electrogram. Alternatively, we call Fibrillation a steady-229

state, self-perpetuating pattern of systems of cells without a defined front or230

back wave.231

2.3.1. Mathematical Pseudo-EG232

Following the classical definitions, we consider flutter and Fibrillation as233

self-generating phenomena. Fluter is considered a periodic wave of waves234

contrary to Fibrillation, which is considered a highly complex non-periodic235

wave or waves. A precise difference between flutter and Fibrillation is pro-236

vided by the pseudo-EG which is calculated by the following formula:237

EG(t) =
∑
i6=j

gi,j(Vj(t)− Vi(t)), (4)

which is a non-weighted, two-dimensional version of the formula of Kazbanov238

et al. in [16]. Observe that the distance between cells may be taken into239

account handling specific weights; however, in this work this parameter is240

neglected since the size of the modeled tissue is small and, more importantly,241

the geometry and thus the real distance between cells is not modeled in our242

study, so that weight due to the distance may not be considered.243

2.3.2. Electrogram analysis244

One of the most widely used techniques for analyzing fluctuations in245

the cardiac cycle period is the detrended fluctuation analysis (DFA). This246

technique has the advantage that it prevents the detection of inexistent long247
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term correlations produced by the non-stationarity of the time series. Given248

the complexity of the electrograms analyzed, in this work, we used the DFA249

technique to determine if they present either a random behavior or a temporal250

structure with long term correlations, which gave us information about the251

propagation of the electrical signal obtained from the in silico experiments.252

The scaling exponents α obtained from the DFA analyses were evaluated as253

previously described by Peng et al. [29]. In short, a scaling exponent α near254

or equal to 0.5 indicates a random or uncorrelated behavior, whereas a value255

near or equal to 1 indicates long-term correlations in the time series; that is,256

current data are statistically correlated with previous data, which reflects a257

non-random behavior.258

3. Theory259

The concept of observable has been used through the article; next, we260

provide a mathematical definition. We also discuss a comparison between261

PDE and cell-to-cell models, which is relevant for the understanding of our262

results.263

3.0.1. Observables264

In mathematical modeling, the dynamics of the cells that form living265

beings (or that represent other excitable means) are represented by dynamic266

systems of form,267

ẏ = G(y), y ∈ Y ⊂ RN , (5)

where the dot denotes the time’s derivative. So, cells are thought of as not
wholly known (so far) dynamical systems, let us say

ẋ = F (x), x ∈ X ⊂ RM , N < M, (6)

of which (5) is a representation, and scientists expect that the model G in268

some sense approaches F , which remains partially unknown. More formally,269

(5) is a model of (6) if there exists a continuous function (called observation270

[14]) h : X → Y such that if x(t) is a solution of (6), then y(t) = h(x(t)) is271

a solution of (5). In practice, many information of system (6) is unknown,272

for instance, the dimension of the space (i. e., in this instance, the actual273

number of variables of the system). In many cases, a model could be a274

rough representation of the real system. As mentioned by Hoppenstead and275
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Izhikevich [14], for example when (6) has a periodic solution and the model276

(5) is one dimensional, the observation h(x(t)) cannot be a solution of (5)277

unless h maps the limit cycle to a point. The existence of the function h and278

its properties are purely theoretic but allow us to speak about the relations279

of the real system (6) with the model in a mathematical fashion. As an280

example the variable y(t) = h(x(t)) is called an observable. In this article,281

the dimension of Y is bigger or equal than 2 so, we call observable to each of282

the y’s component functions.283

As science advances, mathematical models of cells include an increasing284

number of observables and each observable with an increasing refinement285

following experimental data. In this way, we obtain systems of complex286

differential equations that include an increasing number of equations. A287

typical example of this phenomena is the development in the study of the288

sinoatrial node cells in the heart (SAN) [6], [26], (for a detailed review of the289

SAN mathematical models see [19]).290

However, this is just the first step on the way to modeling the actual cell
tissue. A second step consists of forming a system of systems of equations by
coupling variables among different systems, let say n different systems like
the following

ẏi = Gi(yi) + Ci(y1, y2, . . . , yn), i = 1, . . . , n. (7)

