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ABSTRACT

Motivation: The negative binomial distribution is a good model for counts data from both bulk
and single-cell RNA-sequencing (RNA-seq). Gaussian process (GP) regression provides a useful
non-parametric approach for modeling temporal or spatial changes in gene expression. However,
currently available GP regression methods that implement negative binomial likelihood models do
not scale to the increasingly large datasets being produced by single-cell and spatial transcriptomics.
Results: The GPcounts package implements GP regression methods for modelling counts data using
negative binomial likelihood functions. Computational efficiency is achieved through the use of
variational Bayesian inference. The GP function models changes in the mean of the negative binomial
likelihood through a logarithmic link function and the dispersion parameter is fitted by maximum
likelihood. We also provide the option of modelling additional dropout using a zero-inflated negative
binomial likelihood. We validate the method on simulated time course data, showing that it is better
able to identify changes in over-dispersed counts data than methods based on Gaussian or Poisson
likelihoods. To demonstrate temporal inference, we apply GPcounts to single-cell RNA-seq datasets
after pseudotime and branching inference. To demonstrate spatial inference, we apply GPcounts to
data from the mouse olfactory bulb to identify spatially variable genes and compare to a published
GP method with a Gaussian likelihood function. Our results show that GPcounts can be used to
model temporal and spatial counts data in cases where simpler Gaussian and Poisson likelihoods are
unrealistic.
Availability: GPcounts is implemented using the GPflow library in Python and is available at
https://github.com/ManchesterBioinference/GPcounts along with the data, code and notebooks re-
quired to reproduce the results presented here.
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1 Introduction

Biological data are often summarised as counts, e.g. high-throughput sequencing allows us to count the number of
sequence reads aligning to a genomic region of interest, while single molecule fluorescence in-situ hybridization
(smFISH) allows us to count the number of RNA molecules in a cell or within a cellular compartment. For datasets that
are collected with temporal or spatial resolution, it can be useful to model changes in time or space using a Gaussian
process (GP). GPs provide a flexible framework for non-parametric Bayesian modelling, allowing for non-linear
regression while quantifying the uncertainty associated with the estimated latent function and data measurement process
(Rasmussen and Williams, 2006). GPs are useful methods for analysing gene expression time series data, e.g. to
identify differentially expressed genes, model temporal changes across conditions, cluster genes or model branching
dynamics (Stegle et al., 2010; Kalaitzis and Lawrence, 2011; Äijö et al., 2014; Yang et al., 2016; Ahmed et al., 2019;
Hensman et al., 2013; McDowell et al., 2018; Boukouvalas et al., 2018). GPs have also been applied to spatial gene
expression data as a method to discover spatially varying genes (Svensson et al., 2018; Sun et al., 2020). In many
previous applications of GP regression to counts, the log-transformed counts data are modelled using a Gaussian noise
assumption. Such Gaussian likelihood models do not properly capture the typical characteristics of counts data, in
particular substantial probability mass at zero counts and heteroscedastic noise. Alternative data transformations attempt
to match the mean/variance relationship of counts data (Anscombe, 1948) but cannot model all relevant aspects of
the distribution, e.g. the probability mass at zero. More suitable distributions for modelling counts data include the
negative binomial distribution, which can model over-dispersion beyond a Poisson model, and zero-inflated extensions
that have been developed for single-cell data exhibiting an excess of zero counts (Pierson and Yau, 2015; Risso
et al., 2017). A negative binomial likelihood was implemented for GP regression using Markov chain Monte Carlo
(MCMC) inference (Äijö et al., 2014). However, this approach does not scale to large datasets, e.g. single-cell RNA-seq
(scRNA-seq) data after pseudotime inference or from spatial transcriptomics assays.

