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Abstract 

Cells sense, manipulate and respond to their mechanical microenvironment in a plethora of 

physiological processes, yet the understanding of how cells transmit, receive and interpret 

environmental cues to communicate with distant cells is severely limited due to lack of tools to 

quantitatively infer the complex tangle of dynamic cell-cell interactions in complicated 

environments. We present a computational method to systematically infer and quantify long-

range cell-cell force transmission through the extracellular matrix (cell-ECM-cell 

communication) by correlating ECM remodeling fluctuations in between communicating cells 

and demonstrating that these fluctuations contain sufficient information to define unique 

signatures that robustly distinguish between different pairs of communicating cells. We 

demonstrate our method with finite element simulations and live 3D imaging of fibroblasts and 

cancer cells embedded in fibrin gels. While previous studies relied on the formation of a visible 

fibrous ‘band’ extending between cells to inform on mechanical communication, our method 

detected mechanical propagation even in cases where visible bands never formed. We revealed 

that while contractility is required, band formation is not necessary, for cell-ECM-cell 

communication, and that mechanical signals propagate from one cell to another even upon 

massive reduction in their contractility. Our method sets the stage to measure the fundamental 

aspects of intercellular long-range mechanical communication in physiological contexts and may 

provide a new functional readout for high content 3D image-based screening. The ability to infer 

cell-ECM-cell communication using standard confocal microscopy holds the promise for wide 

use and democratizing the method. 
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Introduction 

Many types of cells apply considerable traction forces on their surrounding matrix leading to 

ECM deformations that can propagate to large distances of tens of cell diameters away 1-14. 

These deformations, once strong enough, can form a visible fibrous band of aligned and dense 

fibers coupling neighboring cells mechanically, and influencing the cells’ internal molecular 

state 15 and active response 16. This form of long-range cell-cell force transmission through the 

ECM (termed here cell-ECM-cell communication) was shown to coordinate various biological 

processes, including tissue injury 16, fibrosis 17, vascular assembly, capillary sprouting 1, 14, 18, 

tissue folding 19, and cancer invasion and metastasis 5, 9. In-vivo, fiber alignment bands can serve 

as ECM ‘tracks’ for cell migration with potential roles in wound healing, cancer metastasis and 

fibrosis 20, 21. 

The dictionary definition of communication is “the imparting or exchanging of information” 

(Oxford Languages) or “a process by which information is exchanged between individuals 

through a common system of symbols, signs, or behavior” (Merriam Webster). Measuring the 

transfer of forces through the ECM during cell-ECM-cell communication is challenging and has 

been typically achieved indirectly by measuring changes in the density, alignment or 

displacement of the remodeled fibrous ECM between the cell pairs resulting from the active 

contraction of cells 4, 5, 9-11, 13, 22-26. Most current measurements characterize the structure of the 

fibrous band extending between mechanically coupled cells to inform on cell-cell mechanical 

coupling, while relying on the visibility of a band between cells, formed when cell-generated 

forces are strong enough. Such measurement lacks the sensitivity to measure the dynamic 

reciprocal mechanical information transfer between the cells. Thus, current methods are limited 

in measuring potential cell-ECM-cell communication in the absence of visible bands, hampering 

our ability to distinguish which cells are actually communicating from the many cells that have 

the potential to communicate. Bridging this gap will enable tackling long-standing open 

questions in how tissues develop and diseases progress by enabling us to identify which cells are 

communicating with each other, and to what extent, in complex environments.  

Here, we present a new computational method to quantify the transmitted ECM signal in 

between neighboring cells by correlating temporal fluctuations of the remodeled matrix. 

Computational simulations and 3D live imaging of fibroblasts and cancer cells embedded in 
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fibrin gels demonstrate the power of our method in identifying unique ECM remodeling 

signatures that allow to robustly distinguish between different pairs of communicating cells. 

Using this method, we were able to measure communication between cell pairs that do not form 

a visible ‘band’ of densified ECM, and after partial depletion of contractility upon Myosin-II 

inhibition. These results imply that mechanical signals propagate from one cell to another even 

in low cell contractility levels. 
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Results 

Analysis of ECM density between pairs of communicating cells using finite 

element simulations  

During cell-cell mechanical communication, every localized fibrous region in between the 

neighboring cells is affected by two components: the contractile force of the adjacent cell 

(referred as ‘cell-ECM’ interaction), and the force transmitted from the second distant cell 

(referred as ‘cell-ECM-cell’ communication) (Fig. 1A). To quantitatively characterize the 

independent contribution of each of these two components, we simulated contracting cells 

embedded within 2D fibrous networks using finite element discrete modeling, quantified the 

change in the ECM density between neighboring pairs and compared it to single cells interacting 

with the ECM. While these simulations do not reflect the true complexity of biological systems, 

they capture the essence of the mechanical elements of cell contractility and force propagation in 

fibrous nonlinear elastic networks (Methods). Thus, these simulations serve as a minimal 

mechanical model that enables us to independently tune mechanical parameters (e.g., cell-cell 

distance and cell contractility), and quantitatively infer their effect on ECM remodeling. These 

simulations will be used to ask whether ECM remodeling can robustly encode unique ECM 

signature in communicating cell pairs, forming the basis for our method. 

To enable quantitative comparison between simulations, we normalized the fiber density to its z-

score - the number of standard deviations away from the mean background fiber density at 

regions that were not influenced by the cells (Methods). In simulations of single contractile cells, 

we found that the regions next to the cell’s boundary became denser following the application of 

50% cell contraction (Fig. 1B). Upon the presence of a second cell, the overall densification was 

governed by the integrated contractile activity of both cells (Fig. 1A). This dual contribution led 

to the formation of a band of increased density along the connecting axis between the cells (Fig. 

1B-C). While for single cells the fiber densification faded to the background level at a 

characteristic distance of approximately 2 cell diameters, the bands between pairs of cells were 

characterized with increased fiber density that extended further away from the cells and were 

increased for cell pairs that were located closer to one another (smaller pair distance, Fig. 1C). 

The increased fiber density between cell pairs in comparison to single cells could potentially be 

used to quantitatively decouple the contribution of the interaction of the cell with the ECM (cell-
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ECM) and the mechanical information transmitted from the communicating partner (cell-ECM-

cell) that together form the visible band between the cells (Fig. 1D). Specifically, we 

hypothesized that the information encoded by the cell-ECM-cell component that is unique to a 

specific communicating cell pair can be used to measure the long-range mechanical 

communication between cells. 

 

Figure 1. Quantifying ECM densification in simulated cell-ECM-cell mechanical communication. (A) 

Fibers in between pairs of cells (red and purple circles) are remodeled by the integrated mechanical forces 

that both cells exert on the ECM. Colored arrows depict the magnitude of the force experienced in a 

specific location in the fibrous gel that are generated by the two cells. (B) Quantitative visualization of 

representative simulated cell-ECM interactions (left) and cell-ECM-cell communication (right) at the 

onset (“begin”) and after (“end”) 50% cell contraction. Color code encodes the ECM density in z-score, 

the number of standard deviations above background levels. Scale bar is one cell diameter. (C) 

Quantifying fiber densification as a function of the distance around simulated single cells (“single cells”) 

and as a function of the distance between cell pairs (“pair distance”). Single cells (N = 7). Pair distance of 

4 (N = 19), 5 (N = 20 pairs), 7 (N = 20 pairs), or 9 (N = 19 pairs) cell diameters. Note that window 

distance is bounded in lower pair distances. Mean and standard deviation are displayed for each distance. 

(D) A dense fibrous “band” between cell pairs is formed by the combined effects of cell-ECM 

interactions and cell-ECM-cell communication.  
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Distinguishing between communicating versus non-communicating simulated 

cell pairs using temporal correlation of local ECM remodeling fluctuations 

Given that local ECM regions located along a band experience forces exerted by both cells and 

the discrepancy between ECM remodeling by a single and a pair of cells (Fig. 1), we 

hypothesized that local ECM remodeling fluctuations contain sufficient information to 

distinguish communicating cells from cells that are not communicating with one another. We 

clarify that by denoting “communicating” cells we refer to two cells that are within pulling 

distance in the same (simulated) ECM network, while “non-communicating” cell pairs are two 

cells that come from different networks (Fig. 2A). To test this hypothesis, we simulated the 

temporal process that led to the final remodeling. We consecutively applied 1% cell contraction 

for 50 steps, reaching 50% cell contraction. For each step, we recorded the fiber density between 

communicating cells. These iterative simulations captured the temporal dynamics of force 

propagation between the cells during cell-ECM-cell communication. As expected, the fiber 

density close to the cells’ edge gradually increased over time (Fig. 2B-C, Video S1).  

We expected that the temporal correlation of ECM remodeling fluctuations, measured in 

quantification windows adjacent to each cell, between communicating cell pairs will exceed that 

of non-communicating cell pairs (Fig. 2A). In simulations of pairs of both communicating and 

non-communicating cells, we found positive correlations throughout the simulation in the fiber 

density dynamics and in its temporal derivative, i.e., change in fiber density over time (Fig. 

S1A). The correlation in fiber density is attributed to the monotonic increase in ECM 

densification between communicating cells (Fig. 2C). The correlation in the temporal derivative 

of fiber density is attributed to an association between fiber density and the change in fiber 

density (Fig. S1B): the ECM became denser over time, leading to increased temporal derivatives. 

However, these general trends lead to high correlations between any two cells regardless of 

whether they communicate with each other, and confound the unique fluctuations that may be 

attributed to a specific pair of communicating cells. To overcome this confounder, we removed 

the temporal trends (detrending) via a second temporal derivative. This analysis pipeline 

transformed the raw simulated local ECM remodeling fluctuations to a correlation-based 

measure for cell-ECM-cell communication (Fig. 2D, full details in Methods).  
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Another confounder was that every simulated cell contracted in the exact same magnitude as any 

other simulated cell leading to nearly exact time-dependent remodeling of the adjacent ECM 

regime and thus masking the unique ECM fluctuation patterns that may exist between 

communicating partners. Thus, our hypothesis was that variability in the cells’ contraction 

activity (an inherent property of cells) will lead to variability in the local ECM remodeling 

around each cell, leading to a unique communication signature between partners. In other words, 

we thought that heterogeneity in ECM remodeling would enable us to decouple the general ECM 

remodeling that occurs between any random pair of cells from the specific signal that is 

transmitted between communicating partners. Indeed, when introducing heterogeneity in 

simulated cell contraction, we distinguished communicating from non-communicating simulated 

cell pairs while maintaining the non-communicating correlations around zero (Fig. 2E). Cell 

heterogeneity was included in the simulations by drawing the instantaneous contraction rate of 

each cell independently from a normal distribution with mean (𝜇) contraction of 1% and a 

standard deviation (𝜎) in the range of 0-0.75% (std.) (Methods). Even a minimal standard 

deviation of 0.25% in cell contraction was sufficient to make a clear distinction between 

communicating and non-communicating cell pairs, which improved with increasing standard 

deviations (Fig. 2E). This distinction was negatively correlated to the pair distance - as cells were 

placed further apart, it became more difficult to distinguish between communicating and non-

communicating cell pairs (Fig. 2F). Moreover, this distinction was improved when moving the 

ECM quantification window along the band, toward the communication partner (increasing the 

window distance), which increased the communication partner’s influence (Fig. S1C). Finally, 

we verified that the correlation signal stems from the contractile activity of the two neighboring 

cells by demonstrating that the correlation of two contracting cell pairs exceeded the correlation 

of pairs of one contractile and a second non-contractile passive cell (Fig. S1D).  

