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Summary:  

Environmental disturbances have long been theorized to play a significant role in shaping 15 

the diversity and composition of ecosystems1,2. However, fundamental limitations in our ability 

to specify the characteristics of a disturbance in the field and laboratory have produced an 

inconsistent picture of diversity-disturbance relationships (DDRs) that shape the structure of 

ecosystems3. Here, using a recently developed continuous culture system with tunable 

environmental control4, we decomposed a dilution disturbance into intensity and fluctuation 20 

components5,6, and tested their effects on the diversity of a soil-derived bacterial community 

across hundreds of replicate cultures. We observed an unexpected U-shaped relationship between 

community diversity and disturbance intensity in the absence of fluctuations, an observation 

counter to classical intuition. Adding fluctuations erased the U-shape and increased community 

diversity across all disturbance intensities. All of these results are well-captured by a Monod 25 

consumer resource model, which further reveals how U-shaped DDRs emerge based on a novel 

“niche flip” mechanism in which competitive outcomes flip and coexistence regimes 

subsequently collapse at intermediate disturbance levels. Broadly, our results demonstrate how 

distinct features of an environmental disturbance can interact in complex ways to govern 

ecosystem assembly and produce all the major classes of DDRs, without invoking other 30 

organizational principles. With these findings, we construct a unifying framework that reconciles 

the disparate DDRs observed in nature, and propose strategies for predictively reshaping the 

compositional complexity of microbiomes and other ecosystems. 

 

Introduction:  35 

Biodiversity is a cornerstone of ecosystem stability and function7. While it is well-

appreciated that environmental changes influence species diversity in all ecosystems, the exact 
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nature of this critical relationship is unclear. Without a predictive understanding of how 

ecosystems respond to perturbations, we are poorly prepared for environmental changes of 

anthropogenic origin, such as rising global temperatures8, and unable to design effective and 40 

robust interventions in ecosystems, such as microbiomes of medical or agricultural 

importance9,10. Accordingly, there have been many efforts aimed at understanding the role of 

environmental disturbances, which bring about mortality of organisms and a reduction of 

biomass of a community. Various diversity-disturbance (DDR) relationships have been proposed 

that draw intuition from observations of natural ecosystems. A famous example is the 45 

Intermediate Disturbance Hypothesis1,2, in which species diversity peaks at intermediate 

disturbance intensities (Fig. 1a). However, DDRs derived from observational studies of disparate 

ecosystems and disturbance regimes often have inconsistent results3,11. Earlier assertions that 

disturbance weakens or interrupts competition1,2 have been refuted by both theory12,13 and 

empirical findings14 that harsher environments instead reinforce dependence on limiting factors. 50 

Without a framework that directly pairs theory and experiment, it has been difficult to determine 

the source of disagreement between the many conflicting predictions and observations 

surrounding DDRs.   

Importantly, the impact of a disturbance on an ecosystem depends on the disturbance 

characteristics. For example, environmental disturbances often introduce fluctuations. The 55 

environmental fluctuations associated with a disturbance may in fact stabilize communities by 

creating temporal niches, similar to seasonal effects15,16. Indeed, coexistence can be promoted in 

a fluctuation-dependent manner due to storage effects (e.g. dormancy in poor conditions) or if 

species exhibit relative non-linearities in their competitive responses (e.g. differently shaped 

growth curves)16,17. Yet, coexistence might also arise from the overall time-averaged disturbance 60 

intensity in a fluctuation-independent manner12,13. To determine whether the effects of 

disturbance on diversity are truly fluctuation-dependent18, a disturbance should be decomposed 

into distinct components of intensity and fluctuation. Indeed, experimental findings6,19 and 

theory5 have suggested that diverse DDRs could arise when considering these factors 

independently. There is therefore a need for comprehensive, controlled studies which pair theory 65 

with experimental methods to produce datasets that can deconvolve the effects of the two key 

disturbance characteristics: intensity and fluctuation. 

Laboratory experiments offer a greater degree of control and throughput compared to 

field studies, particularly for tractable ecosystem models like microbial communities20. Microbes 

are easily quantified with next-generation sequencing21–24, and have been widely used in the 70 

laboratory to model community assembly25–27, cross-feeding relationships28, and succession29. 

