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Abstract 

 Precision medicine approaches in pancreatic ductal adenocarcinoma (PDAC) are 

imperative for improving disease outcomes. However, the long-term fidelity of recently 

deployed ex vivo preclinical platforms, such as patient-derived organoids (PDOs) remains 

unknown. Through single-cell RNA sequencing (scRNA-seq), we identify substantial 

transcriptomic evolution of PDOs propagated from the parental tumor, which may alter 

predicted drug sensitivity. In contrast, scRNA-seq is readily applicable to limited biopsies 

from human primary and metastatic PDAC and identifies most cancers as being an 

admixture of previously described epithelial transcriptomic subtypes. Integrative analyses 

of our data provide an in-depth characterization of the heterogeneity within the tumor 

microenvironment, including cancer-associated fibroblast (CAF) subclasses, and predicts 

for a multitude of ligand-receptor interactions, revealing potential targets for 

immunotherapy approaches. While PDOs continue to enable prospective therapeutic 

prediction, our analysis also demonstrates the complementarity of using orthogonal de 

novo biopsies from PDAC patients paired with scRNA-seq to inform clinical decision-

making. 

 

Statement of Significance 

 The application of single-cell RNA sequencing to diagnostic pancreatic cancer 

biopsies provides in-depth transcriptomic characterization of the tumor epithelium and 

microenvironment, while minimizing potential artifacts introduced by an intervening ex 

vivo passaging step. Thus, this approach can complement the use of patient-derived 

organoids in implementing precision oncology. 

  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.07.28.225813doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.28.225813


 3 

Introduction 

 The majority of patients with pancreatic ductal adenocarcinoma (PDAC) present 

with locally advanced or metastatic disease, which precludes surgical resection of their 

cancer (1). The gold standard for diagnosis is a tissue biopsy prior to initiation of systemic 

therapy, which is obtained by either endoscopic ultrasound-guided fine needle aspiration 

(EUS-FNA) of the primary lesion or through interventional radiology (IR)-guided 

percutaneous biopsy of a metastatic site. While typically adequate for histopathological 

assessment, PDAC biopsies, especially those obtained via EUS-FNA without rapid onsite 

cytopathology assessment, can be limited by low neoplastic cellularity (2,3). Nonetheless, 

such biopsies may be the only source of tissue from patients with locally advanced or 

metastatic PDAC who are likely to derive the most benefit from tailored approaches. 

 

 Multiple recent studies have demonstrated the feasibility of using next generation 

sequencing (NGS) platforms for mutational analysis as applied to these limited “real 

world” biospecimens obtained from PDAC patients (4,5). Notably, although targeted NGS 

panels can identify somatic or germline DNA mutations in a clinically meaningful 

timeframe, no more than a quarter of PDAC patients, at best, harbor such actionable 

mutations (6). Therefore, efforts at expanding precision medicine approaches in PDAC 

beyond DNA alterations have led to patient-derived organoids (PDOs) being used for 

prospective therapeutic prediction. While initial reports primarily utilized surgical resection 

samples for establishing PDOs, more recently, the feasibility of using limited biopsy 

material has also been confirmed, garnering the possibility of incorporating PDOs into 

precision medicine trials in patients with advanced PDAC (7,8). Nonetheless, although 

PDOs are a facile preclinical platform for therapeutic prediction, how their molecular 
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landscape might evolve during passaging, compared to the parental tumor, is less well 

established. This is undoubtedly pertinent, since transcriptomic shifts occurring ex vivo 

may impact sensitivity or resistance to predicted agents, with implications for how this 

information may be used for clinical decision-making. 

 

 In this study, we characterize the transcriptomic landscape of PDOs in the course 

of ex vivo passaging, and the potential impact on therapeutic prediction. Using single-cell 

RNA sequencing (scRNA-seq), we find that ex vivo culture of PDOs leads to 

transcriptomic shifts that are distinct from the parental tumor, as well as from earlier 

passages of a given PDO. We then explore the feasibility of using scRNA-seq on de novo 

limited biopsies obtained from patients with primary and metastatic PDAC. As recently 

described in studies using surgically resected PDAC samples, scRNA-seq provides an 

unprecedented level of insight into the architecture of the neoplastic cells and their tumor 

microenvironment (TME), including compartment specific heterogeneity (9-11). We 

demonstrate that scRNA-seq on limited endoscopic and core biopsies captured nearly all 

of the previously reported repertoire of cell types in surgical resections, including the 

tumor-stromal heterogeneity inherent to this disease, and revealed putative mechanisms 

for immune evasion within the TME. We believe that precision medicine approaches to a 

near universally lethal disease like PDAC should deploy multiple orthogonal approaches, 

including NGS for actionable DNA alterations, PDOs for phenotypic therapeutic 

prediction, and scRNA-seq on contemporaneous de novo biopsies for assessment of the 

tumor-stromal architecture. In particular, scRNA-seq on de novo biopsies could potentially 

minimize the confounding effects of transcriptomic shifts in ex vivo passaged PDOs on 

therapeutic predictions. 
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Results 