Altogether, these results established the notion that a correlation-based approach can capture 

force transmission between actively contractile cells, that temporal correlation of local ECM 

remodeling fluctuations can distinguish between communicating and non-communicating 

simulated cell pairs, and that contractile heterogeneity is required to make this distinction. 
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Figure 2. Using temporal correlations of ECM remodeling fluctuations to distinguish between 

communicating and non-communicating simulated cell pairs. (A) Schematic sketch of comparing ECM 

remodeling fluctuations of communicating versus non-communicating cell pairs. The correlation between 

quantification windows of communicating pairs (upper in green) is evaluated in relation to the correlation 

between two cells from two different communicating pairs (lower in orange and purple). (B-C) 

Quantitative visualization and quantification of the dynamics of simulated cell-ECM-cell communication. 

(B) Representative simulation visualization at the onset (top), 25% cell contraction (middle), and 50% cell 

contraction (bottom). (C) Quantifying fiber densification as a function of simulated contraction steps in 

between cell pairs. N = 20 cell pairs. Color code (B) and y-axis (C) encode the ECM density in z-score, 

the number of standard deviations above background levels. The variability in fiber density in is a 

consequence of the randomness in the network architecture. The pair distance between simulated cell 

centers was set to 7 cell diameters. (D) Correlation-based pipeline to measure cell-ECM-cell 

communication in simulations. Raw time series refer to measurement of ECM density in the 

quantification window (top), normalization in respect to the mean background fiber density at regions that 

were not influenced by the cells and detrending by second temporal derivative lead to a fluctuating signal 

(bottom) that is correlated to distinguish between pairs of communicating versus non-communicating 

cells (left versus right). (E) Distinguishing between communicating and non-communicating simulated 

cell pairs correlations of the fluctuations of the second derivative of fiber density with different levels of 

contraction heterogeneity. Each data point records the correlation between a simulated communicating 
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cell pair, each box plots record the corresponding distribution of correlations between (the many) pairs of 

non-communicating cells. Mean contraction of 1% and standard deviation (heterogeneity) of 0%, 0.25%, 

0.5%, and 0.75%. Three statistical tests are performed according to the following order. (1) Wilcoxon 

sum-rank testing the null hypothesis that the two correlation distributions of communicating and non-

communicating cell pairs are originating from the same distribution. Wilcoxon sign-rank testing the null 

hypothesis that the correlation distributions of (2) communicating or (3) non-communicating are 

distributed around a mean 0. Std. = 0%: N = 20, p-values: (1) not significant, (2) not significant, (3) not 

significant. Std. = 0.25%: N = 19, p-values: (1) < 0.0001, (2) < 0.001, (3) not significant. Std. = 0.5%: N 

= 19, p-values: (1) < 0.0001, (2) < 0.001, (3) not significant. Std. = 0.75%: N = 20, p-values: (1) < 0.0001, 

(2) < 0.001, (3) not significant. (F) Correlation of communicating versus non-communicating cell pairs 

using the second derivative of fiber density dynamics as a function of the pair distance. Pair distance: 4 

(N = 20 pairs, p-value < 0.0001), 5 (N = 19 pairs, p-value < 0.0001), 7 (N = 19 pairs, p-value < 0.01) and 

9 (N = 19 pairs, p-value < 0.01). 

 

Analysis of 3D ECM density between pairs of communicating fibroblast cells  

To test the simulated results of correlation in ECM remodeling as a marker of mechanical cell-

ECM-cell communication, we used 3D time-lapse confocal microscopy to image live NIH/3T3 

fibroblast cells (GFP-Actin) embedded in 3D fluorescently labeled fibrin gels, where fibrin 

intensity was used as a proxy of fiber density (Methods). Similar to the simulations, we clarify 

that “communicating pairs” are pairs of cells located next to each other in the fibrous gel and 

thus are within a pulling distance, whereas “non-communicating cells” are pairs that are not in 

proximity (beyond 10 cell diameters away, see Methods). To visualize and measure fiber 

intensity in between cell pairs in 3D, we transformed the microscopy axes to a new 3D 

coordinate system that is aligned around the connecting axis between the cells’ centers (Fig. 3A, 

Fig. S2, Video S2, Methods) and performed z-score fiber intensity normalization in respect to 

background quantification windows defined at the onset of the experiment at regions that were 

not influenced by the cells (Methods). While single cells did not show visually apparent fiber 

densification beyond regions close to the cell, approximately 60% of all cell pairs formed a 

visible band of increased density extending along the connecting axis between the cells (Fig. 3B) 

that showed increased mechanical coupling for cells pairs that were closer to one another (Fig. 

3C, Fig. S3). The fiber density close to the cells’ edge gradually increased over time in pairs of 

communicating cells but remained constant in single cells (Fig. 3D, Video S3 versus Video S4). 

The higher fiber intensity at the onset of imaging was attributed to the time (approximately 30 

minutes) that passed from setting up the experiment until the onset of imaging (Fig. 3D, z-score 

of approximately 3 standard deviations above the background intensity). During this time, cells 

have already deformed the fibers around them. These results conclude that the formation of 
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dense fibrous bands between fibroblasts cell pairs embedded in 3D fibrin gels are indicative of a 

mechanical coupling in concurrence with previous studies 5, 9-11. 

 

Figure 3. Quantifying ECM densification during cell-ECM-cell mechanical communication with 3D live 

imaging of communicating fibroblast cells. (A) ECM remodeling dynamics are quantified along the 

connecting axis between the cells: illustration of the top-side view. Microscopy axes (X’, Y’, Z’) marked 

with dashed arrows, transformed visualization and quantification axes (connecting axis, XY, Z) marked 

with solid arrows. The cuboid region in-between the cell pair (brown), has the width of a cell diameter, 

and is used for quantification along the connecting axis. The length of the cuboid region is the pair 

distance. The cuboid left and right sides were parallel to the microscopy axial plane. The Z-axis (cyan) 

and the XY-axis (purple) are perpendicular to each other and to the connecting axis (black). Side view 

and top view are illustrated in Fig. S2. (B) Representative images of a single cell (left) and a cell pair 

(right) at the onset (top), after (slightly over) two hours (middle), and (slightly over) four hours of live cell 

imaging (bottom). The initial distance between the cell centers in the pair was ~117 μm (~7.8 cell 

diameters assuming mean fibroblast diameter of 15 μm). White dashed line represents the connecting axis 

between the cells. White dashed rectangle next to the cell boundaries represents one quantification 

window that is used in panels C-D (see Methods for details). Scale bar = 15 μm. (C) Quantifying cell-

ECM-cell communication as a function of distance between cell pairs, using the window size shown in B. 

Single cells (N = 7), Pair distance of 4-6 (N = 9 pairs), 6-8 (N = 13 pairs) and 8-10 (N = 5 pairs) cell 

diameters (assuming cell diameter of 15 μm). (D) Quantifying fiber densification dynamics near a single 

cell and “band” formation in between pairs of cells, using the window size shown in B. N = 7 single cell, 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 9, 2023. ; https://doi.org/10.1101/2020.07.30.223149doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.30.223149
http://creativecommons.org/licenses/by-nc/4.0/


12 
 

N = 13 cell pairs at pair distances of 6-8 cell diameters (90-120 μm). Error bars in C-D indicate standard 

deviation.  

 

Temporal correlation of local ECM remodeling fluctuations defines a 

signature for cell-ECM-cell communication 

Rather than comparing communicating versus non-communicating cell pairs (Fig. 2E), definitive 

quantification of cell-ECM-cell communication lies in the ability to distinguish between pairs of 

communicating cells, i.e., whether the ECM fluctuations of one cells pair has a unique signature 

that can be distinguished from that of a different pair of communicating cells. We tackled this 

challenge by testing whether the correlation between a simulated pair of communicating cells 

surpassed the correlation between one cell from that pair and another cell from a different 

simulated pair of communicating cells located in a different fibrous network (Fig. 4A). 

Specifically, we compared the correlation in the second temporal derivative of the local ECM 

density dynamics between quantification windows adjacent to each cell pair, located in the 

‘same’ pair versus a cell in a ‘different’ pair, and accordingly coined the term same-versus-

different pair analysis (schematic in Fig. 4A). Having the “same” correlation exceeding the 

“different” correlation implies that the correlation between a communicating cell pair is not 

merely an effect of a similar ECM densification pattern that is common to any pair of 

communication cells, but rather is indicative of communication unique for the “same” cell pair at 

test. We considered all possible ordered combinations of triplets of cells that include a pair of 

communicating cells and a third cell that takes part in a different communicating cell pair (Fig. 

4A). We then analyzed these triplets using the “same” (communicating) versus the matched 

“different” (non-communicating) cell pair correlations. In the corresponding plot (Fig. 4B), each 

data point represented the correlation of one communicating cell pair (x-axis) to multiple non-

communicating cells (y-axis), each leading to a different value (shown as a vertical line of points 

in Fig. 4B). Data points below the diagonal y = x (red line in Fig. 4B) indicate that correlation 

between the communicating pair exceeded that of the non-communicating pair. In simulated 

cells, a “same” pair had a higher correlation than a “different” pair in 92% of the matched 

correlations for pair distance of 4 cell-diameters, and this correlation gradually reduced with 

increased pair distance (Fig. 4B). To assess the validity of the method for fibrous ECM network 

with varying mechanical properties we also simulated a network with a relative linear-elastic 
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behavior until 15% strain compared with the current fiber stiffening model (Fig. S4A). Same-

versus-different analysis was improved for the stiffening model (Fig. S4B), implicating the role 

of strain stiffening in long-range mechanical communication, in line with our previous studies 12, 

27, 28. Altogether, simulated cells communicating with one-another were more synchronized in 

their ECM remodeling fluctuations, and same-versus-different analysis could distinguish 

between different pairs of communicating cells.  