Various statistical methods have been proposed for spatially resolved omics data (Svensson et al., 2018; Sun et al., 2020;
Arnol et al., 2019; Edsgärd et al., 2018). The SpatialDE approach uses a GP to model the expression variability of each
gene with a spatial and non-spatial component (Svensson et al., 2018). The latter is modelled as observation noise, while
the former is modelled using a covariance function that depends on the pairwise distance between the cells. The ratio of
these components is used to measure the spatial variability of each gene. A Gaussian likelihood is used for inference and
the raw counts data is transformed using Anscombe’s transformation (Anscombe, 1948) to reduce heteroscedasticity.
Statistical significance is assessed by a likelihood ratio test against a spatially homogeneous model, with p-values
calculated under the assumption of a χ2-distribution. Trendsceek (Edsgärd et al., 2018) assesses spatial expression
of each gene by modelling normalised counts data as a marked point process, where the points represent the spatial
locations and marks represent the expression levels, with a permuted null used to assess significance. SPARK (Sun
et al., 2020) is a recently introduced GP-based method that relies on a variety of spatial kernels and a penalized
quasi-likelihood algorithm. SPARK models counts using a Poisson likelihood function and captures over-dispersion
through a nugget (white noise) term in the underlying GP covariance function.

Here, we introduce an alternative GP regression model (GPcounts) to model temporal or spatial counts data with
negative binomial (NB) or zero-inflated negative binomial (ZINB) likelihoods. GPcounts can be used for a variety of
tasks, e.g. to infer temporal trajectories, identify differentially expressed genes using one-sample or two-sample tests,
infer branching genes from scRNA-seq after pseudotime inference, or to infer spatially varying genes. We use a GP
with a logarithmic link function to model variation in the mean of the counts data distribution across time or space.
As an example, in Figure 1 we show how GPcounts captures the distribution of a short RNA-seq time course dataset
from Leong et al. (2014). In this example we use a two-sample test to determine whether time-series measured under
different conditions have differing trajectories. The GP with Gaussian likelihood fails to model the data distribution
well, leading to a less plausible inferred dynamics and overly broad credible regions. Although the trajectories of the
two samples clearly differ, the Gaussian likelihood model provides a poor fit and the single trajectory model is preferred
in the two-sample test.

Our package is developed using the GPflow library (De G. Matthews et al., 2017) which we have extended to include
the DEtime kernel (Yang et al., 2016) for branching genes and to include NB and ZINB likelihoods with an efficient
variational approximate inference method.

2 Methods

2.1 Gaussian Process Regression

A Gaussian Process (GP) is a stochastic process over real valued functions and defines a probability distribution over
function space (Rasmussen and Williams, 2006). GPs provide a non-linear and non-parametric framework for inference.
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Figure 1: Example of data from a two-sample time course RNA-seq experiment (Leong et al., 2014). With a Negative
Binomial likelihood we are able to identify this differentially expressed gene based on a likelihood ratio statistic. With a
Gaussian noise model we obtain a poor fit and the likelihood ratio does not identify the gene as differentially expressed.

Consider a set of N temporal or spatial locations x = [x1, x2, ..., xN ] associated with observations y = [y1, y2, ..., yN ].
As this is a continuous model, spacings between data points can vary. Each observation yn is modelled as a noisy
observation of the function evaluated at xn, fn = f(xn), through some likelihood function p(yn|fn). The function f is
a latent function sampled from a GP prior and p(yn|fn) models the data distribution at x = xn. The simplest and most
popular choice of likelihood function is i.i.d. Gaussian noise centred at f , in which case y|f ∼ N (f , σ2I), where
f = [f1, f2, ..., fN ] is the GP function evaluated at the times or locations in x. In this work we use likelihood functions
that are more suitable for counts data, which we introduce below.