A very used example of a coupling functions Ci are linear functions of the form291

εij
∑

j 6=i(yj − yi) where εij are small (experimentally obtained) parameters292

and the values assigned to j depend on the geometry of the net. There are293

at least two ways of modeling excitable media. One is by utilizing partial294

differential equations (PDE) to represent the diffusive nature of the media.295

Another is by establishing a system of cells, each cell, in turn, is a system296

of ordinary differential equations (ODE). In ordinary differential equations,297

diffusion of the excitatory wave is modeled by coupling appropriate variables,298

for instance, the Action Potential (AP) in excitable biological cells. In this299

paper, we call continuous mathematical modeling to the first form (PDE),300

and the last form (ODE) is what we call cell-to-cell modeling.301

3.0.2. Continuous vs. cell-to-cell modeling302

Continuous mathematical modeling of anisotropic media such as ventric-303

ular tissue, normally includes fiber patterns and the continuous rotation of304
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the fiber axis [11], so that the equations have the form:305

∂V

∂t
= ∇ · (D∇V )− I(V, y), (8)

∂y

∂t
= g(V, y) (9)

n̂ · (D∇V ) = 0. (10)

Where V = V (t, x1, x2, x3) is the membrane potential, (x1, x2, x3) in Ω ⊂ R3,306

I is the total current through the membrane, y is a vector of gate variables307

describing the dynamics of the various currents that constitute I,∇V denotes308

the gradient operator, and D is a conductivity tensor divided cell surface to309

volume ratio times the membrane capacitance of the cell. We will show310

that a system of equations (3) is equivalent to the system (8), (9). Note311

that equation (10) represents Neumann boundary conditions where n̂ is the312

normal to ∂Ω. To begin with, observe that the tensor D is of the form313

D =

D11 D12 0
D21 D22 0
0 0 D33

 ,

where Dij are functions of diffusivities parallel and perpendicular to the fiber,314

and θ(x3), the angle between the fiber to the axis of each plane. In the setting315

of [11], is easily shown that for a two-dimensional model, since θ(x3) ≡ 0,316

then D becomes317

D =

D11 0 0
0 D22 0
0 0 0

 ,

where now D11, D22 are constants, so that the elliptic operator ∇ · (D∇V )318

in equation (8) becomes simply319

∇ · (D∇V ) = D11
∂2V

∂x21
+D11

∂2V

∂x22
.

After discretization of the second partial derivatives we obtain320

∇ · (D∇V ) =

{
D11

∆2
(V n

i+1,j − 2V n
i,j + V n

i−1,j) +
D11

∆2
(V n

i,j+1 − 2V n
i,j + V n

i,j−1)

}
i,j

,

(11)
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a formula which is valid for interior cells in the grid. Since in many articles321

including [11] the grid spacing is about ∆ ≈ 200 − 300 µm which is bigger322

than the length of the cell, ≈ 80 µm [35], is worth to mention that PDE323

continuous approach is, in this case, not better than cell-to-cell modeling324

whatsoever. Moreover, note that equation (11) corresponds to a rectangu-325

lar grid of square cells (of much bigger dimensions than actual heart cells),326

meaning a chessboard-like geometry of the cells. In this way, a complex327

geometry, such as that depicted in Figure 4, cannot be represented by the328

elliptic operator in equation (8) since such an arrangement can not at all be329

represented by tridiagonal matrices such as those in equation (11).330

A further consideration regarding the mathematics in this article must331

be considered. Flutter and arrhythmia will appear as solutions to systems332

of ODEs for a particular set of initial conditions. However, somehow the333

solutions appear in some fashion unpredictable since they occur after global334

bifurcations of the parameters given by the conductivity and of the distribu-335

tion of conductivity. Hence, only after integrating the systems will emerge336

more of the most striking patterns of the next section in an unexpected form.337

Although the spirals formed by the Barkley model [2], [3], [4], and other mod-338

els [10] have been extensively studied, the study of the combination of spirals,339