We next aimed at extending our simulation results of distinguishing between pairs of 

communicating cells in experimental data. Our analysis pipeline was adjusted to enable analysis 

of experimental data. The first temporal derivative was sufficient to remove non-stationarity 

effects in ECM remodeling fluctuations of single and pairs of communicating fibroblast cells 

(Fig. S5), so we could avoid the second derivative in the correlation analysis of experimental 

data. Unlike simulations, all cells in a single experiment were embedded in the same fibrous gel 

possibly inducing spatial ECM correlations in nearby regions that do not necessarily involve 

cell-ECM-cell communication. Thus, we had to control for spurious correlations that could 

originate from the proximity between the ECM regions in the same network. This was achieved 

by including an additional step in the quantification where we corrected the ECM remodeling 

fluctuations in the quantification window in respect to local regions close to that window to 

reduce local temporal artifacts that may lead to erroneous correlations (Fig. 4C, Methods). 

We performed the same-versus-different pair analysis, but were able to quantitatively distinguish 

between different pairs of communicating fibroblast cells only after shifting the quantification 

window 7.5 μm above or below the axis connecting the communicating cells (Fig. 4D, Fig. S6). 

A “same” pair had a higher correlation than its corresponding “different” pair in 94% of the 

matched correlations, for various pair distances (Fig. 4D, Fig. S7A-C) and even for different cell 

pairs within triplets of cells (Fig. 4E).  
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Figure 4. Distinction between pairs of communicating cells with same-versus-different pair analysis. (A) 

Schematic sketch of the same-versus-different pair analysis. The correlation between quantification 

windows of communicating pairs (“same”, green) is evaluated in relation to the correlation between one 

cell from that pair and another cell from a different communicating pair (“different”, purple). (B) Same-
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versus-different pair analysis in simulations. Each data point records the correlation between the “same” 

and “different” cell pairs using the second derivative of fiber density dynamics. Mean contraction of 1% 

and standard deviation of 0.5%. All combinations of “same”/”different” were considered. Left: Pair 

distances: 4 (N = 20), 5 (N = 19), 7 (N = 19) and 9 (N = 19) cell diameters. “Same” pair had a higher 

correlation than “different” pair in 78% of the matched correlations. Right: “Same” - “different” 

correlation distributions for different pair distances: 4 (N = 20 pairs), 5 (N = 19 pairs), 7 (N = 19 pairs), 

and 9 (N = 19 pairs) cell diameters. 92% (pair distance = 4), 79% (pair distance = 5), 70% (pair distance = 

7) and 68% (pair distance = 9) of data points were positive, implying that the “same” correlation is higher 

than the “different” correlation. Wilcoxon signed-rank testing the null hypothesis that the “Same” - 

“different” correlations were distributed around a mean 0: p-value < 0.0001 for all pair distances. “Same” 

– “different” correlations were different for cell pairs at distances of 4 versus 9 cell diameters (T-test p-

value < 0.001). (C) Schematic sketch of a cell, the quantification window and the normalization border. 

The normalization border is composed of two parts, above and below the quantification window, each 

with a width of approximately a cell diameter (15 μm), height of 0.5 cell size and with a gap of 0.25 from 

the quantification window (full information in Methods). (D) Same-versus-different pair analysis in 

experiments. Top: Representative pair of communication cells shown after 255 minutes of imaging. Scale 

bar = 15 μm. Line connects the cell centers in the XY/Z space. Quantification windows were placed ~0.5 

cell diameter (7.5 μm) above the connecting axis between cell pairs with a visible band, no offset in X/Y-

axis. The same image is also shown in Fig. 3B. Middle: Analysis pipeline: raw time series were 

normalized in respect to local regions close to their quantification window to reduce local spurious 

correlations (see panel C), and correlations were calculated using the first derivative of fiber density 

dynamics, which was sufficient to remove non-stationarity effects in ECM remodeling fluctuations. Full 

details in Methods. For the displayed cell pair (top) the Pearson correlation coefficient was 0.66 (Z offset 

= 0) and 0.71 (Z offset = 0.5). Bottom left: Pair distance = 60-150 μm (~4-10 cell diameters). N = 48 cell 

pairs, all combinations of “same”/”different” were considered. “Same” pair had a higher correlation than 

“different” pair in 94% of the matched correlations. Bottom right: “Same” - “different” correlation 

distributions for different pair distances: 4-6 (N = 18 pairs), 6-8 (N = 19 pairs), and 8-10 (N = 11 pairs) 

cell diameters. “Same” pair had a higher correlation than “different” pair in 93% (pair distance 4-6), 96% 

(pair distance 6-8) and 91% (pair distance 8-10). Wilcoxon signed-rank test p-value < 0.0001 for all pair 

distances. (E) Same-versus-different pair analysis for cell triplets. Quantification windows were placed 

~0.5 cell diameter (7.5 μm) above the connecting axis between the cells. Correlations were calculated 

using the first derivative of fiber density dynamics. Left: Triplet of cells communicating with one another 

after 255 minutes of live cell imaging. Scale bars = 15 μm. Middle: Same-versus-different pair analysis 

for the cell triplets from the left panel. Pair distances approximately 7.3 (Cells 1 vs. 2), 6.3 (Cells 1 vs. 3) 

and 4.9 (Cells 2 vs. 3) cell diameters. “Same” pair had a higher correlation than the “different” pair in 7/8 

(Cells 1 & 2), 8/8 (Cells 1 & 3) and 8/8 (Cells 2 & 3) of the matched correlations. Wilcoxon signed-rank 

test p-value < 0.05. Right: Multiple triplets. N = 3 triplets color coded in shades of green, blue and 

orange. Triplet #3 was presented in the previous panels (matched shades of orange between panels). 92% 

of matched same minus different correlations were positive. Wilcoxon signed-rank p-value < 0.0001. 

 

To control for potential masking of cell-ECM-cell communication by correlated non-

communication related local ECM remodeling we devised a computational control that we term 

real-versus-fake pair analysis. We created new pairs where each is composed of one real cell and 

another fake cell located in the exact same distance as the matched pair of communicating cells, 

and away from other cells (Fig. 5A, Methods). ECM remodeling correlation between a pair of 

communicating cells (“real-real”) was higher than its corresponding “real-fake” pair in 86% of 
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the matched correlations providing a standardized internal control and further validation that our 

method truly captures cell-ECM-cell communication (Fig. 5B). 

Given our ability to distinguish one pair from a different pair of communicating cells, we 

wondered whether we can match a cell to its true communication partner when considering all 

other cells in the experiment (Fig. 5C, Video S5, Methods). For this “matchmaking” analysis, we 

considered the true communication partner as the one that is connected with a visible band. For 

each cell, in every cell pair with a visible band, we recorded the first derivative of its fiber 

density dynamics, correlated it to all other cells in the gel, and reported the rank of its true 

matching partner. With 50 potential partners, the expected random probability of identifying the 

communication partner is 1/50 = 0.02 (Fig. 5D). Using correlation-based matching, the 

probability of identifying the true communication partner was 0.69 (Fig. 5E). This accuracy of 

identifying the matching partner dropped to 0.1 when considering quantification regions along 

the connecting axis between the cells (i.e., no offset in the z-axis, Fig. 5F) and was not attributed 

to correlated non-communication related local ECM remodeling as verified by careful analysis 

that considered ECM regions (without cells) located close to each other (“fake” pairs, Fig. 5G, 

Fig. S8, Methods).  
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Figure 5. Quantitative identification of unique ECM remodeling signatures of communication partners by 

quantifying the confounding factor of non-communication-related local deformations in the ECM and 

matchmaking between communication partners. (A) Schematic sketch of the real-versus-fake pair 

analysis. “Fake” cell (cyan) coordinates were located on the circumference of a circle (dashed purple), 

with a radius r from the corresponding “real” communicating cell (dark green), and with the maximal 

distance (d, orange) in respect to all other real cells (light green). (B) Correlations between ECM 

fluctuations of pairs of communicating cell pairs (“real-real”, x-axis) versus the correlation between a cell 

and non-cellular-related local deformations in the ECM (“real-fake”, y-axis). Quantification windows 

were placed ~0.5 cell diameter (7.5 μm) above the connecting axis between the communicating cells, no 

offset in X/Y-axis. Correlations were calculated using the first derivative of fiber density dynamics. N = 

48 “real-real” cells at cell pair distances ranging 4-10 cell diameters. “Real-real” pair had a higher 
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correlation than “real-fake” pair in 86% of cases. Wilcoxon sign-rank p-value < 0.0001. (C) Schematic 

sketch of the matchmaking analysis. ECM remodeling dynamics of a given cell (left) was correlated with 

49 other cells (with repeats – see Methods) from an experiment (right). The rank of the correlation with 

the true communication partner (i.e., the position in the sorted list of all correlations with other cells, 

marked in green) was recorded. This process repeated for all cells. (D-G) Distributions of the correlation 

rank with the true communication partner for cell pairs with a visible band. Pair distance of 60-150 μm 

(~4-10 cell diameters). Correlations were calculated using the first derivative of the ECM intensity over 

time. “Correct match” refers to a correlation rank of 1. (D) Random matching: simulation of arbitrary 

matching leads to correct matching probability of 0.02 (N = 50 cells). (E) Quantification window 0.5 cell 

diameters (7.5 μm) above the connecting axis between the cells: correct matching probability of 0.69 

(selecting from N = 96 cells), compared to 0.02 for random matching (panel D). (F) Quantification 

window at the connecting axis between the cells: correct matching probability of 0.1 (selecting from N = 

84 cells), compared to 0.02 for random matching. (G) ECM regions (without cells) located close to each 

other (”fake-following" pairs, see Fig. S8 for schematics): correct matching probability of 0.02 (N = 50 

regions), compared to 0.02 for random matching. 

  

To support the generalization of our method in measuring cell-ECM-cell communication in cell 

systems beyond fibroblasts we performed experimental validation with a different cell model of 

murine cancer Hras-transformed mutated cells (Fig. S9, Methods). Faster imaging (5 minutes per 

frame) provided a more sensitive readout for cell-ECM-cell communication, reaching perfect 

accuracy in same-versus-different, real-versus-fake and matchmaking analyses, thus enhancing 

the capacity to distinguish pairs of communicating cells (Fig. S10). However, in considering the 

inherent tradeoff between temporal resolution and the number of cell pairs we can image in a 

single experiment with our microscope we prioritize the latter for purposes of collecting 

sufficient statistics for the rest of this study.  