Ex vivo Propagation of Patient-Derived Organoids Leads to Transcriptomic Shifts 

 PDOs have emerged as an important tool for prospective therapeutic prediction 

across multiple cancer types (7,8,12-15), but whether they retain the molecular 

architecture of the parental tumor following ex vivo propagation is unknown. We first 

performed scRNA-seq on a PDAC PDO (PDO-1) after 5 and 15 ex vivo passages to 

examine whether the transcriptomic machinery evolves in culture over time. We found 

that in later passage organoids, there were two transcriptomically distinct clusters 

(Supplementary Figure S1A), which formed two separate cell fates on trajectory 

inference (Supplementary Figure S1B). Transcripts upregulated towards cell fate 1 

showed enrichment of epithelial-mesenchymal transition (EMT), reactive oxygen species 

(ROS) biosynthesis, response to growth factor, and axon development (Supplementary 

Figure S1C). In comparison, transcripts upregulated towards cell fate 2 were enriched 

for telomere maintenance, DNA replication, cell cycle, and hypoxia pathways 

(Supplementary Figure S1C). Copy number inference from scRNA-seq revealed 16p 

gain in late-passage organoids and 19q loss specifically in cell fate 2 (Supplementary 

Figure S1D). Our results suggest that in vitro culture conditions shift the transcriptomic 

landscape towards deregulated proliferative pathways and those indicative of aggressive 

phenotypes, such as EMT and hypoxia. 

 To identify transcriptomic changes from in vivo parental tumor to ex vivo culture, 

we obtained a different PDO sample (PDO-2) from a PDAC patient with vaginal apex 

metastasis, a biopsy from which was used for de novo scRNA-seq and PDO generation. 

After 14 passages, at which time there was an adequate number of cells to perform 
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additional studies, we performed scRNA-seq to compare to the parental tumor sample. 

Epithelial cells from the tumor and organoids formed distinct clusters (Figure 1A), and 

gene set enrichment analysis (GSEA) revealed the enrichment of cell cycle-related 

pathways such as E2F targets, G2M checkpoint, and mitotic spindle in PDO-2. In 

contrast, the parental tumor was enriched for immune-related pathways such as 

interferon (IFN) α and γ signaling, tumor necrosis factor (TNF) α signaling, as well as 

hypoxia pathway (Figure 1B). Trajectory inference analysis showed an unbranched 

progression from tumor to PDO-2, and dynamic gene expression changes along the 

trajectory once again demonstrated downregulation of IFN-related pathways and 

upregulation of cell cycle pathways with pseudotime (Figures 1C and 1D). A prior 

scRNA-seq analysis of non-passaged surgically resected samples also found the 

upregulation of inflammation-related pathways in PDAC epithelial cells (10), suggesting 

that these signals likely arise as a result of cues from the TME in vivo and are lost during 

organoid culture. 

 We also tested whether there were copy number alterations (CNAs) in addition to 

transcriptomic changes in the transition from tumor tissue to PDOs. We performed both 

single-cell copy number sequencing (Supplementary Figure S1E) and CNA inference 

from scRNA-seq profiles (Supplementary Figure S1F). In the parental neoplastic cells, 

both methods showed large copy number events across multiple chromosomes. In PDOs, 

there were additional CNAs and more heterogeneity in copy number profiles. These 

results once again demonstrate that long-term maintenance of PDOs may lead to both 

transcriptomic and genomic alterations. 

 To assess whether these transcriptomic changes led to an altered response to 

therapy, we performed drug sensitivity prediction using the next generation connectivity 
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map (16). When interrogating transcriptomically distinct sub-clusters (Supplementary 

Figures S1G and S1H) and pseudo-bulk expression profiles, the cultured PDO cells were 

predicted to have greater sensitivity to commonly used chemotherapeutic agents in 

PDAC, including gemcitabine, compared to parental neoplastic cells (Figure 1E). 

Consistent with the parental neoplastic cells not demonstrating a predicted sensitivity 

profile to gemcitabine, the patient was clinically deemed resistant to gemcitabine prior to 

biopsy (Figure 1F); in contrast, PDO-2 was exquisitely sensitive (Figure 1G). Overall, 

based on the connectivity analysis, neoplastic cells from the parental tumor were 

predicted to be sensitive to 65 compounds, compared to 131 compounds in PDO-2, with 

a set of 50 compounds that were overlapping (“invariant”) between the parental tumor 

and the PDO (Supplementary Figure S1I).  

 Taken together, these data suggest that, in the course of ex vivo propagation, 

PDOs undergo transcriptomic shifts and CNAs, relative to the parental tumor as well as 

relative to earlier passages, with possible confounding of therapeutic prediction data. 

Despite the divergence in transcriptomic profiles between the PDO and parental tumor, 

connectivity analysis on matched scRNA-seq data revealed an “invariant” subset of 

predicted agents that were overlapping between the parental tumor and resulting PDO 

(even at passage 14). This “invariant” subset of agents in common between the parental 

lesion and the PDO likely reflects critical and persistent vulnerabilities in the 

transcriptomic circuitry, and could be prioritized for preclinical testing in the resulting PDO. 