Laboratory models have also linked changes in diversity in response to fluctuating nutrient 

levels30,31 and disturbances such as sonication14, ultraviolet radiation32, osmotic pressures17, or 

toxic compounds33. Dilution is perhaps the most common choice for a laboratory disturbance, as 

it causes species-independent mortality and replenishes the system with fresh nutrients, 75 

reminiscent of flow in soil, aquatic, or gut microbiomes. In simple batch culture experiments, 

where cultures remain undisturbed except for a periodic dilution step, coexistence has been 

observed at intermediate dilution levels32,34, though different DDRs arise under different dilution 

regimes6, suggesting that the dilution parameter space is vastly under-sampled. For more precise 

tuning of dilution or other parameters, experimentalists have long relied on continuous culture 80 

methods30,31,35; unfortunately, these systems have traditionally been intractable to large-scale, 

multidimensional experiments. Recently, we developed eVOLVER, a flexible and automated 
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continuous culture platform that enables independent control over conditions in a large number 

of mini-bioreactors4,36, thus opening up the possibility to explore microbial community dynamics 

under controlled, multidimensional environmental disturbances. By programming different 85 

 

Fig. 1. Emergence of a U-shaped diversity-disturbance relationship (DDR) in a microbial 
community for constantly applied disturbance at different intensities. (a) Different DDRs 
have been proposed based on observations of natural ecosystems, including the Intermediate 
Disturbance Hypothesis in which diversity peaks at intermediate disturbance levels, see 
depiction. (b) In the laboratory, microbial communities can be cultivated and subjected to varying 
disturbance intensity levels by tuning the dilution rate in chemostats. (c) A bacterial community 
exhibits a U-shaped diversity dependence on the disturbance intensity. Samples of a soil-derived 
bacterial community were grown for 6 days in eVOLVER mini-chemostats at four different dilution 
rates. Top: Optical density over time quantifies biomass for replicate cultures. Middle: Mean 
relative abundance of bacterial genera from replicate cultures, determined by 16S sequencing. 
Mean rank abundance is denoted by order, taxonomic similarity is denoted by color. Bottom: 
Plotting the endpoint number of species (Amplicon Sequence Variants) vs. dilution rate produces 
a U-shaped curve, rather than a peaked DDR. Shaded window indicates a one standard deviation 
confidence interval. 
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dilution profiles with eVOLVER, we set out to independently quantify the effects of disturbance 

intensity and fluctuations on the composition and diversity of microbial communities.  

First, we sought to measure microbial diversity at various levels of disturbance intensity 

in the absence of fluctuations. We cultivated replicate samples of a soil-derived microbiome in 

separate eVOLVER bioreactor arrays in dilute Nutrient Broth for six days (comprising 20-90 90 

generations), during which continuously diluted cultures approached equilibrium. In a chemostat, 

the flow of media into the vessel is matched by flow of spent media and cells out of the vessel, 

so disturbance intensity is directly related to dilution rate (Fig. 1b). We thus varied the 

disturbance intensity by varying the dilution rate across the arrays (see Methods, Supplementary 

Figs. 9 and 10). We sampled cultures daily and used 16S sequencing to quantify composition and 95 

diversity over time. As expected, we observed decreasing biomass of the cultures at increasing 

dilution rates (Fig. 1c and Supplementary Fig. 11). Surprisingly, after quantifying the 

composition of each culture, we observed a U-shaped diversity-disturbance relationship (Fig. 

1c), with the number of surviving species at intermediate dilution rate at roughly half of the 

number at either low or high dilution rate. We were particularly intrigued because a U-shaped 100 

DDR does not fit the conventional wisdom2. Though U-shaped DDRs are rare in empirical 

observations3,11, the conditions under which we observed it were quite straightforward: 

constantly applied disturbance. Thus, to better understand our observation, we sought a modeling 

framework in which a U-shaped DDR could emerge from constantly-applied disturbance, while 

still capturing other reported DDR shapes. 105 

We started by examining the simplest case giving rise to a U-shaped DDR, a two-species 

competition where coexistence breaks down at intermediate disturbance levels (Fig 2a). To link 

changes in disturbance intensity to changes in competitive outcomes, we turned to consumer 

resource models37,38. In consumer resource models, species growth rates are a function of 

resource concentrations. The range of resource concentrations that can support growth of a 110 

species can be graphically analyzed on a Tilman diagram37 by defining a Zero Net Growth 