To indicate that f is drawn from a GP we write,

f ∼ GP(µ, k) . (1)

Here, µ(x) = E[f(x)] is the mean function of the GP. The covariance function k (also known as the kernel function) is
a positive semidefinite function k(x, x̀) = E[f(x)f(x̀)]− E[f(x)]E[f(x̀)] that determines the covariance of f at any
two locations x and x̀. The covariance function describes our beliefs when modelling the function, e.g. whether it is
stationary or non-stationary, rough or smooth etc. A popular choice is the Radial Basis Function (RBF) kernel which
leads to smooth and infinitely differentiable functions, defined as:

k(x, x̀) = σ2
f exp

(
−||x− x̀||

2

2l2

)
(2)

where the hyper-parameters are the lengthscale l, controlling spatial or temporal variability, and the amplitude σ2
f , con-

trolling the marginal variance of the function. The RBF kernel is also known as the squared exponential, exponentiated
quadratic or Gaussian kernel (Rasmussen and Williams, 2006). Below we describe an alternative kernel appropriate for
branching functions.

The kernel hyper-parameters and parameters of the likelihood function can be learned from the data by optimising
the log marginal likelihood function of the GP. The marginal likelihood is given by the probability of the data y after
integrating out the GP function,

p(y) =

∫
p(y|f)N (f |0,K(x,x))df , (3)

3

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 30, 2020. ; https://doi.org/10.1101/2020.07.29.227207doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.29.227207
http://creativecommons.org/licenses/by-nc/4.0/


BINTAYYASH ET AL. - JULY 29, 2020

where we have set the GP prior mean to be zero and K(x,x) is the covariance matrix of the GP function evaluated
at the data locations x. For the special case of a Gaussian likelihood function this integral is tractable but for the
non-Gaussian likelihoods below we use a variational approximation introduced by Opper and Archambeau (2009).

2.2 Negative binomial likelihood

The Negative Binomial (NB) distribution is a popular model for bulk RNA-seq counts data (Robinson and Smyth, 2007;
Love et al., 2014) and has been shown to be suitable for modelling scRNA-seq count data with UMI (unique molecular
identifier) normalisation (Svensson, 2020; Townes et al., 2019). It can be parametrised by a fixed number of failures r
and mean µ:

NB(y;µ, r) =
Γ(y + r)

Γ(y + 1)Γ(r)

(
r

r + µ

)r(
µ

r + µ

)y
, ∀y ∈ N (4)

where Γ is the Gamma function. It is convenient to parametrise the NB distribution by a dispersion parameter α = r−1

which captures excess variance relative to a Poisson distribution, since Var[y] = µ+ αµ2. A logarithmic link function
is used to model the mean of the NB as a transformation of the GP function f(x) = log µ(x).

2.3 Zero-inflated negative binomial likelihood

In some cases the model may benefit from an excess of zeros beyond the NB distribution assumption. For example, the
NB distribution may not adequately model non-UMI scRNA-seq counts data since an excess of zeros may lead to an
overestimate of the dispersion parameter and a biased mean estimate. Even in the case of UMI scRNA-seq data, the
model may benefit from some additional flexibility when fitting data to an inferred pseudotime trajectory.

A zero-inflated distribution can be used to model count data with excessive zeros (Pierson and Yau, 2015; Risso et al.,
2017). These extra zeros are assumed to be generated by a separate process different from the negative binomial process
that generates counts including zeros. The ZINB distribution is parametrised by Ψ (the excess proportion of zeros) and
the NB model parameters:

ZINB(y;µ, α,Ψ) =

{
Ψ + (1−Ψ)NB(y = 0) for y = 0 ,
(1−Ψ)NB(y) for y ≥ 1 .

(5)

We parametrise the probability of dropout Ψ using a Michaelis–Menten (MM) equation relating the probability of
dropout to the mean of the NB distribution used to model the non-dropout data µ = ef(x) (using the same link function
as above for the NB likelihood),

Ψ = 1− ef(x)

KM + ef(x)
(6)

where the Michaelis constant KM is estimated by our model. The MM model was previously found to provide a similar
fit to a logistic function and better fit than using a double exponential function (Andrews and Hemberg, 2016).