However, this mandates that we can conduct high-quality scRNA-seq profiling on the de 

novo non-propagated biopsies obtained contemporaneously to the samples from which 

we establish PDOs. 
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scRNA-seq of Limited De Novo Biopsies Recapitulates the Tumor-Stromal 

Heterogeneity of PDAC Observed in Surgical Resections 

 In light of our aforementioned findings in ex vivo propagated PDOs, and the likely 

need for orthogonal profiling on de novo samples, we explored the feasibility of 

conducting scRNA-seq in a panel of limited “real world” biopsies obtained from primary 

and metastatic PDAC patients. Five primary samples (P1-P5) were obtained via EUS-

FNAs of the pancreas, while four metastatic samples were obtained as core needle 

biopsies (liver, lung) or segmental biopsies (vaginal apex, peritoneal). Pooled analysis of 

all samples yielded a total of 31,720 cells organized into 8 clusters (Figure 2A), and highly 

expressed genes in each cluster were used to identify cell types (Figure 2B). Epithelial 

cells were the most commonly represented cell type (47%), followed by T cells (28%) and 

myeloid cells (12%; Figure 2A). Across primary and metastatic lesions, all cell types were 

represented and the average cell composition was similar (Supplementary Figure S2A, 

Supplementary Table S1).  

 To assess the heterogeneity specific to cancer cells, we extracted the epithelial 

cluster for further analysis, which revealed six distinct transcriptomic sub-clusters (Figure 

2C; Supplementary Table S2). Epithelial 1 sub-cluster was characterized by enrichment 

of antigen presentation, type I IFN response, and response to IFNγ pathways 

(Supplementary Figure S2B). Along the same line, epithelial 2 sub-cluster was enriched 

for response to ROS and intrinsic apoptosis, while epithelial sub-clusters 3 and 4 were 

enriched for epigenetic process and DNA replication/cell cycle, respectively, altogether 

demonstrating diverse transcriptomic programs present in PDAC tumor cells. A previous 

scRNA-seq analysis of PDAC demonstrated lipid processing and secretory cells within 

ductal epithelial cells (10), which were also present in our samples. Specifically, sub-
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cluster 5 expressed lipid processing cell markers APOA1, FABP1, and DNASE1, while 

sub-cluster 6 expressed secretory cell markers CFTR, SOD3, and COL18A1 (Figure 2D). 

All epithelial sub-clusters were present in both primary and metastatic tissues, but lipid 

processing and secretory sub-clusters were proportionately less common in metastases 

(Supplementary Figure S2C; Supplementary Table S2). Copy number inference from 

scRNA-seq showed numerous alterations in sub-clusters 1-4, whereas lipid processing 

and secretory sub-clusters did not contain matching alterations (Supplementary Figure 

S2D), suggesting that the latter were derived from normal epithelium, as previously 

postulated (10). 

 In the subsequent Results, we discuss in further detail elements of tumor and 

stromal (including immune) diversity captured by scRNA-seq on the biopsy specimens.  

 

Molecular Subtyping of Single Cells Reveals Intratumoral Subtype Heterogeneity 

 Previous studies have classified PDAC into molecular subtypes based on their bulk 

transcriptome. These classifications include Bailey subtypes (pancreatic progenitor, 

squamous, aberrantly differentiated endocrine exocrine or ADEX, and immunogenic), 

Collisson subtypes (classical, quasimesenchymal or QM, and exocrine-like), and Moffitt 

subtypes (classical and basal-like) (17-19). A subsequent study demonstrated two 

common epithelial subtypes, namely classical (or pancreatic progenitor) and basal-like 

(or squamous/QM), whereas immunogenic and ADEX or exocrine-like subtypes were 

associated with low tumor purity (20). To precisely delineate the cellular contributions to 

bulk molecular subtype, we used nearest template prediction (21) to classify all single 

cells into a subtype based on the three classifiers (Supplementary Figures S3A-S3D; 

Supplementary Table S3). Aligning the cell type to molecular subtypes confirmed that 
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immunogenic, ADEX, and exocrine-like subtypes were mostly composed of non-epithelial 

cells (Supplementary Figures S3E), consistent with the previous finding of low tumor 

purity in these subtypes (20). 

 To understand the molecular subtypes in the context of epithelial cells, we 

reapplied the classifiers on the epithelial subset (Supplementary Figures S3A-S3D and 

S3F; Supplementary Table S4). Of note, while subtype prediction from pseudo-bulk 

projection yielded one molecular subtype for each biopsy sample (Supplementary 

Figure S3G), all tumor samples were composed of more than one subtype at single-cell 

level regardless of the classifier (Figures 3A-C; Supplementary Figures S3H-S3J), 

consistent with recent reports that Moffitt classical and basal-like subtypes coexist in a 

single tumor (22,23). 