collisions of spirals, and spirals emerging after a massive dynamic blocking340

is still of interest regarding Fibrillation.341

4. Results342

In this paper, the waves mentioned in the definitions above are travel-343

ing waves with a defined front and back given by the ordinary differential344

equations of the different bistable ODE systems. As mentioned in section345

2, systems with no apparent wave’s fronts and backs are noticeable. Never-346

theless, a periodic pseudo-EG may appear after time in some of the systems347

formed with a small number of cells. While flutter is produced by the collision348

of traveling waves with dynamical or static obstacles at a macroscopic level349

as in the classic definition, there is a difference in this document with the350

standard definitions since microscopic (cell-to-cell) collisions are considered,351

and very intricate patterns may happen as, for instance, these in Figures 13352

and 14.353

In both types of models, two-variables and realistic Nygren model, we354

found that by using the tiling distribution described in Figure 5 the propa-355

gation of voltage is allowed in a very efficient way under normal conditions.356
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Table (1) Detrended Fluctuation Analysis for N model (atrial cells)

Network Initial Conditions Figure pseudo-EG α
aperiodic tiling (a) Figure 8 quasi periodic 1.0515
aperiodic tiling (b) Figure 7(b) quasi periodic 1.0130
60 × 60 (a) Figure 10 quasi periodic 0.7790
60 × 60 (b) Figure 11 non-periodic 0.5445
600× 600 (a) Figure 12 (d) non-periodic 0.4192
600× 600 (b) Figure 13 non-periodic 0.4413
600× 600 (b) Figure 14 (d) non-periodic 0.5620
600× 600 (b) Figure 15 (b) non-periodic 0.5246

Paradoxically under certain circumstances, the same topology facilitates the357

generation of Fluttering.358

Moreover, in a chessboard arrange of 600 × 600 cells, we found that the359

generation of some Fibrillation generated by a randomly stimulated number360

of cells evolves to a stable multi-spiral which resembles Fluttering at least in361

the generation of pseudo-EG with some periodic resemblance as, for instance,362

in Figure 7.363

We recall that we presented the description of the 29-variable model N in364

section 2.1.1 and a two variable model B in section 2.1.3. Given that only the365

Nygren model corresponds to real atrial cells in the heart, we used the DFA366

technique only with this model. In Table 1 we present the α values obtained367

for each in silico experiment. From subsection 2.1.2, recall that there are368

two types of initial conditions: (a) One small connected set of exciting cells369

surrounded by refractory cells; (b) Many islands of exciting cells scattered370

throughout the entire net mixed with refractory cells. We recall that a scaling371

exponent α near or equal to 0.5 indicates a random or uncorrelated behavior,372

whereas a value near or equal to 1 indicates long term correlations in the time373

series.374

Given the coincidences between non-realistic vs. realistic models, we con-375

clude that the generation of Fluttering and fibrillations does depend strongly376

on the nature of the diffusive media, more than in the variables involved in the377

modeling. Nevertheless, realistic models facilitate the reduction of parameter378

values according to experimental data that occur during arrhythmias.379
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(a) At time t = 0 a mas-
sive collision starts.

(b) Waves anhilate each
other.

(c) Only one wave sur-
vives.

(d) One front propaga-
tion starts.

(e) An spiral emerges
from a single wave.

(f) Steady state of the
system.

Figure (6) Massive blocking produces Fibrillation and evolves to Fluttering here
in the tiling of Figure 5. The link to the video of the complete sequence is
http://pacifico.izt.uam.mx/aurelio/.

4.1. Fibrillation at a microscopic level case Nygren Model380

In Figure 6 after a massive blocking with dynamical obstacles (initial381

conditions type (a)) in the aperiodic distribution of cells of Figure 5, an382

apparent Fibrillation becomes a Fluttering, i. e., a self-perpetuating spiral.383

This event is well known in the literature, but as far as we know, it is for the384

first time reproduced in silico.385

This coincidence in the formation of spirals of the two models, one cari-386

cature (Barkley) and the other realistic (Nygren), provides us with evidence387

that the Fibrillation that becomes Fluttering occurs naturally in any diffusive388

media under appropriate initial conditions. Notice that the pseudo-EG after389

a non-periodic behavior from t = 0 to t < 2500 (recall that t is adimensional390

for Barkley model) resembles a periodic plot. See Figure 7.391

Another interesting kind of Fluttering is produced by stimulating a small392

number of connected cells and blocking them with neighboring cells in a393

refractory state. Here, the array of cells facilitates the propagation due to its394
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(a) Steady state of the Nygren
system.

