Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Straightforward and reproducible analysis of bacterial pangenomes using Pagoo

View ORCID ProfileIgnacio Ferrés, View ORCID ProfileGregorio Iraola
doi: https://doi.org/10.1101/2020.07.29.226951
Ignacio Ferrés
1Microbial Genomics Laboratory, Institut Pasteur Montevideo, Montevideo, Uruguay
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Ignacio Ferrés
  • For correspondence: giraola@pasteur.edu.uy iferres@pasteur.edu.uy
Gregorio Iraola
1Microbial Genomics Laboratory, Institut Pasteur Montevideo, Montevideo, Uruguay
2Center for Integrative Biology, Universidad Mayor, Santiago de Chile, Chile
3Wellcome Sanger Institute, Hinxton, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Gregorio Iraola
  • For correspondence: giraola@pasteur.edu.uy iferres@pasteur.edu.uy
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

Abstract

Pangenome analysis is fundamental to explore evolutionary processes occurring in bacterial populations. However, the lack of standardized methods for handling diverse pangenomic datasets and complex metadata hinders more straightforward and reproducible downstream analyses. To fill this gap, we introduce Pagoo, a new framework that integrates pangenome data, analytical methods and visualization tools in a single object that can be easily stored, shared and responsively queried for improved biological interpretation of bacterial evolution.

Competing Interest Statement

The authors have declared no competing interest.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.
Back to top
PreviousNext
Posted July 30, 2020.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Straightforward and reproducible analysis of bacterial pangenomes using Pagoo
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Straightforward and reproducible analysis of bacterial pangenomes using Pagoo
Ignacio Ferrés, Gregorio Iraola
bioRxiv 2020.07.29.226951; doi: https://doi.org/10.1101/2020.07.29.226951
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Straightforward and reproducible analysis of bacterial pangenomes using Pagoo
Ignacio Ferrés, Gregorio Iraola
bioRxiv 2020.07.29.226951; doi: https://doi.org/10.1101/2020.07.29.226951

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Bioinformatics
Subject Areas
All Articles
  • Animal Behavior and Cognition (5108)
  • Biochemistry (11465)
  • Bioengineering (8540)
  • Bioinformatics (28657)
  • Biophysics (14695)
  • Cancer Biology (11824)
  • Cell Biology (17023)
  • Clinical Trials (138)
  • Developmental Biology (9259)
  • Ecology (13943)
  • Epidemiology (2067)
  • Evolutionary Biology (18034)
  • Genetics (12080)
  • Genomics (16518)
  • Immunology (11617)
  • Microbiology (27472)
  • Molecular Biology (11284)
  • Neuroscience (59674)
  • Paleontology (445)
  • Pathology (1839)
  • Pharmacology and Toxicology (3165)
  • Physiology (4841)
  • Plant Biology (10195)
  • Scientific Communication and Education (1662)
  • Synthetic Biology (2824)
  • Systems Biology (7257)
  • Zoology (1600)