 We performed pseudotime analysis on the epithelial cells to elucidate potential 

evolutionary trajectories of PDAC tumor cells, which revealed two major branches (Figure 

3D). Interestingly, cells from the liver metastasis formed their own branch in the trajectory 

(Figure 3E), which may be consistent with the observation that PDAC patients with liver 

metastases often have poorer outcomes compared to patients with metastases in other 

organs including lung (24,25). Specifically, cells in the liver metastasis trajectory showed 

upregulation of EMT and hypoxia pathways (Figure 3F), which may correlate to their 

more aggressive phenotype. Of note, given that the liver- and lung-metastatic cells form 

diverging trajectories with enrichment of distinct gene sets even though cells in both sites 

mostly classified as basal-like (Figures 3C and 3D), our results suggest that there may 

be heterogeneity even within a single subtype that may be responsive to the metastatic 

site. 
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scRNA-seq on PDAC Biopsies Capture Cancer-Associated Fibroblast Diversity 

 In the PDAC TME, functionally and transcriptomically distinct subtypes of cancer-

associated fibroblasts (CAFs) are present. Inflammatory CAFs (iCAFs) secrete cytokines 

and are pro-tumorigenic, whereas myofibroblastic CAFs (myCAFs) are characterized by 

the expression of extracellular matrix (ECM) components and exert anti-tumorigenic 

effects via unknown mechanisms (26). A third subtype of CAFs, named antigen-

presenting CAFs or apCAFs, express class II major histocompatibility complex (MHC) 

genes (10). Initial analysis of the CAF population from our scRNA-seq revealed two 

transcriptomically distinct sub-clusters, which were designated as iCAFs and myCAFs 

based on the expression of PDGFRA, CXCL12, ACTA2, and TAGLN as previously 

described (Supplementary Figures S4A and S4B). To assess the presence of apCAFs, 

we looked for co-expression of the invariant chain of MHC II molecule CD74 with HLA-

DPA1, HLA-DRA, and HLA-DRB1, which was present in a subset of CAFs (Figure 4A). 

Utilizing nearest template prediction (21), we categorized each fibroblast into one of the 

three subtypes (Figures 4B and 4C) and found no significant difference in the proportions 

of the CAF subtypes in primary and metastatic tumors (Supplementary Figure S4C; 

Supplementary Table S5). In our samples, apCAFs did not co-express PTPRC or MSLN 

(Supplementary Figure S3D), confirming that these cells are not immune or mesothelial 

cells, as has been suggested in a recent study using murine PDAC samples (27). While 

apCAFs express MHC II molecules and can present antigens to CD4 T cells, they lack 

the co-stimulatory molecules required to activate an immune response. Therefore, it was 

hypothesized that apCAFs wound contribute to the immunosuppressive environment in 

PDAC by leading to anergy or differentiation of CD4 T cells into regulatory T (Treg) cells 

(10). Indeed, the proportion of apCAFs in biopsy samples was negatively correlated with 
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the ratio of memory and effector CD8 T cells to Tregs (Figure 4D). Our results recapitulate 

a potential mechanism by which stromal cells within the PDAC microenvironment may 

lead to immune suppression. 

 

PDAC-Infiltrating Immune Cells Acquire an Immune Suppressive Signature 

 PDAC is characterized by immunosuppressive microenvironment (1). To 

understand how immune cells change from the circulation to the PDAC TME, we 

performed scRNA-seq on peripheral blood mononuclear cells (PBMCs) from 8 of 9 

patients obtained at or around the time of their tissue biopsies. Global comparison of all 

cell types revealed that there was a subpopulation of myeloid cells that were found only 

in the PDAC but not in the periphery (Figure 5A; Supplementary Figure S5A), and sub-

clustering analysis revealed this unique population to be macrophages (Figure 5B; 

Supplementary Figures S5B and S5C). Given the potential polarization of tumor-

associated macrophages into classical M1 and alternative M2 phenotypes (28), we 

performed trajectory inference analysis on monocytes and macrophages from PBMCs 

and tumors, which revealed a single unbranched trajectory representing the differentiation 

from monocytes to macrophages (Figure 5C). The expression of immune suppressive 

genes such as MARCO and TREM2 increased with pseudotime (Figure 5D). Global gene 

expression changes along the pseudotime trajectory revealed upregulation of 

macrophage activation, acute and chronic inflammation, and negative regulation of 

myeloid-mediated immunity pathways (Figure 5E). Furthermore, macrophages were 

characterized by an upregulation of angiogenesis and hypoxia pathways (Figure 5E), 

which are associated with the M2 phenotype (28), confirming the immune suppressive 

role of tumor-infiltrating macrophages. 
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 To elucidate the different types of myeloid cells present in the PDAC TME, we 

performed sub-clustering analysis of tumor-infiltrating myeloid cells and found 8 distinct 

cell types (Figure 5F; Supplementary Table S6). Using previously published subtyping 

of monocytes and dendritic cells (DCs) based on scRNA-seq profiles (29), we classified 

these sub-clusters as monocyte 1 (equivalent to CD14high cells), monocyte 2 (equivalent 

to CD16high cells), macrophage 1 (expressing APOE and SPP1), macrophage 2 

(expressing complement molecules), DC1 (CLEC9A), DC2/3 (CD1C), plasmacytoid 

(p)DCs (TCF4, IRF7), and mast cells (TPSAB1, CPA3; Figure 5G; Supplementary 

Figure S5D). All sub-clusters were represented in primary tumors and metastases 

without significant differences in their proportions (Supplementary Figure S5E). In 

addition to MARCO and TREM2, tumor-associated macrophages expressed PPARG and 

IL6 transcripts (Supplementary Figure S5F), the products of which are also implicated 

in immune suppression (30). Of note, a recent study comparing the immune 

compartments of PDAC and lung cancer revealed reduced numbers of DC infiltration in 