(b) Pseudo-EG For Nygren Model

(c) Steady state of Barkley sys-
tem. (d) Pseudo-EG for Barkley model.

Figure (7) In both Nygren and Barkley models, massive blocking produces Fibrillation,
which becomes Fluttering. Noticeable differences do appear in the wavelength as a conse-
quence of intrinsic dynamics in each model, but in both of the models under certain sets
of initial conditions, a periodic self-perpetuating spiral emerges. The pseudo-EG in both
Figure 7(b) and 7(d) show certain periodicity.
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(a) At t = 0 s a group of
cells is stimulated.

(b) At t = 0.008 s a wave
front is initiated.

(c) At t = 1 s, the tip of
a spiral is noticeable.

(d) Spiral continues. (e) Steady state.
(f) Pseudo-EG

Figure (8) (a) A group of cells surrounded by cells in a refractory state is stimulated. (b),
(c), (d), (e) A self-generating spiral which may be identified with Fluttering is apparent.
(f) A quasiperiodic pseudo-EG is produced after a small, turbulent interval of time similar
to that in Figure 7d.

fractal nature paradoxically when a dynamic obstacle (a group of cells out395

of phase) prevents the wave from propagating. See Figure 8.396

A similar phenomenon occurs with the Barkley model, but in this case,397

by blocking only one cell. A single excited cell surrounded by refractory cells398

produces (when the network has critical connectivity) an intricate pattern399

of diffusion. In this way, some spirals arise due to variable cellular connec-400

tivity and low conductivity. It is worth mentioning that spirals broke into401

scrolls, which, according to the electrogram obtained, may be identified with402

Fibrillation of the system (see Figure 9).403

After studying the Table array, we proceed to study a more significant404

number of cells but scattered in simpler arrangements. For both the Nygren405

and Barkley models, we started with a square of 60 by 60 cells. Furthermore,406

we continue with a 600 by 600 with the Nygren model. We present two types407

of in silico experiments. One type we block a large number of cells and408
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(a) One cell is stimu-
lated.

(b) Multiple spirals are
spontaneously produced. (c) Electrogram for Barkley

model.

Figure (9) Barkley model produces several self-generating spirals by blocking one cell,
with neighboring cells in a refractory state. The electrogram produces a noise-like signal
which may be identified with Fibrillation.

scattered throughout the network, another group is stimulated. The second409

type, only a few connected cells, is stimulated and blocked by neighbors.410

We obtained the same phenomenon produced with the array. Hence a self-411

generating spiral is produced, see Figure 10.412

In Figure 11 the same phenomenon illustrated in Figure 9 is represented413

in a 60 × 60 array of cells. A set of initial conditions alternating refractory414

state cells with stimulated cells produces a pattern that may be identified415

with Fibrillation due to the complex pattern of the pseudo-EG.416

With a 600 × 600 cell array, a spiral is produced with a small group417

of stimulated cells surrounded by cells in a refractory state. See Figure 12.418

Observe that assuming that a cell has 100 µ m of length, a square of 360 000419

cells is equivalent to 36 mm 2 of tissue.420

A fascinating phenomenon occurs in a 600 × 600 array when a large421

group of stimulated, scattered cells through the entire net is surrounded by422

refractory cells. Fibrillation occurs during several seconds, and under certain423

initial conditions, it becomes Fluttering, which persists in a stationary and424

complex spiral. See Figure 13.425

Moreover, in the 600 × 600 array, we can produce with a set of initial426

conditions a more complex pattern than in Figure 13 f). Many self-generating427

spirals resembling a micro-reentry associated with Fibrillation emerges after428

the collision presented with a massive blocking. See Figure 14.429

A comparison of the patterns produced by the Nygren cell model and430
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(a) (b) (c)

(d) (e) (f)

Figure (10) Nygren model in a 60 × 60 net of cells produces a self-generating spiral by
dynamic blocking. a) At t = 0, a group of cells is stimulated. b) A wavefront is produced.
c) A self-generating spiral appears. d) Spiral collides with the border. e) Steady-state. f)
Quasiperiodic pseudo-EG.
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(a) (b) (c)