Altogether, we defined three computational measurements providing us with systematic means to 

decipher cell-ECM-cell communication: (1) Same-versus-different – quantifying the ability to 

distinguish between ECM remolding of one pair of communicating cells from a different pair of 

communicating cells, (2) Real-versus-fake – quantifying the confounding factor of non-

communication-related local deformations in the ECM, and (3) Matchmaking – quantitative 

identification of unique ECM remodeling signatures of communication partners. True 

communication is characterized by high values in all three measurements. 
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Experimental controls validate ECM remodeling correlations as a 

measurement for cell-ECM-cell communication 

As negative controls we included a new set of experiments. Severe reduction in all three 

communication readouts was measured between pairs of fluorescent beads in size comparable to 

cells, and in experiments with dead cells (Fig. 6A-B), compared to live fibroblasts (Figs. 4-5) 

and cancer cells (Fig. S9). To include background ECM remodeling resulting from contraction of 

other live cells, we co-cultured live and dead cells within the same gel. In the presence of live 

cells, no communication was measured between pairs of dead cells (Fig. 6C) and between live-

dead cell pairs (Fig. 6D) - a validation that our measurement for cell-ECM-cell communication is 

robust to local ECM deformations originating from contractile activity of the two partners and 

not from other cells in the gel or remote sensing of physical boundaries through the ECM (e.g., 

29) correspondingly. Summary of all measurements over all experimental conditions are reported 

in Table S1.  
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Figure 6. Experimental negative controls measured with same-versus-different analysis (first column), 

real-versus-fake analysis (middle column), and match making analysis (right column). All three 

measurements, where significantly reduced, in all the negative control experiments (A-D) compared to 

live fibroblasts (Figs. 4-5) and cancer cells (Fig. S9). (A) Experiments with fluorescent beads. Same-

versus-different: N = 25, 66% “same” > “different, p-value < 0.0001. Real-versus-fake: N = 25, 52% 
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“real” > “fake”, p-value not significant. Matchmaking analysis: N = 50, correct matching probability = 

14%. (B-D) Experimental controls with live and dead fibroblast cells. (B) Dead cells. Same-versus-

different: N = 35, 61% “same” > “different, p-value < 0.0001. Real-versus-fake: N = 29, 60% “real” > 

“fake”, p-value not significant. Matchmaking analysis: N = 70, correct matching probability = 17%. (C) 

Dead cells with the presence of live cells. Same-versus-different: N = 17, 55% “same” > “different, p-

value < 0.0001. Real-versus-fake: N = 17, 54% “real” > “fake”, p-value not significant. Matchmaking 

analysis: N = 34, correct matching probability = 15%. (D) Live and dead cells. Same-versus-different: N 

= 17, 61% “same” > “different, p-value < 0.0001. Real-versus-fake: N = 11, 62% “real” > “fake”, p-value 

not significant. Matchmaking analysis: N = 22, correct matching probability = 14%. 

 

Decoupling band formation and communication sensing 

Our finding that cell-ECM-cell communication can be identified quantitatively only when 

shifting the quantification window away from the connecting axis between the cell centers, 

encouraged us to systematically measure the relations between cell-ECM-cell communication 

and band formation in experiments. We analyzed different ECM quantification windows in the 

3D space around the cell by shifting them laterally (perpendicular, in the XY axis) and axially 

(up and down, in the Z-axis) in relation to the connecting axis (Fig. 7A, Methods). For each 

shifted window we measured the final normalized fiber density after 255 minutes and also, 

independently, performed same-versus-different pair analysis for the corresponding windows 

over time. While the fiber density was maximal along the connecting axis, the discrimination 

between different pairs of communicating cells was optimized above or below (axially) the 

connecting axis (Fig. 7B-D), and excluded the possibility that this was an artifact of saturated 

pixels along the dense fibrous band (Fig. S11). These results were consistent for faster imaging 

experiments (Fig. S12) establishing that communication sensing, i.e., our method’s ability to 

identify cell-ECM-cell communication, is decoupled from band formation. 

Previous studies analyzed the intercellular band as a measure of mechanical communication. The 

decoupling between band formation and communication sensing led us to examine whether our 

method can measure communication for cell pairs that did not form a visible band between the 

cells (Fig. 7E-G). Indeed, same-versus-different, real-versus-fake and matchmaking analyses 

identified cell-ECM-cell communication for band-less pairs, slightly above or below the 

connecting axis, implying that communication is present even when a band is not visible to the 

naked-eye (Fig. 7H, Fig. S13, Video S6). Faster imaging identified more prominently cell-ECM-

cell communication for cell pairs without a visible band (Fig. 7I).  
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We conclude that our method’s ability to measure communication is improved when correlating 

quantification windows located slightly away from the connecting axis in-between the 

communicating cells, while the densest fiber band is formed directly along the connecting axis 

and that cell-ECM-cell communication exists even when no visible band is formed between the 

cell pair. These results challenge the current notion that band formation is the hallmark of cell-

cell communication in fibrous gels. 
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Figure 7. Spatial decoupling of band formation and cell-ECM-cell communication. (A) Cell pair axes 

schematic sketch. Z-axis (cyan) and XY-axis (purple) are perpendicular to each other and to the 

connecting axis between the cells’ centers (black). (B-D) Mean fiber density and cell-ECM-cell 

communication (same-versus-different analysis) for shifted quantification windows in cell pairs with a 

visible band. Pair distances of 60-150 μm (~4-10, cell diameters). The dashed vertical line in panels B-C 

is used as a line profile in panel D. (B) Fiber density. Mean fiber density for systematic offsets in Z and 

XY axes. (C) Cell-ECM-cell communication. Mean fraction of higher “same”, correlation between 

communicating pairs, versus “different”, correlation between one cell from that pair and another cell from 

a different communicating pair for systematic offsets in Z and XY axes. Red ‘x’ marked that the null 

hypothesis that “same” - “different” correlations are distributed around zero was not rejected with p-value 

≤ 0.05. (D) Fiber density and cell-ECM-cell communication along the axial line-scan (offset in XY axis = 

0). Peaks in cell-ECM-cell communication appear above (and below) the connecting axis between the 

cells, where fiber density is maximal on the connecting axis. (E) Schematic sketch of the optimal 

quantification window location to quantify cell-ECM-cell communication. Offset in Z axis = 0.5. Offset 

in XY axis = 0. (F-I) Cell-ECM-cell communication for cell pairs with no visible band. Quantification 

windows were placed 7.5 μm (~0.5 cell diameter) above the connecting axis between the cells. (F) 

Representative cell pair with no visible band at the onset (“begin”) and after (“end”) 255 minutes of cell 

imaging. Scale bar = 15 μm. (G) Quantification of the dynamics of the first derivative of ECM intensity 

in the cell pair in panel F implicating the absence of a band. Left/right - quantification windows adjacent 

to cell boundaries, “middle” - quantification window in between the cells centers at each time frame. 

Pearson correlation coefficient between left and right cells inner regions = 0.7, p-value < 0.0001. (H-I) 

Cell pairs with no visible band with same-versus-different analysis (first column), real-versus-fake 

analysis (middle column), and match making analysis (right column). (H) Standard time resolution of 15 

minutes per frame. Same-versus-different: N = 14, 80% “same” > “different, p-value < 0.0001. Real-

versus-fake: N = 15, 70% “real” > “fake”, p-value < 0.01. Matchmaking analysis: N = 28, correct 

matching probability = 46%. (I) Rapid time resolution of 5 minutes per frame. Same-versus-different: N = 

56, 95% “same” > “different, p-value < 0.0001. Real-versus-fake: N = 56, 94% “real” > “fake”, p-value < 

0.0001. Matchmaking analysis: N = 112, correct matching probability = 87%.  

 

Higher signal-to-noise ratio off the connecting axis supports sensitive 

measurement of cell-ECM-cell communication 

We hypothesized that cell-ECM-cell communication is best measured slightly away (in the Z-

axis) from the connecting axis between the cells because the higher ECM intensities along the 

fibrous band confound our ability to sensitively measure the ECM fluctuations as a signature of 

cell-ECM-cell communication. To test this hypothesis, we calculated the association between 

fiber density and the sensitivity in measuring communication via same-versus-different pair 

analysis by correlating these parameters across different locations of the quantification window. 

This analysis demonstrated a sweet spot for measuring cell-ECM-cell communication (Fig. 

S14A). Regions with low fiber density, that were located far away from the connecting axis, had 

low same-versus-different discrimination, and this low discrimination was also apparent in  

denser band regions along the connecting axis. Analysis of the temporal change in fiber density 
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revealed that while the band intensity is maximal along the connecting axis between the cells, the 

magnitude of the changes in ECM intensity is similar along the connecting axis and slightly 

above it (Fig. S14B). Because the communicating signal is measured as the change in ECM 

intensity relative to the background intensity (Fig. 4C), the ‘signal to noise ratio’ of the 

measurable communication signal is higher off the connecting axis, making it a more sensitive 

measurement for cell-ECM-cell communication.  

 

The role of Myosin II contractility on cell-ECM-cell communication 

Given that we could measure cell-ECM-cell communication even without a visible band forming 

between the cells, and considering the fact that this type of long-range communication is 

inherently mechanical, we next asked what is the role of contractility in cell-ECM-cell 

communication. Contractility inhibition with a dosage of 85 nM of Blebbistatin, a Myosin II 

inhibitor, revealed that cell-ECM-cell communication can be measured even when contractility is 

partially inhibited and a visible band between the cells practically never forms (Fig. S15A). 

Further increasing the Blebbistatin dosage to 150 nM verified that contractility is required for 

this mode of mechanical communication (Fig. S15B). Cumulatively, these results suggest that 

mechanical signals propagate from one cell to another even upon massive reduction in their 

contractility and thus cells can mechanically communicate even with reduced contractility levels 

that are not sufficient to form a visible band.  