2.4 Tests and credible regions

We provide one-sample and two-sample likelihood-ratio statistics in GPcounts to identify differentially expressed
genes. In the one-sample case the null hypothesis assumes there is no difference in gene expression across time or
space (Kalaitzis and Lawrence, 2011; Svensson et al., 2018) and we compute the ratio of the GP model marginal
likelihood versus a constant model likelihood. The models are nested since the constant model is equivalent to the GP
with an infinite lengthscale parameter. In the two-sample case the null hypothesis assumes there is no difference in
gene expression under two different conditions and the alternative hypothesis is that two different GP functions are
required to model each sample (Stegle et al., 2010). Rejecting the null hypothesis in each case indicates that a gene is
differentially expressed. In the two-sample case, we fit three GPs: one for each dataset separately and a shared GP
where the datasets are treated as replicates.

For spatial transcriptomics data we follow the approach of Svensson et al. (2018), with p-values estimated according to
a χ2-distribution and 5% FDR threshold estimated using the approach of Storey and Tibshirani (2003).

To plot [5%-95%] credible regions we draw 100 random samples from the GP at 100 equally spaced times. We
exponentiate each GP sample to set the mean of the count distribution (NB, ZINB and Poisson) and draw counts at each
time. We use the mean and percentiles to plot the predictive distribution with the associated credible regions.
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2.5 Scale normalisation for spatial gene expression data

In some cases there may be confounding variation that will dominate the temporal or spatial trends in the data. For
example, Svensson et al. (2018) point out that there may be spatial patterns in cell size that can lead to almost all
genes being identified as spatially variable. In this case it is necessary to normalise away such confounding variation
in order to model other sources of spatial variation. Svensson et al. (2018) used ordinary least-squares regression of
Anscombe-normalised spatial expression data against logged total counts to remove this confounding variation. We
use NB regression with an identity link function to learn location-specific normalisation factors for spatial counts data.
We subsequently model the data using a modified GP likelihood yi ∼ NB(kiµi, r) for i = 1, . . . , N with µi = ef(xi)

and f ∼ GP(0, k). The multiplicative normalisation factor ki is calculated as ki = βTi for i = 1, . . . , N , where β is
the slope calculated by fitting for each gene a NB regression model with intercept zero and Ti corresponds to the total
counts at the ith spatial location.

2.6 Modelling branching dynamics

In the two-sample time course setting it can also be useful to identify the time at which individual genes begin to follow
different trajectories. This can be useful in bulk time course data in a two-sample testing scenario (Yang et al., 2016)
or for modelling branching dynamics in single-cell data after pseudotime inference (Boukouvalas et al., 2018). We
first define a joint covariance function for two GPs with the same covariance function f ∼ GP(0, k) and g ∼ GP(0, k)
constrained to cross at a branching point xb:(

kff kfg
kgf kgg

)
=

(
k(x,x) k(x,xb)k(x,xb)

>

k(xb,xb)
k(x,xb)k(x,xb)

>

k(xb,xb)
k(x,x)

)
. (7)

Now consider data from two lineages yt and yb representing noise-corrupted measurements of a baseline (trunk) and
diverging (branch) time course respectively. Before the divergence point xb the data are distributed around the trunk
function f(x) according to some likelihood function p(y|f),

yt(xn) ∼ p(y|f(xn)) for xn ≤ xb . (8)

After the branching point xb, the mean function of the trunk continues to follow f while the mean function of the
diverging branch trajectory changes to follow g,

yt(xn) ∼ p(y|f(xn)),

yb(xn) ∼ p(y|g(xn)) for xn ≥ xb. (9)

The branching point xb is a hyper-parameter of the joint covariance function of this model along with the hyper-
parameters of the GP functions (lengthscale l and amplitude σ2

f ). The lengthscale and amplitude are shared by both
functions and are fitted (along with the likelihood model parameters) by fitting two separate GP regression models
to the data from both conditions or lineages and estimated using maximum likelihood (Yang et al., 2016). This
leaves the problem of inferring the branching time xb only. As this is a one-dimensional problem, the posterior
distribution of xb is estimated using a simple histogram approach. We have used a simple discretisation xb ∈
[xmin, xmin + δ, xmin + 2δ, . . . , xmax] as in Yang et al. (2016) and estimate the posterior by using the normalised
likelihood evaluated at each grid point,

p(xb|yt,yb) '
p(yt,yb|xb)∑x=xmax

x=xmin
p(yt,yb|x)

, (10)

which avoids the need for complex optimisation or integration schemes.