Isocline (ZNGI). As a population consumes resources, the resource concentrations move toward 

the ZNGI, where growth rate is equal to the mortality rate (i.e. disturbance intensity) and the 

population is at equilibrium. Accordingly, higher mortality rates will move the ZNGIs to higher 

resource levels. The shape of these ZNGIs also predict the outcome of competition, as resource 115 

consumption by the population can cause equilibrium resource levels to cross the ZNGI of one 

species, leading to exclusion by the other (Fig 2b). At the boundary of these regions, invasion of 

a one species by the other becomes possible. Coexistence can be achieved when these invasion 

boundaries are arranged such that either species can invade the other; in this region consumption 

brings equilibrium resource concentrations towards the intersection of the ZNGIs (Fig. 2b). In a 120 

competition between two species, a U-shaped DDR can be generated if this coexistence region 

disappears at intermediate disturbance intensities. We propose that this is possible if the ZNGIs 

and invasion boundaries flip as disturbance intensity increases, such that at some intermediate 

intensity the invasion boundaries align and the coexistence region disappears (Fig. 2c). We term 

this behavior “niche-flip”. Under niche-flip, the winner of competition changes as disturbance 125 

intensity varies, concomitantly with resource availability. 
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Fig. 2. A U-shaped Diversity Disturbance Relationship can emerge from a consumer 
resource model if species undergo niche-flip as disturbance increases. (a) Schematic of a 
2-species / 2-resource system showing how a U-shaped DDR could emerge. At low and high 
disturbance intensities, species must coexist, but at an intermediate level, one species excludes 
the other. (b) The survival of a species in a consumer resource model depends on the supplied 
resource levels and the mortality rate (i.e. disturbance intensity). A Zero Net Growth Isocline 
(ZNGI) may be defined for a species at each disturbance intensity, delineating the range of 
resource supply levels where growth can meet or exceed the mortality rate. Invasion boundaries 
indicate regions where one species can increase in density in the presence of the other, defining 
the region of coexistence (maroon). (c) In a Type II consumer resource simulation with 2-species 
/ 2-resources, both ZNGIs and resource consumption vectors (defined as consumption by each 
species at the ZNGI intersection) flip in response to increasing disturbance intensity. At 
intermediate disturbance, invasion boundaries align and the coexistence region collapses, 
reducing diversity relative to low/high disturbance intensities. The outcome of competition at the 
indicated resource supply point (black) is indicated at the top of each plot. (d) Left: Monod 
consumer resource model for growth of species i with additive non-linear growth on each 
resource. Right: Shannon diversity of randomly generated 10-species communities, after six days 
of simulated growth on seven resources at varying dilution rates. For each model, mean diversity 
was computed for 100 randomly initialized communities, across each mean dilution rate, 50 of 
which are shown as individual traces (Methods). 

 
 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 30, 2020. ; https://doi.org/10.1101/2020.07.28.225987doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.28.225987


To look for conditions where niche flip emerges, we conducted simulations using Monod 

growth kinetics39, a commonly used model for microbial growth with Type II functional 

response. Here, growth scales with the concentration of resource, but saturates to a maximal 130 

growth rate r according to a half-saturation constant K (Fig 2d and Supplementary Discussion 1). 

Accordingly, a species with high maximum growth rate r may be outcompeted at low resource 

levels by a species with a low saturation constant K, such that the outcome of competition varies 

depending on nutrient levels (and thus dilution rate δ) (Supplementary Fig. 12). Theoretical 

analysis of the Monod model with two species and two resources yields ZNGIs and invasion 135 

boundaries that undergo niche-flip as dilution rate increases (Fig 2c). We simulated sets of 10 

species and 7 resources, with per-capita growth rates composed of a sum across nutrient-specific 

growth rates. Excitingly, we found that the Monod consumer resource model recapitulates the U-

shaped diversity dependence on disturbance intensity that we observed in our chemostat 

experiments (Fig. 2d). In systems of larger numbers of species and resources, niche-flip 140 

exclusion events between pairs of species can co-occur, yielding U-shaped DDRs 

(Supplementary Discussion 2). Notably, neither niche flip nor U-shaped DDRs were observed 

under Lotka-Volterra or linear consumer resource models (Supplementary Discussion 1 and 