 

Identifying leader and follower in pairs of simulated communicating cells 

We next asked if we could use our approach to quantify asymmetric interactions between the 

communicating partners. More specifically, can we identify which cell in a communicating pair 

is more dominant or influential? Our quantitative interpretation of “influential” is that past ECM-

remodeling fluctuations of one cell are predictive of the future ECM-remodeling of its 

communicating partner. Such temporal order defines a leader-follower relation. We performed 

simulations where a “follower” cell “imitates” the previous contraction of its influential “leader 

cell”. In other words, the contraction of both cells are determined by the leader cell with a time 

lag of one simulation step (Fig. S16A). The simplest approach to quantitatively identify a 
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temporal order is by cross-correlation with time lags, where the correlation between two time-

series is calculated for a given lag, and the time-lag that leads to the maximal correlation 

determines the temporal order. This analysis successfully identified which simulated cell was the 

leader and which one was the follower with an accurate lag time (Fig. S16B, Fig. S17A). To 

evaluate the robustness of using correlations to identify leader-follower relations we simulated 

cell pairs where the follower contraction was composed of an independent component, and a 

component that is dependent on its leader: 𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟(𝑡) = (1 − 𝛼) ∗ 𝑁(𝜇, 𝜎) + 𝛼 ∗

𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑙𝑒𝑎𝑑𝑒𝑟(𝑡 − 1), where 𝑡 > 1, 0 ≤ 𝛼 ≤ 1, 𝜇 = 1, 𝜎 = 0.5 are the mean and standard 

deviation correspondingly, and 𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑙𝑒𝑎𝑑𝑒𝑟 is drawn from the normal distribution 

𝑁(𝜇, 𝜎). The term ⍺ indicates the “followership” magnitude, higher values of ⍺ imply that the 

follower is more influenced by its leader contraction. The correlation increased with increased 

influence of the leader cells (Fig. S16C) and the maximal cross correlation occurred at the 

correct lag, accurately identifying the leader/follower roles for all simulated pairs for 𝛼 = 0.5, 

where the follower cell contraction is determined with equal contribution from its intrinsic 

“decision” and the extrinsic influence by its leader (Fig. S16D, Fig. S17B). In a second 

validation we tested whether we can identify leader/follower when the follower contracts more 

than its leader. This leads to increased ECM remodeling that might propagate to the leader cell 

and mask its influence on the follower. We set 𝛼 to 1 (follower is copycatting the leader’s 

contraction), and introduced 𝛽 ≥ 1 - the fold increase of the follower’s contraction: 

𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟(𝑡) = 𝛽 ∗ 𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑙𝑒𝑎𝑑𝑒𝑟(𝑡 − 1). The correlation was nearly identical 

for 𝛽 ≤ 1.2 (20% increase in follower contraction), and the first mistaken prediction of the 

follower/follower assignment occurred for 𝛽 = 1.2, for 1 out of 7 simulated pairs (Fig. S16E, 

Fig. S17C). We further validated these results by pairing leaders or followers to cells from other 

simulated communicating pairs to create artificial pairs of cells that did not interact with one 

another (Fig. S18). However, cross-correlation analysis did not identify leader-follower relations 

in experimental data (Fig. S19). This inability to identify leader-follower relations in 

experimental data could be attributed to lack of sufficient temporal resolution – the response of 

the follower cell may occur in time scales faster than the 5 minutes temporal resolution in this 

study. Another alternative is that our method is not sufficiently sensitive to measure the subtle 

ECM fluctuations that distinguish leader from follower cells. There is always the possibility that 

fibroblast cells do not form leader-follower communication patterns, perhaps due to insufficient 
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heterogeneity that can be resolved by assessment of cells pairs from mixed genetic backgrounds. 

These possibilities are left to be explored in future studies. Cumulatively, these results verified 

that cross-correlation of ECM remodeling fluctuations can robustly identify leader and follower 

cells in simulated communicating cells but not in our experimental data. 
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Discussion 

Our work proposes a systematic computational method to quantify cell-ECM-cell 

communication and demonstrated its applicability in simulations and experiments. The method 

quantifies the local fiber remodeling dynamics between pairs of communicating cells in 2D 

(simulations) and 3D (experiments) by applying the following key steps. Normalization in 

relation to the background to enable robust comparison across experiments; Subtracting 

background deformations to avoid masking of the communication signal; Detrending to avoid 

spurious correlations; Systematic evaluation of the location of the quantification window to 

extract the most informative signal; Measurement of the temporal correlation as a quantitative 

readout for cell-ECM-cell communication. Our method provides technical advances that will 

open the door for cell biologists and biophysicists to decipher how cells process mechanical 

information transmitted through the microenvironment. 

We combined finite element simulations and 3D live cell imaging experiments. Our minimal 

model, although not reflecting the true complexity of the biological system, captures the essence 

of the mechanical elements of cell contractility and force propagation in fibrous nonlinear elastic 

networks and thus serves as a viable tool to control various parameters independently to test and 

verify the sensitivity and robustness of our approach. For example, examining the minimal cell 

contractile heterogeneity required to effectively quantify cell-ECM-cell communication (Fig. 2E) 

and measure its decay as a function of the distance between the cells (Fig. 4B), assessing the 

effect of changing ECM material from linear to nonlinear behavior (Fig. S4) and testing the 

method’s sensitivity to cell autonomously and contraction magnitude that may mask the 

capability to identify leader-follower relations (Fig. S16B-E). 

We found that heterogeneity in cell contractility created unique temporal patterns of ECM 

fluctuations that were necessary to quantitatively identify cell-ECM-cell communication, 

allowing us to distinguish between different pairs of communicating cells using temporal 

correlation of local ECM remodeling fluctuations. We devised two measurements for cell-ECM-

cell communication (same-versus-different and matchmaking) and a third measurement to 

decouple non-communication-related local ECM deformations from real communication (real-

versus-fake). These in silico controls combined with experimental validations verified that our 
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method can sensitively and robustly measure cell-ECM-cell communication in fibroblast and 

cancer cells (Fig. 5, Fig. S9).  

Until now, the consensus in the field was that the existence of a visible fibrous band is indicative 

of cell-ECM-cell communication. Our method does not rely on the existence of a band, rather it 

correlates local ECM deformations as a measure for “communication”, the unique mechanical 

signal propagating from one cell to its communication partner. We demonstrate the sensitivity of 

correlating ECM fluctuations by establishing that the formation of a denser ECM region between 

the cells is not required for cell-ECM-cell communication, thus decoupling fiber densification 

and long-range mechanical intercellular communication. In fact, we find that the fibrous band is 

a confounder to measure the unique communication signature between a pair of cells (Fig. 7), 

probably due to lower ‘signal to noise ratio’ (Fig. S14). Moreover, dose-dependent Blebbistatin 

experiments revealed that while cellular contractile force is required for communication, cells are 

still able to communicate even after substantial reduction of their contractility, where fibrous 

bands never form (Fig. S15). These results align with previous studies suggesting that myosin II–

mediated contractility acts as an inhibitor for cell-to-cell mechanical communication by arresting 

passive mechanical force transduction through the cellular cortex during collective cell migration 

30-33. 

We aimed at identifying leader-follower relationships within pairs of communicating cells. We 

simulated a situation where one cell influenced its communicating partner, determining its future 

contractions and demonstrated that our method can robustly identify the leader and follower cells 

from the ECM-remodeling fluctuations. This was even possible in challenging scenarios where 

followers were only partially influenced by their leader or contracted up to 20% more than their 

leader (Fig. S16C-E). These results set theoretical limitations on our method’s capacity to 

decouple cell contractility from leadership status due to increased ECM remodeling that can 

propagate to the leader cell and mask its influence on the follower. We were not able to identify 

leader-follower relations in our experimental data, either because of lack of sensitivity in the 

given experimental conditions (e.g., time resolution, subtle “leadership” signal in cell pairs from 

the same genetic background) or because this mode of matrix-mediated mechanical 

communication does not yield leader-follower pairs in fibroblasts. However, our computational 

model of follower-leaders can motivate future experiments to investigate the notion of leader-

follower relations between cells in long-range mechanical cell-cell communication, for example 
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under conditions as faster imaging and/or co-culturing cells in different molecular/functional 

states or from different genetic backgrounds.  

We used standard confocal imaging in this study, which is inherently limited in its temporal 

resolution, axial resolution and size of field of view. Despite these limitations, we succeeded to 

quantitatively characterize intercellular mechanical communication through fibrous 

environments, being able to near perfectly match all communication partners, with tens of 

potential candidates for each match, only from ECM remodeling fluctuations. This performance, 

especially given the standard microscopy that is available in almost any academic institute, 

highlights the potential of democratizing cell-ECM-cell communication quantification. 

Our proof of principle study is an enabler of mechanistic understanding of long-range cell-cell 

mechanical communication, and sets the ground for potential applications. Having the ability to 

quantitatively measure cell-ECM-cell communication, could enable to systematically probe the 

cellular and molecular players for this mode of mechanical communication, naturally starting 

with the actomyosin cytoskeleton and adhesion complexes 15. We expect that our method could 

be generalized to non-fibrous environments, such as synthetic (e.g., poly-acrylamide hydrogels) 

or biological (e.g., Matrigel) hydrogels, by embedding tracer particles that will enable the 

indirect measurement of local ECM remodeling fluctuations. Another exciting venue is 

deciphering the role of long-range intercellular communication in the more complex and 

physiological relevant microenvironments in vivo. A third extension of our method would be to 

apply it to other modes of cell-cell communication. For example, using intracellular molecular 

fluctuations as the functional readout to infer cell-cell communication, an approach previously 

taken in 34 to reveal signaling ordering at the intracellular scale.  

One application where the ability to precisely measure cell-cell communication may be useful is 

tissue engineering. By controlling the patterning of multiple cell types one could optimize tissue 

formation according to cell type specific communication capabilities 35. Another application is 

high content 3D image-based screening. Image-based phenotypic screening is traditionally 

applied with 2D imaging, quantifying single cell morphology and distributions of intracellular 

fluorescent intensities, and is applied for multiple applications including identification and 

characterization of small molecules in drug discovery 36. Recent tools enable high-content 3D 

image-based cell phenotyping 37, providing a more physiologically relevant context for in vivo 
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follow-up studies 38. The interplay between 3D cell morphology, the interactions with the 

environment and the mechanical communication with other cells will likely provide important 

complementary functional readouts for 3D image-based phenotypic cell phenotyping that are not 

accessible with current methods. Such phenotyping could be very useful for applications where 

the cellular microenvironment and the interactions between cells and the ECM are established 

hallmarks, such as in cancer or fibrosis 20, 21, 39-41.  
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Methods 

Computational Modeling 

Finite element simulations of cells contraction in fibrous networks 

We used our previously described computational finite element model of one or two cells 

contracting in two-dimensional fibrous networks 12, 27, 28. We used the finite element software 

Abaqus/CAE 2017 (Dassault Systèmes Simulia) to model the network mechanics and perform 

the simulations. The software’s standard\implicit solver was used in all simulations. The cells 

were modeled as circular voids in the fiber networks. The fibers were represented by discrete 

one-dimensional elements connected by nodes (Fig. S20A), randomly distributed to set an 

isotropic and homogeneous network structure prior to cell contraction (see next). The output of 

each finite-element simulation included the information regarding each network element’s 

location and dynamics.  

Fiber network architecture 

We used Matlab R2018b to construct the network geometry and architecture as previously 

described  12. The networks were designed to optimize the fiber orientations distribution toward 

uniformity (i.e., isotropic) and toward homogeneous fiber density. Briefly, we devised a random 

process to create network geometries, as we previously reported in 12. The process starts from 

uniformly scattering nodes in a circular domain. The nodes were then connected by fiber 

elements by considering an objective cost function which controls the fiber length, fiber 

connectivity (i.e., the mean number of fibers intersected at each node) and the angle between 

fibers connected at each node. The network coordinates spanned from -2 to 2 (AU) in X- and Y-

axis (Fig. S20B). Cell centers were located along the X-axis, with a cell diameter of 0.08 (Fig. 