2.7 Efficient approximate inference implementation

The integral in Eqn. (3) is intractable for non-Gaussian likelihood functions. Therefore, we need to approximate the
posterior function using variational inference (Opper and Archambeau, 2009; Bauer et al., 2016). Full variational
Bayesian inference is computationally intensive and requires O(N2) memory and O(N3) computation time so we use
a sparse approximation to reduce the computational requirements. In sparse inference, we choose M < N inducing
points z defined in the same space of regressors x. Using inducing points reduces the time complexity to O(NM2)
and reduces the size of the covariance matrix from N ×N to M ×M . In GPcounts the default is to set the number of
inducing points to M = 5%(N) and we apply a k-means clustering algorithm to select the candidate inducing points z.
For very large datasets a smaller number of inducing points may be required.
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2.8 Practical considerations

Practical limitations of the inference framework include local optima in the hyperparameter search and occasional
numerical instabilities. We have therefore incorporated some checks to detect numerical errors such as failure of
Cholesky decomposition or failure of optimization. Local optima are a likely issue if the GP posterior predictive is
consistently higher or lower than the observations. Where we suspect local optima or numerical errors we restart the
optimisation from new random values for the hyper-parameters.

3 Results and discussion

Below we apply GPcounts on simulated counts time course data, real scRNA-seq after pseudotime inference and spatial
transcriptomics data.

3.1 Assessment on synthetic time course data

We simulated four counts time course datasets with two levels of mean expression (high/low) and two levels of dispersion
(high/low) to assess the performance of GPcounts in identifying differentially expressed genes using a one-sample test.
Each dataset has 600 genes with time-series measurements at 11 equally spaced time points x = [0, 0.1, 0.2, . . . 1.0] and
two replicates at each time. Half of the genes are differentially expressed across time. We use two classes of generative
functions f(x), sine functions and cubic splines, to simulate data from time-varying genes. The sine functions are of the
form f(x) = a sin(xb+ d) + c where parameters are drawn from uniform distributions. Specifically, b ∼ U [π/4, 2π],
d ∼ U [0, 2π] while the a and c distributions are chosen to alter the signal amplitude and mean ranges respectively. The
cubic spline function has the form f(x) ∈ C2[0, 1] passing through two control points (x, y) where x and y are drawn
from uniform distributions. For non-differentially expressed genes we choose constant values set to the median value
of each dynamic function in the dataset. The low and high dispersion values are drawn from uniform distributions
αlow ∼ U [0.01, 0.1] and αhigh ∼ U [1, 3] respectively. An exponential inverse-link function is used to determine the
mean of count data at each time µ(x) = ef(x) and we use the SciPy library (Millman and Aivazis, 2011) to sample
counts from the negative binomial distribution. Specific simulation parameters and final datasets are provided with the
supporting code.

In Figure 2 we compare the performance of GPcounts using the NB likelihood with a Poisson likelihood and the Gaussian
likelihood using a simple logarithmic transformation log(y + 1) or using Anscombe’s transformation (Anscombe,
1948) as implemented in SpatialDE (Svensson et al., 2018). We use Receiver Operating Characteristic (ROC) curves to
assess the performance of ranking differentially expressed genes using the LLR against a constant model. For the low
dispersion data both the NB and Gaussian likelihood perform similarly well for low and high expression levels but the
Poisson likelihood does not perform as well in the high expression case. For the high dispersion data the NB likelihood
performs best and is clearly superior to both the Gaussian and Poisson likelihood. Anscombe’s transformation does not
improve the performance of the Gaussian likelihood model and typically makes it worse.