PDAC that led to the attenuation of anti-tumor T cell activity (31). Consistent with these 

findings, DCs represented smallest subsets of myeloid cells in our samples. Moreover, 

given that the DC1 subset expressed IDO1 (Figure 5G), which inhibits T-cell proliferation 

(10,32), the DC1 subset may contribute to the immune suppressive phenotype in PDAC. 

 Analysis of tumor-infiltrating T and natural killer (NK) cells revealed 12 distinct sub-

clusters (Figure 5H; Supplementary Table S7). Based on known markers for T and NK 

cells (33,34), we identified memory (ANXA1) and naïve (SELL, CCR7) CD4 T cells, 

memory and effector (CX3CR1) CD8 T cells, naïve CD8 T cells, mucosal-associated 

invariant T (MAIT) cells (SLC4A10), tissue resident memory CD8 T (Trm) cells (ZNF683), 

Tregs (FOXP3, CTLA4), CD56 NK cells, CD16 NK cells, IFN-response T cells (IFI44L, 
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ISG15), and NK T cells (TYMS, MKI67; Figure 5I; Supplementary Figure S6A). Many 

T cells expressed inhibitory receptors PDCD1, LAG3, and BTLA (Supplementary Figure 

S6B), suggesting that T cells are present in the PDAC TME but their functions may be 

inhibited. Next, we compared T and NK cells in PBMCs and tumors (Supplementary 

Figures S6C-S6E). There was a trend of naïve CD4 T cells decreasing in proportion from 

periphery to primary to metastatic tumors, whereas memory CD4 and CD8 T cells showed 

a reverse trend (Supplementary Figure S6F), likely reflecting antigen exposure and 

creation of memory T cell populations predating metastatic spread. GSEA of tumor-

infiltrating T and NK cells revealed the enrichment of hypoxia and negative regulation of 

immune response pathways (Supplementary Figure S6G), demonstrating the 

acquisition of immune suppressive phenotype similar to tumor-associated macrophages. 

 

Prediction of the PDAC Ligand-Receptor Interactome Reveals Multiple Immune 

Regulatory Pathways and Potentially Actionable Nodes  

 scRNA-seq has been used to predict potential ligand-receptor (LR) interactions, 

which we utilized to reveal potential mechanisms by which the crosstalk between tumor 

cells and immune cells may contribute to immunosuppression in PDAC. We applied a 

average expression-based LR interaction prediction (35,36) to assess potential 

relationships between major cell types of two primary (P3, P4) and two metastatic (liver, 

lung) tumors, as they contained the highest cell numbers and represented the most 

cellular diversity. We did not combine multiple samples for analysis to rule out potentially 

false interactions (e.g. T cell from liver metastasis to epithelial cells in a primary tumor). 

Global overview of the interactomes revealed that myeloid and dendritic cells were the 

most connected, and epithelial cells interacted closely with these two cell types (Figures 
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6A and 6B; Supplementary Figures S7A and S7B). One of the most significant LR pairs 

responsible for these connections was predicted to be between macrophage migration 

inhibitory factor (MIF) and the transcript for the invariant HLA-DR allele, CD74 (Figure 

6C). This interaction has been implicated in promoting myeloid-derived suppressor cell-

mediated immunosuppression in melanoma and breast cancer (37,38), while tumor cell 

MIF expression has been linked to a more aggressive phenotype in PDAC (39). Another 

prevalent interaction between tumor epithelial cells and myeloid/dendritic cells involved 

amyloid precursor protein (APP) and CD74; of interest, we have previously described that 

APP overexpression in PDAC cells upregulates proliferation (40). The potential role of 

neoplastic APP in subverting antigen presentation via CD74 interaction on immune cells 

in the PDAC TME is uncharted.  

 Given that scRNA-seq data can be biased by gene dropout, thereby diminishing 

the average expression of genes in each cell type, we next predicted LR interactions at 

single-cell level (41). When looking at predicted interactions involving ligands from cells 

in the TME and cognate receptors on epithelial cells, we found that epithelial cells were 

more strongly connected to fibroblasts and myeloid cells, whereas there were fewer 

connections with T and B cells (Figure 7A; Supplementary Figures S7C and S7D). 

Many predicted interactions between epithelial cells and fibroblasts involved components 

of the ECM (Figure 7B), which is expected given that one of the major functions of 

fibroblasts is the production of ECM proteins. There were many pro-inflammatory 

interactions such as IFNG from T/NK cells and IFNGR1/2 on epithelial cells (Figure 7B), 

once again pointing to inflammatory signals present in the PDAC microenvironment. 