S20B). The mean fiber thickness was 0.2 AU, and mean fiber length was 20 AU, fitting typical 

fiber density-to-length ratio for collagen\fibrin gels 42-44. The cell diameter before contraction 

was set to 0.08 AU, so that the cell diameter/mean fiber length ratio was 4:1, a typical ratio for 

fibroblast cells embedded in fibrin gel 43. The average connectivity of the network was set to 

eight, to balance the tradeoff between the finite element software numerical stability and 

physiological relevance.  

The mechanical properties of the simulated fiber networks 
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Fibers were connected to one another by nodes, which acted as a freely rotating hinge, allowing 

for a rotation of the fibers without resistance. The fibers were modeled as linear truss elements, 

undergoing uniaxial tension or compression, without bending. They were characterized by 

nonlinear behavior typical to ECM fibers (such as collagen), including buckling under 

compression 6, 8 and stiffening under tension 4. We represented the buckling of the fibers by an 

elastic modulus which was ten times smaller at compressive strains exceeding 2% relative to the 

elastic modulus at small strains (-2% to 2%). Stiffening was achieved by an exponential increase 

in the elastic modulus for tensile strains larger than 2% 12, 43, 45. In all simulations, the outer 

boundary of the network was fixed for translations and rotations. 

To assess the validity of the method for fibrous ECM networks with varying mechanical 

properties, we performed additional simulations in which we tested the effect of changing the 

stiffening behavior to account for a material with a relative linear behavior until 15% strain, 

representative of fibrin gels (Fig. S4A), based on, for example 46. 

Simulating cell-ECM-cell communication 

Cell contraction was modeled by applying a boundary condition of radial isotropic contractile 

displacements to all nodes constituting the cell boundaries, reaching up to 50% contraction of the 

cell radius. To simulate time we consecutively applied 1% cell contraction for 50 steps, reaching 

a final 50% cell contraction. Heterogeneity in cell contraction was implemented by applying cell 

contraction selected from a normal distribution with a mean (𝜇) of 1% and varying standard 

deviations (𝜎) of 0, 0.25, 0.5 or 0.75, in each simulation step. In all simulations, the network size 

was set to 50 cell diameters and the cells were placed in its center to prevent boundary effects.  

The role of the simulations as a minimal mechanical model for extensive assessment of our 

method 

The simulations capture the essence of the material mechanical properties, mechanical elements 

of cell contractility and force propagation in fibrous nonlinear elastic networks.  However, the 

representation of cells as circular cavities that contract uniformly (with unrealistic high 

contraction) in 2D without responding to the propagated mechanical signal, is far from realistic 

biology. Still, this minimal implementation captures the essence of the experimental system in 

terms of its mechanical aspects (contractile units in fibrous nonlinear networks) and thus serves 

as a “clean” mechanical framework to examine a process that is inherently mechanical 
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(propagation of forces between cells). Thus, these simulations allow us to obtain proof-of-

concept to the ability of a correlation-based method to detect a mechanical signal that propagates 

in the ECM between two contractile elements. Within this framework, the simulations 

unambiguously demonstrate the power of correlation in detecting the propagation of a 

mechanical signal from one cell to the other, as well as the effect of cell-cell distance, cells 

contraction mismatch and the ability to detect leader-follows. Revisiting the minimal model to 

include components that are more realistic is not central to the current methodology study, and 

will be addressed in future studies. 

Leader-follower simulations 

These simulations were implemented such that one cell (the “follower”) contracted with a 

dependency on the other cell (the “leader”). The leader contraction at each time point was 

selected from a normal distribution 𝑁(𝜇 = 1%, 𝜎 = 0.5%). In the first time step, the follower 

contraction was drawn independently, from the same normal distribution. From the second step 

and onwards, the follower contraction was composed of two components:  

𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟(𝑡) = (1 − 𝛼) ∗ 𝑁(𝜇, 𝜎) + 𝛼 ∗ 𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑙𝑒𝑎𝑑𝑒𝑟(𝑡 − 1)  

where 𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟(𝑡) is the follower intrinsic contraction at time step t drawn from 

𝑁(𝜇 = 1%, 𝜎 = 0.5%)and 𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑙𝑒𝑎𝑑𝑒𝑟(𝑡 − 1)is the leader’s contraction at the previous 

time step drawn from the same distribution. 𝛼 is a constant that varies between 0 and 1 and 

defines the level of leader-follower dependency: 𝛼 = 0 is the case of independently contracting 

cells and 𝛼 = 1 is the case where the follower cell repeats the leader’s contraction with 1 frame 

delay (see Fig. S17A). In the second leader-follower simulation, the follower contracts according 

to the following equation: 𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟(𝑡) = 𝛽 ∗ 𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑙𝑒𝑎𝑑𝑒𝑟(𝑡 − 1) 

where 𝛽 > 1, thus imitating the leader with a certain augmentation. 

 

Experiments 

Cell culture and chemical reagents 

Swiss 3T3 fibroblasts stably expressed GFP-actin (obtained as gifts from S. Fraser, University of 

Southern California, Los Angeles, CA) were cultured in DMEM supplemented with 10% fetal 
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bovine serum, nonessential amino acids, sodium pyruvate, L-glutamine, 100 units/ml penicillin, 

100 µg/ml streptomycin, and 100 µg/ml Neomycin, in a 37◦C humid incubator.  

Murine Hras mutated-transform cells have been generated by infecting normal epithelial cells of 

the tongue with mutated-HRAS and shTP53 as described in 47.  

Fluorescent beads experiments: 10–14 µm polystyrene beads (SPHERO™, Spherotech, Inc., 

Lake Forest, IL, USA) were embedded in 20 µl fibrin gels (10µl thrombin, 10µl fibrinogen) in 

concentration of 8 × 103. 

Dead cells experiments: Dead cells were prepared by placing cells in a hot water bath at 65 ◦C 

for 30 min, 8 × 103 dead cells were mixed in 20 µl of fibrin (10µl thrombin, 10µl fibrinogen). 

Co-culture live and dead cells within the same gel: 4 × 103 dead cells were mixed with 4 × 103 

live cells. After gel polymerization, ethidium homodimer (5µM, red fluorescence) was added to 

the medium and incubated for 30 minutes at 20–25°C. This resulted in staining the nuclei of dead 

cells. 

Blebbistatin experiments: 2 ml medium containing 85 µM or 150 µM blebbistatin were added to 

cover the polymerized cellular gel. 

Fibrinogen labeling  

Alexa Fluor 546 carboxylic acid, succinimidyl ester (Invitrogen) was mixed with fibrinogen 

solution in a 7.5:1 molar ratio for 1 hour at room temperature and then filtered through a HiTrap 

desalting column (GE Healthcare) packed with Sephadex G-25 resin, to separate the unreacted 

dye.  

3D fibrin gel preparation  

GFP-Actin 3T3 fibroblast cells (8x103 cells) were mixed with 10 µl of a 20 U/ml thrombin 

solution (Omrix Biopharmaceuticals). Then, 10 µl of a 10 mg/ml fluorescently labeled 

fibrinogen (Omrix Biopharmaceuticals) suspension was placed in a 35-mm cover-slip bottom 

dish (MatTek Corporation) and mixed gently with the 10 µl cells suspended in thrombin. The 

resulting fibrin gel was placed in the incubator for 20 min to polymerize, after which, a warm 

medium was added to cover the gel. The fibrin gels had an approximate shape of half a sphere, 

attached to the bottom surface of a cover slip, with a gel height of about 2-3 mm, and cells were 
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fully embedded in the 3D gel. From this point on, the gels including the cells embedded in them, 

were maintained in 37oC 5% CO2. 

Time-lapse confocal microscopy  

Pairs of cells were imaged with a Zeiss 880 confocal microscope, equipped with a 40X NA=1.1 

water immersion lens (Zeiss) and a 30mW argon laser was used to image both the cells (GFP-

Actin) and the fluorescently labeled-fibrin matrix with excitation wavelength of 488, and a 

separated emission spectrum for each. Throughout imaging, the gels with the contained cells 

were maintained in a 37oC 5% CO2 incubation chamber. Confocal z-stacks were acquired every 

5-15 min for about 6 hours from cell seeding. We manually validated that the imaged cells did 

not undergo division to avoid the enhanced contraction during division. Confocal imaging 

inherently includes a tradeoff between the temporal resolution, the axial resolution and the 

number of imaged locations: higher temporal/axial resolution leads to the lower numbers of 

locations imaged leading to smaller numbers of communicating cell pairs per experiment. 

Experiments were imaged in three settings: (1) Temporal resolution of 15 minutes, with 21 

locations of images in resolution of 512X512 pixels (0.41X0.41X2 µm in X’Y’Z’) and 36 Z-

slices. (2) Temporal resolution of 5 minutes, with 9 locations in each and resolution of 256X256 

pixels (0.83X0.83X2 µm in X’Y’Z’) and 40 Z-slices. (3) Temporal resolution of 21 minutes, 

with 7 locations of images in resolution of 512X512 pixels (0.41X0.41X0.53 µm in X’Y’Z’) and 

187 Z-slices, where X’, Y’ and Z’ are the microscopy axes. The spatial image resolution used in 

our study is not sufficient to localize individual fibers, but fine resolution is not required for our 

method, which uses the time series of the fluorescent intensity accumulated in a quantification 

window. We prioritized imaging large field of views over better spatial or temporal resolution to 

increase the number of cell pairs we can image in a single experiment and thus enhancing our 

statistical power. Moreover, the use of relatively low temporal and spatial resolutions are in fact 

an advantage. The ability to robustly detect cell-ECM-cell communication even at lower 

resolutions is yet another indication for our method’s sensitivity and the wide availability of 

standard confocal imaging in practically any academic institute further highlights the potential of 

democratizing cell-ECM-cell communication quantification.  
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Image analysis and quantifications 

Preprocessing live imaging data 

We first applied Fiji’s 48 “Bleach Correction” on the raw fiber channel with the “Histogram 

Matching” option. On the actin (cell) channel we applied a median filter (radius = 2) followed by 

a Gaussian blurring filter (sigma = 2), before segmenting the cells over time using the “3D 

Objects Counter” Fiji’s plugin 49 (Threshold = 15, Size filter > 400). The cell’s center 

coordinates in 3D for each time frame was recorded and used for cell tracking. Custom Python 

code was used for the cell tracking, by identification of cells to track in the first time frame and 

simply assigning the nearest cell (in 3D Euclidean distance) in the next time frame to construct 

the trajectory. Shorter trajectories were recorded for cells that moved beyond the field of view 

during imaging. This simple approach was sufficient thanks to the sparsity of the cell seeding. 