3.2 Modelling scRNA-seq pseudotime-series

We apply GPcounts on mouse pancreatic α cell data from scRNA-seq experiments without UMI normalisation (Qiu
et al., 2017). We use the pseudotime inference results from Qiu et al. (2017) based on PCA. Figure 3 shows the inferred
trajectory for two genes with many zero count measurements: Fam184b with 86% zero counts and Pde1a with 68%
zero counts. From left to right we show the GP regression fit with Gaussian, NB and ZINB likelihoods respectively.
For Fam184b we see that the Gaussian and NB models do not capture most of the non-zero data within their credible
regions. The ZINB model has 21/324 (6.4%) cells above the 95% upper credible region while the NB model has
37/324 (11.4%) suggesting the ZINB model is a little better calibrated. For both genes the Gaussian model is unable to
effectively model the high probability region at zero counts, due to the symmetric nature of the distribution. The fits for
the NB and ZINB likelihood are very similar for Pde1a with only a subtle difference in the credible regions (4% of cells
above 95%) and we find that ZINB and NB give similar fits for most genes.

Qiu et al. (2017) identify 611 differentially expressed genes in mouse pancreatic α cells using DESeq2 (Love et al.,
2014) which they applied to two distinctive clusters of cells along the above pseudotime dimension. Since DESeq2
also assumes an NB model we examined whether the results from GPcounts would be closer to DESeq2 than to a
Gaussian GP model. We ran DESeq2 with time as a covariate and used the adjusted p-values as a score to label
differentially expressed genes. We then compared the performance of one-sample tests using the NB likelihood and
Gaussian likelihood. We consider different adjusted p-value thresholds to identify DE genes according to DESeq2 and
look at the concordance with using a GP with NB and Gaussian likelihoods. Figure 4 shows precision–recall curves to
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Figure 2: ROC curves for a one-sample test using a Gaussian process to identify dynamic time-series from synthetic
counts data. Negative binomial, Gaussian and Poisson likelihoods are used to identify differentially expressed genes
with a one-sample test. Genes are ranked by likelihood ratio between a dynamic and constant model. Results are shown
for (a) low counts/low dispersion (b) low counts/high dispersion (c) high counts/low dispersion and (d) high counts/high
dispersion datasets.
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Figure 3: GP models of gene expression against pseudotime (Qiu et al., 2017). We show two genes with a large number
of zero-counts: Fam184b with 86% zeros in the first row and Pde1a with 68% zeros in the second row. We show the
inferred mean trajectory and credible regions using (a) Gaussian likelihood, (b) NB likelihood and (c) ZINB likelihood.
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Figure 4: Precision-recall curves for GPcounts one-sample test with (a) Gaussian likelihood and (b) NB likelihood
assuming ground truth from DESeq2 with different adjusted p-value thresholds. Mouse pancreatic α-cell scRNA-seq
data from Qiu et al. (2017).
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Figure 5: Spearman correlation scores for different percentages of the mouse pancreatic α-cell scRNA-seq data (Qiu
et al., 2017) ranked by DESeq2 adjusted p-value in (a) and (b) and by NB GP LLR in (c). We show (a) Gaussian
likelihood GP versus DESeq2, (b) NB likelihood GP versus DESeq2 and (c) Gaussian likelihood GP versus NB
likelihood GP.

explore how similarly GPcounts performs compared to DESeq2. We see that with the NB likelihood the genes obtained
are very similar to those found by DESeq2. With a Gaussian likelihood the GP identifies very similar genes among its
top-ranked DE genes but has much less concordance further down the list. This result is also reflected in the higher rank
correlation between the DESeq and NB likelihood GP results than with the Gaussian likelihood GP (Figure 5). This
suggests that the test statistic is more influenced by the form of likelihood term rather than the form of regression model
in this example.