 We also explored the reverse interactions in which ligands were expressed on 

epithelial cells and receptors on TME cells, which again revealed more connections with 
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fibroblasts and myeloid cells (Figure 7C; Supplementary Figure S7E and S7F). Most 

prominent interactions with fibroblasts were growth factors, and interactions with immune 

cells involved cytokine and checkpoint genes (Figure 7D). Of note, epithelial cells 

interacted with T/NK cells via IL18-IL18R1 and LGALS9-HAVCR2. IL18 has been shown 

to promote IFNγ production in T/NK cells (42), and the interaction between LGALS9 and 

HAVCR2 can suppress T cell-mediated immunity (43). Additional immunosuppressive 

interactions between epithelial and T cells included PVR-TIGIT and CD274-PDCD1. 

Interactions with myeloid and dendritic cells included CD24-SIGLEC10, which promotes 

immune evasion and is a potential target in cancer immunotherapy (44). One of the most 

common interactions between B and epithelial cells was BTLA-TNFRSF14 (also known 

as herpesvirus entry mediator or HVEM), which can suppress both T and B cell-mediated 

immunity (45). Overall, these results suggest that PDAC tumor cells can drive an 

immunosuppressive microenvironment by affecting multiple immune cell types. MIF-

CD74 and APP-CD74 interactions were abundant between epithelial cells and multiple 

TME cell types, denoting high expression of MIF and APP in PDAC tumor cells and CD74 

in TME cells with a strong potential for in vivo functionality. 

 

Discussion 

 PDOs are a promising tool in precision medicine approaches for PDAC, but 

molecular alterations associated with prolonged ex vivo culture conditions remain less 

well characterized. We present evidence of transcriptomic evolution of PDOs during ex 

vivo establishment and passaging. The differences were more pronounced with the 

transition from tumor tissue to PDO, which was characterized by the loss of inflammatory 

microenvironmental cues such as TNF and IFN signaling and gain of proliferative 
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pathways. This transcriptomic shift led to altered drug sensitivity predictions on scRNA-

seq data, although there was an “invariant” set of compounds that were predicted in 

common with the contemporaneous biopsy sample, which might reflect therapies more 

likely to be effective in vivo. 

 Given these potential limitations of organoids, it is imperative to develop orthogonal 

methods to comprehensively characterize limited biopsy specimens in clinically 

informative ways. To that end, we systematically analyzed scRNA-seq from “real world” 

biopsies of primary and metastatic PDAC, demonstrating that even these scant samples 

recapitulate significant cellular heterogeneity. Our data showed higher proportion of 

epithelial cells compared to a recent scRNA-seq studies on surgically resected PDAC 

tumors (10,11), while the most common immune cell types were myeloid and T cells, 

consistent with these studies. We performed transcriptomics subtyping at single-cell 

resolution, which revealed two subtypes specific to tumor epithelial cells, namely classical 

(or pancreatic progenitor) and basal-like (or QM/squamous), confirming the results from 

a previous analysis of bulk tumors (20). Metastatic lesions were more likely to harbor a 

higher proportion of aggressive basal-like subtype of cells, which was also previously 

reported in a separate PDAC cohort (46). Notably, we show that although bulk RNA 

sequencing classifies PDAC dichotomously as one of two subtypes, at single cell 

resolution, even limited PDAC biopsies are comprised of more than one subtype. This 

finding may be of clinical importance in light of the COMPASS trial, which showed that 

classical PDAC is more likely to respond to first-line FOLFIRINOX, while basal-like tumors 

tend to be chemo-resistant (47). The existence of basal-like cells within an “apparently 

classical” tumor (as deciphered by bulk sequencing) could lead to preferential enrichment 

of basal-like cells and rapid emergence of resistance. Thus, future iterations of trials like 
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COMPASS that rely on subtyping using core biopsies might need to provide a quantitative 

measure of cellular subtypes present, rather than a qualitative dichotomous readout.  

Furthermore, the overall gene expression profile and cell type proportions revealed 

several putative mechanisms of immune suppression in PDAC, such as the expression 

of immune suppressive genes by myeloid cells and inhibitory receptors in T cells, 

polarization of macrophages towards M2 phenotype, as well as the presence of apCAFs 

that may inhibit T cell-mediated immune response. Prediction of the prevalent ligand-

receptor “interactome” also revealed multiple mechanisms by which tumor-TME 

interactions may contribute to inflammation and immune evasion. 

 Through integrative analysis of scRNA-seq data, we uncovered implicit 

heterogeneity of low-input biopsy samples in PDAC that demonstrates potential 

mechanisms for immune evasion and provide high-resolution data correlating cell types 

to clinically relevant molecular subtypes. Given the potential limitations of organoids in 

maintaining the original tumor transcriptomic program and predicting response to therapy 

across passages, deep characterization using a contemporaneous biopsy may provide a 

valid orthogonal approach to precision medicine approaches. 