Supplementary Figs. 1 and 2). To confirm that Monod growth kinetics are observed for the 

species and media conditions of our experiments, we measured growth of isolates in a plate 145 

reader. We observed saturating growth rates at higher media compositions and observed 

variation in r and K values across resources (Supplementary Fig. 13), consistent with the 

requirements for niche-flip and fluctuation-dependence (Supplementary Discussion 2). Satisfied 

that the Monod model could capture the U-shaped behavior of our microbial communities under 

constant disturbance, we next examined how other DDR shapes could arise under this model.  150 

Both disturbance intensity and fluctuations are hypothesized to play a role in the 

assembly of ecosystems, but how these two disturbance components interact to reshape DDRs is 

unclear. Using our modeling framework, we sought to independently vary these two 

components, simulating a two-dimensional dilution profile. Specifically, we introduced 

fluctuations into the model by permitting δ to vary with time, compressing disturbance into 155 

discrete time windows (Fig. 3a); this was done while keeping the time-averaged δ equal, thereby 

allowing us to vary disturbance intensity and fluctuation independently. The Monod consumer 

resource simulations predict significantly higher diversity in fluctuating conditions comprised of 

one or more dilution events per day, with the lowest-frequency (i.e. largest-fluctuation) regime 

predicted to maintain the most diversity (Fig. 3d). This is consistent with intuition that 160 

fluctuations introduce temporal structure into environments which may create new niches that 

promote diversity. Furthermore, the DDR is reshaped entirely – from U-shaped to largely 

uniform – indicating that community composition in the Monod model is conclusively 

fluctuation-dependent. Notably, neither Lotka-Volterra nor linear consumer resource models 

predict differences in the DDR between fluctuation frequencies (Supplementary Figs. 1 and 2). 165 

The overlap of DDRs of different frequencies indicates that in these models the relevant metric is 

the time-averaged overall intensity, rather than the frequency, of disturbance12,13.  
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Fig. 3. Introducing environmental fluctuations reshapes DDR and increases diversity 
levels in a microbial community. (a) Fluctuations in a disturbance over time cause fluctuations 
in biomass, and can be varied independently of the disturbance intensity. In continuous culture, 
fluctuations are achieved by aggregating dilution into discrete events while keeping mean dilution 
rate constant per day. (b) Schematic of the eVOLVER DDR64 experiment in which disturbance 
components (intensity and fluctuation) are varied independently. Samples of a soil-derived 
bacterial community were continuously cultured for 6 days across 64 eVOLVER bioreactors with 
varying mean dilution rate and dilution frequency. (c) Optical density traces for culture replicates 
in each condition show the dependence of biomass on disturbance. (d) Mean relative abundance 
of bacterial genera from replicate cultures, determined by 16S sequencing. Mean rank 
abundance is denoted by order, taxonomic similarity is denoted by color (see legend). (e) Mean 
Shannon diversity across 100 Monod consumer resource model simulations with varying mean 
dilution rate and dilution frequency show that the dependence of diversity on disturbance is 
fluctuation-dependent. (f) Mean Shannon diversity of Amplicon Sequence Variants from the 
DDR64 experiment vs. mean dilution rate and dilution frequencies. As in the simulations, 
fluctuations increase diversity and eliminate the U-shape. Bars in e and f denote standard error 
of the mean. 
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We returned to experiments to see whether the U-shaped DDR observed in constant 

dilution chemostats is reshaped by fluctuations, as predicted by the Monod model. To 170 

comprehensively test for fluctuation-dependency, we implemented dilution profiles with 1, 4, or 

16 fluctuations per day (alongside the constant dilution conditions) at varying mean dilution rates 

in an eVOLVER experiment comprised of 64 simultaneous cultures (“DDR64 Experiment”) 

(Fig. 3b). As before, we cultivated replicate samples of the soil-derived microbiome in 

eVOLVER for six days, taking samples every 24 hours to quantify composition. The specific 175 

dilution profiles we programmed were reflected in the optical density traces of each culture over 

time, showing differences between conditions but close agreement between replicates (Fig. 3c 

and Supplementary Fig. 11). Based on 16S sequencing21–24, we observed that the genus-level 

composition of the community varied over time and between conditions (Fig. 3d and 