For scRNA-seq data the number of cells can be very large and computational efficiency becomes important. We
have checked that the above results are very similar when using the sparse inference approximation (see notebook
accompanying the package) with computation time reduced by 60% with the NB and ZINB likelihoods.

3.3 Identification of spatially variable genes

We applied GPcounts to spatial transcriptomics sequencing counts data from mouse olfactory bulb (Ståhl et al., 2016)
consisting of measurements of 16 218 genes at 262 spatial locations. We compare performance to SpatialDE which
uses a GP with a Gaussian likelihood (Svensson et al., 2018) and we use as similar a set-up as possible in order to make
the comparison fair. We filter out genes with less than 3 total counts and spatial locations with less than 10 total counts
and ended up with 14 859 genes across 260 spatial locations. To assess statistical significance we used the q-value
method (Storey and Tibshirani, 2003) to determine an FDR cut-off (0.05) based on p-values assuming a χ2-distribution
of log likelihood ratios. We compare our findings in figure 6(a), where GPcounts identified 468 spatially variable (SV)
genes in total, whilst SpatialDE identified 67, with 62 of them overlapping between the two methods. The SPARK
and Trendsceek methods, which consider calibrated p-values under a permuted null, identified 772 and 0 SV genes
respectively (Sun et al., 2020). In figure 6(b) we plot the GPcounts log likelihood ratio versus SpatialDE log likelihood
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Prokr2

Gna14

4933405L10Rik

Olfr635

Taf7l

(a)

(b)

(c)
(d)

Figure 6: (a) Venn diagram shows the overlap between GPcounts and SpatialDE spatially variable (SV) genes with the
green area showing the 5 SV genes that are only identified by SpatialDE. (b) GPcounts Log likelihood ratio versus
SpatialDE Log Likelihood ratio. The dashed horizontal and vertical lines correspond to 5% FDR threshold. (c) Relative
spatially resolved expression profiles for four selected SV genes, with their q-value in the parenthesis. (d) In-situ
hybridization images of the selected SV genes in (c). The images are taken from Ståhl et al. (2016).

ratio, showing in quadrants the genes that are identified as SV by each method. The annotated red genes were only
identified by SpatialDE as significant. However, these genes were all extremely low expressed with three having the
minimum number of counts (3) after filtering and two of those having expression in only one location. Four of these
(Taf7l,Gna14,Olfr635 and 4933405L10Rik) are not identified by SPARK either. Relative expression profiles of four
selected genes detected by GPcounts as SV are illustrated in (6B) with their q-values. Their spatial patterns match the
associated profiles obtained with in-situ hybridization in the Allen Brain Atlas (figure 6(d)). The results suggest that
the NB likelihood can identify about seven times more SV genes than the Gaussian likelihood at similar FDR control,
emphasising again the gains from adopting a NB likelihood.

3.4 Identifying gene-specific branching locations

We used scRNA-seq of haematopoietic stem cells (HSCs) from mouse (Paul et al., 2015) to demonstrate the method’s
effectiveness in identifying branching locations for individual genes. The data contain cells that are differentiated
into myeloid and erythroid precursor cell types. Paul et al. (2015) analysed changes in gene expression for myeloid
progenitors and created a reference compendium of marker genes related to the development of erythrocytes and
several other types of leukocytes from myeloid progenitors. The Slingshot algorithm is used to get trajectory-specific
pseudotimes as well as assignment of cells to different branches. After removing two small outlier cell clusters related
to the dendritic and eosinophyl cell types, Slingshot infers two lineages for this dataset. These two outlier cell clusters
do not belong to any particular lineage and have previously been excluded from trajectory inference and downstream
analysis (Van den Berge et al., 2019), which leaves us 2660 cells under consideration.