 

Methods 

Sample Acquisition 

 A total of 9 patients were recruited at the University of Texas MD Anderson Cancer 

Center through informed written consent following institutional review board approval 

(Lab00-396 and PA15-0014). The study was conducted in accordance with Good Clinical 

Practices concerning medical research in humans per the Declaration of Helsinki. Five 

primary pancreatic cancers and four metastatic lesions in liver, lung, peritoneum, and 
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vaginal apex were used. Histologic confirmation of PDAC was performed by a pathologist. 

 

Single Cell Dissociation 

 Pancreatic cancer biopsies were collected in high-glucose DMEM supplemented 

with GlutaMAX, HEPES buffer, and 1% bovine serum albumin (BSA; all Thermo Fisher). 

Samples were delivered to the laboratory within 2 hours after the procedure. Single cell 

dissociation was performed as previously described (9). Briefly, samples were minced 

with sterile surgical scalpels to 0.5-1 mm fragments in approximately 1 ml of media. After 

centrifugation for 5 minutes at 125 g, cells were resuspended in DMEM with 0.5 mg/ml 

Liberase TH (Sigma-Aldrich) and 1% penicillin-streptomycin (Corning) and incubated in 

an orbital shaker for 15 min at 37°C. Liberase was quenched with equal volume of 1% 

BSA in DMEM followed by centrifugation for 5 minutes at 125 g. Cells were resuspended 

in 2 ml Accutase (Sigma-Aldrich) and incubated in an orbital shaker for 15 minutes at 

37°C. Organoids were dissociated by incubating with TrypLE Express (Thermo Fisher) 

for 5-15 minutes at 37°C followed by manual disruption. Dissociated cells were passed 

through a 40 µm strainer and centrifuged for 5 minutes at 125 g. Isolated cells were 

resuspended in 0.04% BSA in phosphate buffered saline (Corning) for subsequent 

viability analysis and counting. 

 

Single-Cell RNA Library Preparation and Sequencing 

 Single-cell transcriptomic amplification and library preparation was performed 

using the 5’ or 3’ Library Construction Kit (10x Genomics) following the manufacturer’s 

recommendations. Final library quality and concentration were measured on TapeStation 

System using High Sensitivity D5000 ScreenTape (Agilent). Libraries were sequenced on 
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NextSeq 500 (Illumina) according to the manufacturer’s instructions. 

 

Sequencing Data Processing and Analysis 

 Raw base call (BCL) files were demultiplexed and converted to FASTQ files, which 

were subsequently used to generate feature-barcode matrices using Cell Ranger RNA 

v3.1 (10x Genomics) and hg19 was used as a reference. Additional analytical methods 

are included in the Supplementary Information. 
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Figure Legends 

Figure 1. Patient-derived organoids evolve with time. 

A. Uniform manifold approximation and projection (UMAP) plot of single cells from 

epithelial compartment of PDAC vaginal metastasis tissue (PDAC-VM, green) and 

organoids after 14 passages (PDO-2, purple). 

B. Bubble plot showing enrichment of pathways in organoids compared to tissue with 

normalized enrichment score (NES) on the x-axis. Size of the bubble represents false 
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discovery rate (FDR). 

C. Pseudotime trajectory of single cells from PDAC-VM (green) and PDO-2 (purple). 

D. Heatmap showing dynamic gene expression changes through pseudotime (left) and 

enrichment of Gene Ontology biological processes (GO-BP) terms for each gene cluster 

(right). 

E. Heatmap showing connectivity score for transcriptomically distinct clusters from PDAC-

VM (green) and PDO-2 (purple) to commonly used compounds in PDAC (left) and the 

same for pseudo-bulk samples (right). Negative connectivity score predicts sensitivity. 

F. Clinical course of vaginal metastasis patient. CA19-9 is plotted with red line and sum 

of longest diameter (SLD) of the target lesion is plotted with black line. Significant events 

and treatment courses are displayed on the x-axis. 

G. Bar graph showing cell survival of PDO-2 after treatment with gemcitabine at different 

concentrations. Error bars represent standard error of mean (S.E.M.). 

 

Figure 2. PDAC biopsies contain diverse cell types. 

A. UMAP plot of single cells from 9 biopsy samples (left) and bar plot showing proportions 

of cell types in pooled primary and metastatic samples (right). 

B. Bubble plot showing highly expressed marker genes in each cell type, with cell types 

in rows and genes in columns. Size of each bubble represents percent of cells expressing 

marker and color represents the level of expression. 

C. UMAP plot of epithelial cells re-clustered from A (left) and bar plot showing proportions 

of epithelial cell sub-clusters in pooled primary and metastatic samples (right). 

D. Violin plots showing relative expression levels of selected marker genes in all epithelial 

sub-clusters. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.07.28.225813doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.28.225813


 29 

  

Figure 3. PDAC molecular subtypes at single-cell resolution. 

A-C. Bar plots showing proportions of epithelial cells classifying into Bailey (A), Collisson 

(B), and Moffitt (C) subtypes with FDR < 0.2 in pooled primary and metastatic samples 

(left) and individual samples (right).  