Supplementary Figs. 14 and 15). Culture compositions diverged from the initial composition, 180 

and Principle Coordinate Analysis revealed that constant dilution conditions and 1/day 

fluctuations diverged from each other, indicating a clear fluctuation-dependent effect, with the 

spread modulated by mean dilution rate (Supplementary Fig. 15). Notably, despite starting from 

a diverse community with hundreds of species, we found resulting compositions to be largely 

similar between replicates (Supplementary Figs. 10 and 14).  185 

We calculated Shannon diversity for each timepoint (Supplementary Fig. 16) and found 

that endpoint diversity trends across disturbance intensity and fluctuation frequency are 

qualitatively consistent with the Monod consumer resource model in three ways (Fig. 3e and f, 

and Supplementary Fig. 17). 1) We observed U-shaped diversity curves in regimes of constant 

disturbance and small frequent disturbances, in both experiment and simulations. 2) Larger 190 

fluctuations preserved higher levels of diversity, and 3) larger fluctuations reshaped the 

diversity-disturbance curves towards a more uniform relationship. Our experimental results were 

reproducible from frozen inoculum, as confirmed by a 48-vial experiment designed to examine 

washout at extreme dilution rates (up to 1.5 h-1) (Supplementary Discussion 3, and 

Supplementary Figs. 9, 11, 14, 16, and 17). Though other measurables varied across the 195 

disturbance parameter space (e.g. biofilm, DNA content), they do not explain the differences in 

diversity as clearly as the Monod consumer resource model does (Supplementary Discussion 3, 

and Supplementary Figs. 18-20). We found it striking that the model captures the features of our 

results so well while being relatively simple and non-parameterized.  

We set out to develop a conceptual framework that not only captures our results, but also 200 

provides mechanistic intuition about how the characteristics of disturbance, such as frequency, 

can produce and reshape DDRs more generally. In this case, we demonstrated how a U-shaped 

DDR emerging under constantly-applied disturbance was reshaped to a more neutral relationship 

by the addition of fluctuations. This framework further identified a niche-flip mechanism as a 

dominant factor in community assembly under constantly applied disturbance. We next 205 

wondered whether this simple model could produce other classes of DDRs observed in nature3, 

as a path towards identifying the organizational mechanisms in other ecosystems. To explore a 

wider range of behaviors, we extended the range of simulations to include extreme disturbance 

intensities that eventually lead to community extinction, and prevented artificial extinction of all 

species simultaneously by introducing noise into the normalization of growth rates. As depicted 210 

in a contour plot (Fig 4), we again found that fluctuations reshaped the DDRs to produce 

complex diversity landscapes. These simulations revealed that a diverse repertoire of DDRs can 

emerge from the combination of these two disturbance characteristics (intensity and 

fluctuations). By exploring subsets of this parameter space, we observed every major class of 
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DDR: positive, negative, neutral, peaked, and U-shaped (Fig 4). By simply examining these two 215 

disturbance characteristics in a systematic way, we developed a unifying framework that can 

reconcile disparate DDR observations without invoking more complex phenomena.   

 

In this work, advances in automated continuous culture technology and next-generation 

sequencing enabled laboratory microbial ecology studies to systematically dissect the role of 220 

environmental disturbance (intensity and fluctuation) with fine resolution at scale. We found 

replicable patterns in composition and diversity of a soil-derived microbial community across 

different disturbance regimes. Notably, we observed an unexpected U-shaped DDR under 

constant disturbance, and found that adding fluctuations increased community diversity and 

reshaped the DDR. All of these results are well captured by the Monod consumer resource 225 

model, which subsequently led us to describe and propose a novel niche-flip mechanism for 

structuring these ecosystems. Taken together, these experimental and modeling results 1) provide 

new insight into how community assembly depends on environmental conditions and 2) 

demonstrate a role for environmental fluctuations in promoting diversity. Examining the 

behavior of the Monod model over a broad range of disturbance intensities and fluctuations, we 230 

 

Fig. 4. Distinct classes of Diversity-Disturbance Relationships emerge when traversing 
different regions of disturbance (intensity vs. fluctuation) space. A simple Monod 
consumer resource model maps a phase diagram for community diversity by varying distinct 
characteristics of environmental disturbance (intensity and fluctuation). Diversity varies non-
linearly with disturbance intensity under different levels of fluctuation for Type II consumer 
resource models. Contour plot depicts Shannon diversity results for a Monod consumer 
resource model simulation as an illustrative example. When varying disturbance intensity at a 
fixed fluctuation level along the indicated arrows, different DDR classes emerge, as shown in 
smoothed plots on the right.  
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see that diverse classes of DDRs (including increasing, decreasing, and peaked DDRs) could 

emerge when only subsets of the parameter space are sampled (Fig 4). Understanding how 

disturbance intensity and fluctuations interact is essential for reconciling disparate observations 

of DDRs under a single unifying framework3,5,6,11. 