Figure 7 shows examples of GPcounts model fits with associated credible regions (upper sub-panels) as well as the
posterior probability distribution over branching time (bottom sub-panels) for an early branching known bio-marker
MPO (upper row) and for a late branching gene LY6E (bottom row). Here, we have sub-sampled the data and larger
markers in Figure 7 represent the cells used in the inference process. Figure 7 (a) and (c) show the results with a
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Gaussian likelihood, equivalent to the model in Yang et al. (2016), while Figure 7 (b) and (d) show the results with
the NB likelihood. In all cases, the bottom sub-panels reflect the significant amount of uncertainty associated with
the identification of precise branching points. Both models provide a reasonably similar posterior probability of the
branching time. However, looking at the credible region of the data we find that the model with NB likelihood better
models the data. In the case of the Gaussian likelihood the credible regions are wide but they still miss some points that
have zero values. In the case of NB likelihood the credible regions can adequately model the points having zero values.
Further example fits are shown in the accompanying notebook.
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Figure 7: Mouse haematopoietic stem cells (Paul et al., 2015): Identifying the gene-specific branching location for an
early branching gene MPO (a and b) and a later branching gene LY6E (c and d). Cell assignments and pseudotime
are estimated using the Slingshot algorithm. The upper sub-panels shows the GP regression fit based on the MAP
estimate of the gene-specific differentiating time and the bottom sub-panels shows the posterior distribution over the
differentiating or branching times. Bigger markers used in the upper sub-panels indicate the sub-sampled cells used in
the inference. Results on the left are for the Gaussian likelihood fit (a,c) and on the right for the NB likelihood fit (b,d).

4 Conclusion

We have developed a Gaussian process (GP) regression method, GPcounts, implementing negative binomial (NB) and
zero-inflated negative binomial (ZINB) likelihoods. This provides a useful tool for bulk and single-cell RNA-seq data
in time-series and spatial transcriptomics experiments. Although the ZINB likelihood may be more suitable in some
cases, especially for non-UMI normalised scRNA-seq data, in practice the differences are relatively minor even when
the number of zeros is very high for a gene. For most practical purposes we have therefore applied the simpler NB
likelihood. This is in line with a recent study showing that although zero-inflation certainly exists in scRNA-seq data,
there may be little benefit in modelling it since the additional zero-inflation parameter can be difficult to identify (Choi
et al., 2020).
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Our results show that the NB likelihood can provide a substantial improvement over a Gaussian likelihood when
modelling counts data. In the data from Qiu et al. (2017) we found that the NB GP identifies DE gene lists more similar
to DESeq2 than to a Gaussian GP. This suggests that the likelihood function plays a more important role than the
regression model in some problems. Similarly, we found a major difference in spatial inference using the NB likelihood
compared to the SpatialDE method that is based on a Gaussian likelihood GP. Using a similar normalisation and testing
set-up, we found a much larger set of spatially variable (SV) genes than SpatialDE. However, we found less genes than
the over-dispersed Poisson method, SPARK, which also uses GP inference but with differences in both the modelling
and testing set-up. In particular, SPARK uses a permutation approach to compute p-values and therefore the number of
SV genes is not directly comparable with our approach. It will be useful to consider alternative testing set-ups and a
broader range of spatial inference problems in order to compare these approaches more carefully. Finally, we applied a
branching kernel on a Mouse bone marrow scRNA-seq dataset (Paul et al., 2015) to infer the initial point when the
two gene expression time profiles begin to diverge. For genes with strong branching evidence the NB and Gaussian
likelihood provided similar inference results.

To improve the practical performance of GPcounts we implement a heuristic to detect locally optimal solutions and
to detect numerical instability. Since the naive GP scales cubically with number of time points we improve the
computational requirements through a sparse inference algorithm from the GPflow library (De G. Matthews et al.,
2017). Our implementation of GPcounts is flexible and can easily be extended to work with any kernel or likelihood
compatible with the GPflow library. A natural next step would be to better parellelise model fitting for each gene.
Improving the null models to produce better calibrated p-values could also improve FDR calibration in DE and SE
calling.
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