D. Pseudotime trajectory of epithelial cells from all biopsy samples labeled with Moffitt 

molecular subtypes (top) and bar plot representing the proportions of cells in each 

pseudotime bin (50 bins total) classifying into either subtype (bottom). 

E. Pseudotime trajectory plot from D labeled with sample identification separated into 

primary lesions (top) and metastatic lesions (bottom). 

F. Branched heatmap showing dynamic gene expression changes in epithelial cells along 

the pseudotime trajectory, with pseudotime progressing from left to right. Enriched 

Hallmark or Gene Ontology biological process (GO-BP) terms for each gene cluster are 

listed on the right.  

P1-5, primary 1-5; VM, vaginal apex metastasis; LiM, liver metastasis; LuM, lung 

metastasis; PM, peritoneal metastasis. 

 

Figure 4. Stromal heterogeneity of PDAC is captured by biopsies. 

A. Co-expression of selected apCAF marker genes projected onto UMAP plot of CAFs. 

CD74 expression is represented by black (low) to red (high), whereas the expression of 

HLA genes is represented by black (low) to green (high). High expression of both CD74 

and variant MHC II molecule is shown as yellow. 

B. CAF subtypes from nearest template prediction projected onto UMAP plot. 

C. Heatmap showing scaled expression of apCAF, iCAF, and myCAF marker genes 
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ordered by subtype. 

D. Correlation plot between apCAF abundance in each sample and the ratio of CD8 T 

cells (memory and effector) to regulatory T (Treg) cells. 

 

Figure 5. Acquisition of immune suppressive phenotype by tumor-infiltrating 

immune cells. 

A. UMAP plot of immune cells from peripheral blood mononuclear cells (PBMC) and 

tumors colored by cell type. 

B. UMAP of myeloid cells re-clustered from A colored by cell type (left) and bar plot 

showing proportions of each myeloid cell type as percent of all cells in PBMC, primary, 

and metastatic samples (right). 

C. Pseudotime trajectory of monocytes and macrophages. 

D. Dot plot representing the expression of MARCO (top) and TREM2 (bottom) along the 

pseudotime trajectory from D colored by cell type. Solid black line indicates the mean 

expression at a given pseudotime. 

E. Heatmap showing dynamic gene expression changes through pseudotime (left) and 

enrichment of Gene Ontology biological processes (GO-BP) terms for selected gene 

cluster (right). 

F. UMAP of myeloid cells re-clustered from Figure 1A (left) and bar plot showing 

proportions of myeloid cell types in pooled primary and metastatic samples (right). Mono, 

monocyte; mac, macrophage; DC, dendritic cell; pDC, plasmacytoid DC. 

G. Heatmap showing scaled expression of select marker genes in each myeloid sub-

cluster. 

H. UMAP of T and NK cell re-clustered from Figure 1A (left) and bar plot showing 
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proportions of T and NK cell types in pooled primary and metastatic samples (right). Trm, 

tissue resident memory; MAIT, mucosal-associated invariant T; Treg, regulatory T; IFN, 

interferon. 

I. Heatmap showing scaled expression of select marker genes in each T and NK sub-

cluster. 

 

Figure 6. Ligand-receptor interaction predictions between major cell types. 

A. Network plots of a primary PDAC (P3, left) and liver metastasis (right) demonstrating 

potential ligand-receptor interactions. Each node represents a cell type and size reflects 

relative number of cells. Each edge represents the number of significant interactions 

between each cell-type pair and its thickness is proportional to the number of interactions. 

B. Heatmaps of log-transformed number of significant interactions between cell-type pairs 

in a primary PDAC (P3, left) and liver metastasis (right). 

C. Bubble plots representing top significant ligand-receptor interactions between different 

cell-type pairs involving epithelial cells in a primary PDAC (P3, left) and liver metastasis 

(right). Size of each bubble represents P value and color represents the mean expression 

of ligand and receptor genes. 

  

Figure 7. Ligand-receptor interaction predictions between single cells. 

A. Network plots of a primary PDAC (P3, left) and liver metastasis (right) demonstrating 

potential ligand-receptor interactions in which epithelial cells express the receptor. Each 

node represents a single cell and the edge represents the number of ligand-receptor pairs 

between two cells. 

B. Heatmap showing top interaction scores (normalized number of ligand-receptor 
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interactions) for each cell-type pair where epithelial cells express the receptor. Sample 

origin, stage, and ligand-expressing cells are annotated above the heatmap. See bottom 

of figure for legend. 

C. Network plots of a primary PDAC (P3, left) and liver metastasis (right) demonstrating 

potential ligand-receptor interactions in which epithelial cells express the ligand. 

D. Heatmap showing top interaction scores for each cell-type pair where epithelial cells 

express the ligand. Sample origin, stage, and receptor-expressing cells are annotated 

above the heatmap. Ligand-receptor interaction class is annotated to the left. P1-5, 

primary 1-5; VM, vaginal apex metastasis; LiM, liver metastasis; LuM, lung metastasis; 

PM, peritoneal metastasis. 
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Figure 6
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