 With further study and evaluation of underlying assumptions, the findings of this work 235 

may be extended to other systems. Though our experimental results were reproducible 

(Supplementary Figs. 14, 16 and 17), it remains to be seen whether other species (microbial and 

macroscopic) and disturbance types (including asymmetric disturbances like toxins or heat 

shock) behave similarly. The generalizability of the niche-flip mechanism can be evaluated by 

reexamining the underlying assumptions and formulations of the Monod growth model 240 

(Supplementary Discussions 1 and 2). Importantly, we have found that the U-shape is robust to 

several alternative normalizations and parameter ranges (Supplementary Figs. 3 and 5-8) and 

non-additive formulations of Monod growth on mixed substrates40 (Supplementary Fig. 4). We 

also found that addition of asymmetric disturbance or introducing migration rates do not 

qualitatively change our results (Supplementary Fig. 4). Furthermore, the growth saturation 245 

feature of the Monod model that enables niche-flip is also characteristic of Type II & III 

functional responses used in consumer resource models across different scales of ecology. It 

remains to be seen whether niche-flip mechanisms could arise from non-resource-based models. 

It is plausible that similar growth tradeoffs arising in response to other disturbance-correlated 

features could lead to loss of coexistence at intermediate disturbance intensities. Therefore, niche 250 

flip could be a more general principle extending beyond relative growth non-linearities explored 

in this work to systems driven by dynamic abiotic stresses and/or storage effects41–44.   

 Broadly, our results highlight that the structure of ecosystems and their response to 

perturbation is contextual. We demonstrated that increasing the disturbance intensity can 

increase, decrease, or have no effect on the diversity of a system. Critically however, we found 255 

that under a unifying framework that considers both disturbance intensity and fluctuation these 

relationships become predictable rather than idiosyncratic5,6. Intriguingly, these complex 

ecosystem assembly rules can emerge from temporal structure alone, without invoking other 

organizing principles, such as spatial structure45 or network structure (e.g. cross-feeding and 

antagonism)46,47. If predictable response to perturbation depends on context, then designing 260 

predictable interventions to ecosystems (in medicine, agriculture, and conservation) will require 

the ability to measure and understand the environmental context. With the staggering amount of 

compositional data being generated with high throughput sequencing48, inference of 

environmental context and design of robust ecological interventions may not be far off. 

 265 

Methods:  

Preparing Inoculum 

2g of dirt from the Communications Lawn of Boston University (collected on 09/15/2018) 

was vortexed in 10 mL PBS + 200 ug/mL cycloheximide, then incubated in the dark at room 

temperature for 48 h. For pre-enrichment, 16 eVOLVER vials were prepared with 25 mL of 0.1X 270 

Nutrient Broth (NB) media (0.3 g/L yeast extract + 0.5 g/L peptone (Fisherbrand)) with 200 

ug/mL cycloheximide, inoculated with 350 uL of PBS immersion, and grown for 18 h in 

eVOLVER at 25˚C. All 16 pre-enrichment cultures were mixed together to form the experiment 

inoculum. Aliquots in 15% glycerol were stored frozen at -80˚C. 

 275 
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Running eVOLVER Experiments 

eVOLVER lines were sterilized using 10% bleach and ethanol36,49, then autoclaved vials 

were loaded with 23 mL of 0.1X NB. Each vial was inoculated with 1 mL of inoculum, and 

grown for 5 h at 25˚C with stirring prior to the first dilution disturbance. eVOLVER was 

operated in chemostat mode with 0.5 mL bolus size, with dilutions either evenly distributed over 280 

time (constant disturbance) or concentrated in fluctuation periods lasting 15 minutes. For these 

cultures, the flow rate during a fluctuation 𝛿𝑓 depended on the number of fluctuations per day 𝑓 

and mean dilution rate 𝛿 according to the following equation: 𝛿𝑓 = (24 ∗ 𝛿)/(0.25 ∗ 𝑓) At the 

end of each experiment, vials were flushed with media, and 10 optical density measurements 

were taken in eVOLVER to measure the biofilm levels.  285 

Bottles and lines were routinely checked for contamination. This occurred to only a single 

vial of the experiment, which was excluded from statistical analysis. For the follow-up washout 

experiment, the glycerol stock inoculum was thawed at room temperature, 1 mL was inoculated 

into each vial, then the cultures were allowed to grow for 5.7 h prior to initiating disturbances. 