Transforming 3D images for visualization and quantification 

To visualize and quantify the 3D band between a cell pair we transformed the image to a new 

coordinate system that is defined in relation to the spatial relation between the pair. We 

transformed the image from the microscopy axes (denoted X’,Y’,Z’) to the following three new 

axes. The connecting axis, defined by the line connecting the cells’ centers (Fig. 3A, Fig. S2 and 

Video S2 black line). The Z axis, parallel to the microscopy axial plane (Z’) and perpendicular to 

the connecting axis (Fig. 3A, Fig. S2 and Video S2 cyan line). The XY axis, perpendicular to the 

connecting axis and to the Z axis (Fig. 3A, Fig. S2 and Video S2 purple line). For visualization, 

we used the new 2D axis defined by XY and Z (Fig. S20C). We used Fiji’s 48 “Reslice” function 

(default “Output spacing”, “Slice count” according to the fibroblast diameter of 15 µm) to slice 

the images from top to bottom in the XY axis perpendicular to the connecting axis between the 

cells, with a width of 15 µm, interpolating axial pixel values to match the spatial resolution in 

XY using bilinear interpolation. Finally, we averaged the pixel intensities across the slices using 

Fiji’s “Z project” (Projection type = “Average intensity”) to create the 2D visualization. To 

visualize single cells, we picked an arbitrary XY axis (either 0o, 45o, 90o or 135o) with the same 

axial axis (Z). These visualizations were used for all experiments and all manual annotations 

(identifying imaging artifacts, and cell pairs with/without a visible band).  

We implemented custom Python code to quantify the ECM density between a pair of 

communicating cells. First, we transformed the 3D axes to XY slices and Z, replicating the 
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visualization without the Z-interpolation and without the slices averaging. Second, we performed 

another transformation, rotating the image onto the connecting axis between the cells to reach a 

common Z-axis. This transformation generates a 3D image where the Z-axis is perpendicular to 

the XY-axis that is perpendicular to the connecting axis between the cell’s centers. This property 

allows us to move axially in relation to the 3D line connecting the cells. The whole process is 

depicted in Fig. S20C.  

The second transformation rotated the original X’, Y’ and Z’ axes thus defining a new coordinate 

system, where the transformed pixel size (“resolution”) in the new connecting axis and in the Z 

axis are a weighted combination of the original microscopy resolution in X’, Y’ and Z’. 

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔𝐴𝑥𝑖𝑠𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =
𝜃

90
∗ 𝑍′𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 +

90−𝜃

90
∗ 𝑋′, 𝑌′𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛; 𝑍𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =

𝜃

90
∗

𝑋′, 𝑌′𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 +
90−𝜃

90
∗ 𝑍′𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 0 ≤ 𝜃 ≤ 90), where 𝜃 is the calculated rotation angle 

between the connecting axis and the microscopy lateral plane before the rotation. The XY axis 

resolution remains unchanged (𝑋′, 𝑌′𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛). These new resolutions were used to calculate the 

size and location of the quantification window (see below).  

Single cells do not have a preferred axis in 3D since they do not have a communicating partner. 

Thus, to quantify ECM density near single cells we sampled around each cell in 32 different 

orientations in 3D. 16 transformations were defined using all paired combinations of four angles 

(0o, 45o, 90o and 135o), each transformation pair was applied similarly to the transformations in 

cell pairs. For example, the pair <45,135> implies first rotating the image in 45o in X’,Y’ (blue 

arrow in Fig. S20D) followed by a 135o rotation in Z’ (green arrow in Fig. S20D). These 16 

transformations were used in two directions along the rotated axes leading to 32 orientations for 

quantification (see below). 

Manual filtering of defected image frames 

A small fraction of frames in a few experiment locations had imaging-related artifacts that 

hampered our ability to accurately segment the cell and quantify ECM densities. These artifacts 

included incorrect cell segmentation, dark areas due to imaging malfunctioning of the 

microscope and “light waves” (Video S7) that may have been the result of an air or water bubble 

trapped in the lenese’s immersion oil. To include these experiments in our analysis we manually 
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identified and recorded defected frames that had these artifacts and considered only valid time 

frames (without this artifact), when computing fiber density and correlations.  

Manual annotation of cell pairs with or without a visible band of increased density 

For analysis we considered cell pairs with pair distance ranging at 60-150 μm (4-10 cell 

diameters, assuming fibroblast diameter of 15μm). Based on previous studies that focused solely 

on cell pairs with a visible band of increased density between them 6, 9, 11, 45, we partitioned our 

dataset to cell pairs that formed and ones that did not form a visible band of denser fibers 

between the cells. This partition was performed manually by visual assessment of the pixel 

intensity along the full length of the connecting axis between the cells at the end of imaging. 

Visually apparent bands appeared in approximately 60% of the imaged cell pairs. 

Quantification window size 

To quantify the local ECM density we used a quantification window of the size of a cell diameter 

in all axes, in 2D simulations (0.08 AU) or 3D in experiments (15 μm). This window size was set 

to optimize the tradeoff between including sufficient data versus too much irrelevant data within 

the window (Fig. S21). The number of pixels defining the quantification window (cell diameter 

in simulations, 15 μm in experiments) were calculated according to the transformed image 

resolutions. The same scale was also used upon shifting the quantification windows.  

Quantifying local fiber density in simulations 

The local fiber density was calculated as the accumulated fiber volume within the quantification 

window. We assume that the fiber volume is preserved even when the fiber is deformed. 

However, this property does not hold in the simulated 2D representation of the fibers where their 

buckling property reduces the simulated fiber lengths. This is an inherent limitation of simulating 

a 3D process in 2D. To overcome this limitation we normalize each fiber to its initial length 

before summing the fiber length in the quantification window. More specifically, we considered 

two scenarios (Fig. S20E). (1) For the case where the fiber was located exclusively within the 

quantification window, its length at the onset of the simulation was used for quantification. (2) 

For the case where the fiber was not located exclusively within the quantification window (i.e., 

crossing the window boundaries), we used only the sub-fiber within the quantification window 

while adjusting to the full fiber length at the onset of the simulation: 𝐹𝑖𝑏𝑒𝑟𝑉𝑜𝑙𝑢𝑚𝑒(𝑡) =
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𝐹𝑖𝑏𝑒𝑟𝐼𝑛𝑛𝑒𝑟𝐿𝑒𝑛𝑔𝑡ℎ(𝑡) ∗
𝐹𝑖𝑏𝑒𝑟𝐿𝑒𝑛𝑔𝑡ℎ(𝑡0)

𝐹𝑖𝑏𝑒𝑟𝐿𝑒𝑛𝑔𝑡ℎ(𝑡)
, where 𝐹𝑖𝑏𝑒𝑟𝑉𝑜𝑙𝑢𝑚𝑒(𝑡) is the fiber volume at time 𝑡, 

𝐹𝑖𝑏𝑒𝑟𝐼𝑛𝑛𝑒𝑟𝐿𝑒𝑛𝑔𝑡ℎ(𝑡) is the length of the sub-fiber within the quantification window at a time 𝑡, 

𝐹𝑖𝑏𝑒𝑟𝐿𝑒𝑛𝑔𝑡ℎ(𝑡0) is the overall fiber length at the onset of simulation and 𝐹𝑖𝑏𝑒𝑟𝐿𝑒𝑛𝑔𝑡ℎ(𝑡) is the 

overall fiber length at time 𝑡. 

The fiber density within a quantification window was defined as the accumulated fiber volume 

within it. For single cells the mean fiber density of four windows, above, below, to the left and to 

the right of the cell was recorded (Fig. S20F). 

Quantifying local fiber density in experiments 

The mean fluorescent fibrin channel intensity was used as a proxy of fiber density within the 

transformed 3D quantification windows (see earlier). Quantification windows with over 5% of 

pixels extending beyond the image boundaries were marked as “invalid” and were excluded from 

further analysis. Quantification windows for single cells were calculated similarly to simulations, 

but in 3D, averaging the mean intensity in 32 orientations (see earlier). 

Normalizing the local fiber density in simulations and experiments 

To enable quantitative comparison across experiments and between simulations and experiments, 

we normalized the fiber density to its z-score - the number of standard deviations away from the 

mean background fiber density at quantification windows that were not influenced by the cells. 

Background quantification windows were defined for every location at the onset of 

simulation/imaging before (simulation) or where minimal (experiments) ECM remodeling 

occurred. To calculate the mean background fiber density we considered all quantification 

windows that did not intersect with the quantification window around the cells’ center (Fig. 

S20G - simulations, windows step resolution = 0.02 cell diameter in each axis; Fig. S20H - 

experiments, windows step resolution = 1/10 of the image axis length for each axis). The mean 

(μ) and the standard deviation (σ) of all background quantification windows was calculated per 

simulation/location and was used to normalize each quantification window according to the z-

score measure, 𝐹𝑖𝑏𝑒𝑟𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑍−𝑠𝑐𝑜𝑟𝑒 =
𝐹𝑖𝑏𝑒𝑟𝐷𝑒𝑛𝑠𝑖𝑡𝑦 − 𝜇

𝜎
, i.e., the variation from the mean 

background intensity in units of standard deviation, where 𝐹𝑖𝑏𝑒𝑟𝐷𝑒𝑛𝑠𝑖𝑡𝑦 is the fiber density 

quantification before normalization. This measure could be pooled and compared across 

locations, experiments and could even be used to compare simulations to experiments. 
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Extracting local ECM density over time  

After performing the image transformation (see above), the quantification windows were placed 

adjacent to cell boundaries in 2D (simulations) or 3D (experiments) within the cuboid along the 

connecting axis between the cells, see Fig. S2 and Video S2. This location was updated at each 

time frame according to the current cell boundary positions that changed due to cell contraction 

(simulations) or motion (experiments). For example, this tracking corrected for axial drifting of 

cells toward the glass due to the contraction of the entire gel induced by cell forces. Shifts in the 

quantification windows were performed relative to this position. Offset in the Z axis translated to 

a quantification window placed above/below the pair connected axis and perpendicular to the 

XY axis. Offset in the XY axis translated to a quantification window placed to left/right in XY 

without changing the Z position. Shifting the quantification window toward the communication 

partner or away from a single cell (window distance > 0) was performed on the connecting axis 

between the cells (Fig. S3A), or the axis defined by the image transformation angle in single 

cells. For a given time-lapse sequence we recorded and normalized the fiber density within the 

corresponding quantification windows over time. 