(d) (e) (f)

Figure (11) a)At t = 0 a massive group of scattered cells through the entire 60 × 60
net is stimulated randomly. b) Waves propagate at t = 0.001s. c) A couple of fronts
emerge. d) Spiral after colliding produces a complex pattern e) Steady-state. f) A couple
of self-generating spirals leads to a complex pseudo-EG, which may be identified with
Fibrillation.
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(a) At t = 0 a group of cells is stimulated. (b) A couple of spirals at t = 5s.

(c) Steady state the spirals fill the entire
net.

(d) Pseudo-EG of the entire simulation.

Figure (12) Nygren model in a 600 × 600 net of cells produces a self-generating spiral by
dynamic blocking. (a) Notice the small group of stimulated cells in the left bottom corner.
(b) A series of spirals emerge. (c) Steady-state. (d) Pseudo-EG of the entire simulation.
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(a) (b) (c)

(d) (e) (f)

Figure (13) a) At t = 0 a massive group of scattered cells through the entire net is
stimulated, but each cell is surrounded by refractory cells. b) Waves propagate at t = 0.08s.
c) After the collisions, only two fronts survive in this particular setting. d) Spirals are
formed with the remanent waves. e) A complex pattern emerges of self-generating spirals.
f) Pseudo-EG of the entire simulation.
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(a) (b)

(c) (d)

Figure (14) Under a different set of initial conditions than those in Figure 13, an intri-
cate pattern of several self-generated spirals surges. (a) A large number of collisions of
wavefronts after the massive blocking are apparent. (b) Some curved wavefronts survive
after collisions. (c) Several spirals are generated with the curved wavefronts in (b) and
persist in a steady complex state. (d) Pseudo-EG of the entire series.
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the Barkley model is shown in Figure 15. Such is the pattern produced by431

massive blocking in a 60×60 net.432

5. Discussion433

In many articles, one and two-dimensional arrangements (for instance,434

in [9] and references therein, and [41]) are considered disregarding that the435

actual geometry of tissue is three dimensional. This reduction in modeling is436

a generalized attitude that can be understood under the dynamic of building437

models that go from the simple to the more complicated. Nevertheless, as438

Fenton et al., claim [10], in models of cardiac electrical activity “simulations439

in 3D have shown that the existence of purely three-dimensional breakup440

mechanisms”. So that arrhythmias are, in this sense, three-dimensional phe-441

nomena virtually. Hence, to obtain more accurate models of arrhythmias, it442

is necessary to work in 3D frameworks, but utilizing 2D layers makes sense443

for the following reasons. In modeling auricular heart tissue, it is known444

that rotational anisotropy of fibers of ventricular muscle can be model by445

superposing and rotating two-dimensional layers of cells [11]. To this aim,446

two ways to incorporate connectivity parameters in the cells are available:447

experimental histological data or stochastic or complex connectivity pro-448

vided by mathematical models ad hoc. In this article, we used an aperiodic449

tiling model, which is possible to extend to 3D nets of cells. Anyhow, the450

extension to 3D of the aperiodic tiling model presented here is not straight-451

forward. Creating an adjacency matrix corresponding to aperiodic, fractal452

arrangements is a complex task and constitutes an open problem, although453

algorithms to produce many of such patterns are known (see, for instance,454

Rangel-Mondragon article [30]).455

Although simplified models in one or two dimensions may reflect certain456

experimental data [13], it may be that such simplifications do not represent457

the actual behavior of big groups of cells, for instance, in the transmission458

of the action potential of the system formed by mixing pacemaker and atrial459

cells. For example, in [21] for specific mathematical models of atrial and sinus460

cells, the activation of the complex depends on the number of cells involved461

and the geometric distribution of the cells in the network. Modeling diffusive462

media with cells, including many observables, may not be a trivial task,463

since even the stability of the numerical methods involved may be challenged.464

Moreover, since the real geometry of the cells must be considered, real data465

of local topology of diffusive tissue must be incorporated, when available, to466
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(a) (b)

(c) (d)