For the washout experiment, a software bug caused a few incorrectly executed dilution events; 290 

these vials were excluded from statistical analysis. Code required to execute these experiments 

will be available on Github (github.com/khalillab). 

 

Sampling Cultures 

At each timepoint, a 2 mL culture aliquot was removed from each vial with an extended 295 

length pipette tip.  

For plating, 20 uL of the sample was used for a 10-fold serial dilution series, and 100 uL of 

diluted cultures at three concentrations were plated on 18 mL Nutrient Broth Agar plates (3 g/L 

yeast extract, 5 g/L peptone, 15 g/L agar (Fisherbrand)), which were grown at room temperature 

for 48-60 h, then imaged on an on an Epsom Perfection 550 scanner. Image analysis was 300 

performed with the aid of Cellprofiler 3.1.850 and Cellprofiler Analyst 2.2.1 Classifier51 tools.  

For DNA extraction, the remainder of the sample was pelleted and frozen at -20˚C. 60-72 h 

after freezing, pellets were lysed at 37˚C for 1 h in 200 uL of lysozyme buffer (25mM Tris HCl 

pH 8.0, 2.5mM EDTA, 1% Triton X-100 with 20 mg/mL lysozyme (Fisher), prepared fresh 

daily). Lysates were processed using DNEasy Blood and Tissue Kit according to manufacturer 305 

specifications, eluted into 10 mM Tris buffer, and normalized to 5 ng/uL DNA based on 

measurements in a Qubit fluorometer.   

 

Library Preparation and Sequencing 

Briefly, we performed amplicon sequencing of the 16S v4 region based on established 310 

protocols21. Primers prCM543 (TCGTCGGCAGCGTCAGATGTGTATAAGAGAC-

AGGTGYCAGCMGCCGCGGTAA) and prCM544 (GTCTCGTGGGCTCGGAGATGTG-

TATAAGAGACAGGGACTACNVGGGTWTCTAAT), adapted from EMP515F52 and 

EMP806R53 were used to isolate a 290 bp 16S v4 region, using Kapa Hifi ReadyMix polymerase 

and the following cycling conditions: (i) denaturation: 95°C for 5 min; (ii) amplification (25 315 

cycles): 98°C for 20 s, 55°C for 15 s, 72°C for 1m ; (iii) elongation: 72°C for 5 min. For the 

negative control and biofilm samples, the number of cycles was increased to 35 to amplify from 

low biomass. Illumina NexteraXT primers (or equivalents) were used to form a final library 427 

bp in length, with the following conditions: (i) denaturation: 95°C for 5 min; (ii) amplification (8 

cycles): 98°C for 20 s, 55°C for 15 s, 72°C for 1m ; (iii) elongation: 72°C for 10 min. DNA was 320 

purified with AMPure XP beads or SequalPrep plates, then samples were multiplexed in groups 
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of 192 alongside control samples at a higher fraction, and spiked with PhiX or whole genome 

DNA libraries to a final concentration of 50% to increase sequence diversity. Library pools were 

sequenced at the Harvard Biopolymers Facility across five 250 bp paired end MiSeq v2 runs. 

 325 

Sequencing Analysis 

Samples were demultiplexed using the Illumina BaseSpace demultiplexer analysis tool. All 

subsequent bioinformatic analysis was performed in QIIME2 v2020.222. Demultiplexed samples 

were dereplicated using DADA2 sample inference to tabulate Amplicon Sequencing Variants 

(ASVs)23. Next, for qualitative description of composition, taxonomy (to the genus level) was 330 

assigned to each feature by alignment to the SILVA 132 database54 using the taxa-barplot plugin. 

For quantitative analysis, samples with technical issues (e.g. contamination, low biomass, poor 

sequence quality, etc.) were removed and the remaining 698 samples were rarefied to 6840 

reads. The fragment-insertion plugin was used to generate a rooted phylogenetic tree using the 

SEPP algorithm24. The diversity plugin was used to calculate Shannon diversity, ASV richness, 335 

and weighted UniFrac distance55, which was used to perform Principle Coordinate Analysis 

(PCoA). 
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