Figure (15) (a)Nygren model in a Fibrillation pattern. (b) Pseudo-EG of the Nygren
model. (c) Barkley mode in a Fibrillation. (d) A massive blocking of individual cells with
low conductivity produces an intricate pattern that, according to the pseudo-EG in the
figure, can be identified with Fibrillation. Here we show systems of 60×60 cells.
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model big groups of cells. As mentioned in section 4 our representation of467

groups of cells in Figure 4 may not correspond to any real biological tissue,468

but only constitute the first approach of statistical data of a mean of the469

number of observed connections in the atrial heart tissue. A refinement470

of this data is required for the two-dimensional layers forming atrial and471

ventricular tissue in the heart.472

On the other hand, many interesting works such as [36] study the stochas-473

tic distribution of inhomogeneities at the cellular level that can cause cardiac474

propagation to be stochastic. In contrast, in this article, without considering475

the stochastic setting, we obtained a complex propagation in the diffusive tis-476

sue, despite the simplicity of the included models, only by varying the local477

topology of the network. Nevertheless, variable conductance may be included478

in future work either employing stochastic distributions or, as was done in479

this article, introducing some aperiodic pattern of the distributions of the480

different conductances referred to in [36] of the individual cell membranes.481

As a final remarck, a note about our analysis of pseudo-EG. Electro-482

grams were statistically analyzed using the DFA technique to associate the483

visual behavior of the propagation of the electrical signal with a quantitative484

indicator of the propagation dynamics. When a scaling exponent near to485

0.5 was obtained, the simulated electrical signal showed a random behavior,486

which corresponds to what we denominated Fibrillation (Figures 11). In the487

electrograms where it was possible to observe a “noisy” periodic behavior,488

the value of the scaling exponent α was near to 1, indicating long term cor-489

relations (i.e., a non-random behavior), which corresponds to the wave-like490

propagation observed in images and videos from the simulated experiments491

(Figures 8). From these results, we can conclude that images and videos of492

the propagation of the simulated electrical signals give us valuable informa-493

tion about their dynamics and factors affecting it, which is a crucial aspect494

to consider when analyzing structural and functional mechanisms triggering495

the different types of arrhythmias, such as atrial Fibrillation and Flutter.496

6. Conclusions497

In modeling cell-to-cell in this document, we found that very complex498

self-perpetuating diffusion patterns arise utilizing a massive blocking of cells499

in an excited state. This complexity emerges even in utilizing an elemen-500

tary chessboard-like distribution of cells. One remarkable property of nets501

of diffusive cells in this document is that reentrant waves are formed in a502
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wide variety of initial conditions contradicting the intuitive folk thinking503

that arrhythmia phenomena are exceptional in diffusive media, especially in504

considering Fibrillation.505

We introduced a net with a tiling distribution in which Fibrillation, Flut-506

tering, and a sequence of Fluttering-Fibrillation phenomena emerged. In this507

way, the two basic types of arrhythmia were modeled in two-dimensional508

tissue with a degree of complexity given by the non-periodic, fractal distri-509

bution connections in the tiling. The interesting fact is that it is possible510

to model a complex-like Fibrillation phenomenon by introducing a certain511

degree of complexity in the distribution of neighbor cells (for example, with512

tiles similar to those in Figure 4), instead of using any random distribution513

whatsoever. To the best of the knowledge of the authors of this paper, this is514

a novelty. Moreover, in this study, the authors found a critical value of con-515

ductivity among the cells integrating the ODE’s systems. Such critical value516

emerges with an adjacency matrix given by the arrangement in Figure 5. In517

this way, modeling Fluttering by lowing conductivity in our model of simple518

two-variable ODE or the state of the art ODE model by adding only speci-519

fied complexity in the distribution of cells could be relevant in mathematical520

modeling and computational simulation.521

Micro-reentry can be simulated with Barkley and Nygren models. In522

some in silico experiments emerged several self-perpetuating waves that col-523

lide, leading to a complex pseudo-EG, which anyhow may be identified with524

Fibrillation of the system. An example of this EG for such arrhythmia is525

shown in Figure 15(b) for the Nygren model and Figure 15(d) for Barkley526

model.527
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