We marked quantification windows within the time series as invalid if one of the following 

criteria holds: (1) Frames with annotated imaging artifacts within the corresponding imaging 

locations (bad cell segmentation, malfunctioning of the imaging microscope and “light waves”, 

Video S7). (2) Overlapping quantification windows, in future corresponding time frames in the 

time series (Fig. S20I). (3) Quantification windows with over 5% of pixels extending beyond the 

image boundaries (Fig. S20J). 

Eliminating imaging artifacts between time frames to avoid correlations not related to cell-

ECM-cell communication 

Cells from the same experiment were embedded in the same fibrous gel inducing local ECM 

correlations that are not related to cell-ECM-cell communication. To eliminate these artifacts the 

local ECM density in each quantification window was normalized by two other windows (termed 

together "normalization border") located above and below (in the Z-axis) the quantification 

window (see Fig. 4C). Each normalization border height was 0.5 cell diameter and located with a 

gap of 0.25 cell diameter above or below the quantification window. These parameters were set 

to optimize the tradeoff between reducing erroneous correlations induced by local correlated 
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ECM fluctuations near the quantification windows and maintaining the ECM fluctuations 

necessary for measuring cell-ECM-cell communication. Specifically, the parameters were 

determined to maximize same-versus-different analysis in live cells while minimizing it for dead 

cells. The normalized and corrected ECM density time series were used for all correlation-based 

analyses. 

Correlation-based analyses 

For correlation-based analysis we considered the longest sub-sequences with continuous valid 

time frames and mutual timestamps (Fig. S20K). We considered only cell pairs with mutual sub-

sequences of at least 15 (temporal resolution = 15 minutes) or 50 (temporal resolution = 5 

minutes) time frames. Correlation was calculated for the second derivative (simulations) or first 

derivative (experiments) of the fiber density dynamics according to stationarity criteria to avoid 

high correlations stemming from the monotonic increase of the fiber density (simulations and 

experiments) and its derivative (simulations) (Fig. S1, Fig. S5). We determined the first/second 

derivative detrending according to two stationarity tests Kwiatkowski–Phillips–Schmidt–Shin 

(KPSS) 50 and Augmented Dickey Fuller (ADF) 51. The null hypothesis in the KPSS test is time 

series stationarity, while in the ADF test is time series non-stationarity. Temporal correlations 

were calculated using Pearson correlation on the derived time series.  

Same-versus-different pair analysis 

To establish that cell-ECM-cell communication of one cell pair can be distinguished from a 

second cell pair we tested whether the correlation between a cell pair (“same” pair) surpassed the 

correlation between one cell from that pair and another cell from a different cell pair (“different” 

pair) (Fig. 4A). This comparison was termed same-versus-different pair analysis. In this analysis, 

we considered all combinations of triplets of cells in an experiment, that included one 

communicating cell pair and another cell that takes part in another communicating pair (Fig. 4A). 

The quantification window of each cell in the analysis was always located in relation to its 

communication partner (Fig. 4A). 

Real-versus-fake pair analysis 

To control for misinterpreting non-communication related local ECM remodeling correlations as 

cell-ECM-cell communication we devised a standardized internal computational control that 
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measures whether the correlation between a cell pair (“real” pair) surpassed the correlation 

between one cell from that pair and another “fake” cell (forming together a “fake” pair). The 

“fake” cell location was determined by following two constraints. The distance between the 

“fake” and its “real” partner is equal to the distance between the communicating cell pair, while 

maximizing the distance to other real cells. The first constraint was defined to allow comparable 

distance between the “real” and “fake” cells pairs. The second constraint was defined to 

minimize the effect of other cells in the vicinity. See depiction in Fig. 5A. 

Matchmaking analysis 

For each cell that takes part in a cell pair we tested our ability to identify its matched 

communication partner from all the other cells in that experiment (Fig. 5C). This was performed 

by ranking the ECM remodeling fluctuations (i.e., first derivative of the fiber density dynamics) 

correlations between the cell at test to all other potential communication partners and recording 

the ranking (i.e., the position in the sorted list of all correlations with other cells) of the true 

communication partner. The potential communication partners were determined based on the 

evaluation at test, for example considering only pairs with bands, pairs without bands, or all pairs 

regardless of having bands. To make this analysis independent of the number of cells in an 

experiment, we randomly selected, with repetition, 49 potential communication partners with an 

expected random probability of identifying the communication partner of 1/50 = 0.02. The 

purpose of the repetition in the random selection of the communication partners was to enable 

fair comparison between experiments that contained different numbers of communicating cells. 

The probability of identifying the true communication partner was recorded at the matchmaking 

score.  

Internal control to validate that our analysis is not an artifact of non-communication-

related correlated local ECM remodeling fluctuations 

The contraction of the cells in the gel lead to local ECM correlations in the fibrous network, even 

in cell-free areas. To further verify that our results in the same-versus-different pair and 

matchmaking analyses were not merely an artifact of these local ECM correlations in the fibrous 

network, we compared the correlation of communicating cell pairs to ECM remodeling 

correlations in quantification windows that were placed in cell-free, fibrous areas. The intuition 

behind this control experiment was to consider correlations in quantification windows that 
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measure the proximity-component, or the local mutual ECM fluctuations, without the influence 

of the communicating cells. These controls were performed by manually annotating “fake” cell 

pairs, and analyzing them while “following” the corresponding “real” cells (Fig. S8A, cyan 

cells). Specifically, the quantification windows’ locations followed their corresponding cell 

pair’s motion by shifting in X’ and Y’ while maintaining a fixed distance from the real pair.  

Assessing sensitivity to temporal resolution 

To examine the sensitivity of our method to the temporal resolution we performed same-versus-

different pair analysis for down-sampled time series. For the sake of completeness, all possible 

starting time frames were considered when setting the first time frame for sampling. For 

example, when down-sampling the temporal resolution from 5 to 15 minutes per frame, there are 

15/5 = 3 possible starting time frames: 𝑡0, 𝑡1and 𝑡2. When choosing 𝑡1, for example, the first 3 

sampled time frames are 𝑡1, 𝑡4, 𝑡7. Time series shorter than 5 (temporal resolution = 15 minutes) 

or 15 (temporal resolution = 5 minutes) time frames were excluded from further correlation-

based analysis. The initial chosen time frame for sampling was set for all same-versus-different 

computations of that time frame. For each temporal resolution, we pooled all same-versus-

different results, which included multiple time series per down-sampled time series as described 

above. See Fig. S10B for full assessment. 

Pooling data across experiments for statistical assessment 

Each experiment was analyzed independently to avoid erroneous relations stemming from 

correlating two cells in different fibrous networks. Such correlations would be inherently lower 

when correlating ECM fluctuations between different networks versus in the same fibrous 

network, due to global network remodeling. Thus, correlating ECM fluctuations between 

different experiments will lead to erroneously optimistic results, which we avoided here by 

considering all possible combinations of “same”/”different”, “real”/”fake”, and matchmaking for 

each experiment independently. After analyzing each experiment independently we pooled all 

the results across experiments for statistical assessment. The non-parametric Wilcoxon signed-

rank test was used for statistical analysis testing the null hypothesis that a distribution, such as of 

“same”-”different” correlations, was distributed around zero. 

Summary of all measurements over all experimental conditions are reported in Table S1. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 9, 2023. ; https://doi.org/10.1101/2020.07.30.223149doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.30.223149
http://creativecommons.org/licenses/by-nc/4.0/


45 
 

Leader-follower analysis with cross-correlation 

Finite-element simulations with a predefined leader and follower were examined using cross-

correlation analysis, measuring the correlation between two time series under different time lags. 

We generated simulations where one cell in a pair was predetermined as the “leader” and its 

communication partner as the “follower”. The “follower” cell “imitated” the “leader” cell 

contraction in the previous time step, thus the contraction of the “follower” cell is lagging one 

simulation round behind the “leader”. The magnitude of influence that the leader had on the 

following was defined with the parameter 𝛼: 𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟(𝑡) = (1 − 𝛼) ∗ 𝑁(𝜇, 𝜎) + 𝛼 ∗

𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑙𝑒𝑎𝑑𝑒𝑟(𝑡 − 1), where 𝑡 > 1, 𝛼 = 0, 0.25, 0.5, 0.75 𝑜𝑟 1, 𝜇 = 1, 𝜎 = 0.5, and 

𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑙𝑒𝑎𝑑𝑒𝑟 was drawn from the normal distribution 𝑁(𝜇, 𝜎). The parameter ⍺ indicates 

the “followership” magnitude, higher values of ⍺ imply that the follower is more influenced by 

its leader contraction.  

In a second simulation we tested whether our approach can identify “leader” and “follower” even 

when the “follower” contracted more than the “leader”, but was still copycating the leader’s 

contraction with a time lag of 1 simulation round. The fold increase of the “follower’s” 

contraction was defined using a parameter 𝛽: 𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟(𝑡) = 𝛽 ∗

𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑙𝑒𝑎𝑑𝑒𝑟(𝑡 − 1), where 𝛽 = 1, 1.05, 1.1 𝑜𝑟 1.2.  

Cross-correlation analysis was performed by comparing different time-lags to the cells’ time 

series and evaluating in relation to the simulation ground truth. Cross-correlation was also 

performed on experimental data, where ground truth was not available, but did not identify any 

leader/follower relations, either due to lacking temporal resolution or lack of leaders/followers in 

our dataset. 

Data 

See Tables S2-3 for detailed information regarding all simulated and experimental data in this 

work. 

Software and data availability 

Processed data and source code are publicly available at https://github.com/assafna/cell-ecm-

project. The data include the processed ECM remodeling fluctuation time series for each cell, in 
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the key simulations and experiments. The source code to perform all analyses presented here is 

included.  
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Supplementary figures 

 

Figure S1. Temporal correlations of ECM remodeling fluctuations in communicating and non-

communicating simulated cell pairs. In these simulations each cell draws its contraction in each step 

independently from a normal distribution with mean of 1% and standard deviation of 0.5%. (A) 

Correlations for fiber density (D), first temporal derivative (D’) and second temporal derivative (D’’) for 

communicating and non-communicating cell pairs. N = 20 cell pairs at a pair distance of 5 cell diameters. 

All p-values not significant. (B) Two-dimensional distribution of fiber density and change in fiber density 

measured in consecutive contraction steps. Quantification windows adjacent to each cell along the band. 

N = 120 cell pairs (N = 20 for distances of 5, 7, 9, 12, 15 and 17 cell diameters). Constant cell contraction 

of 1% between consecutive time frames. Pearson correlation coefficient = 0.59, p-value < 0.0001. (C) 

Correlation of communicating versus non-communicating cell pairs using the second derivative of fiber 

density dynamics as a function of the window distance. Pair distance = 5 (N = 19 pairs). All p-values < 

0.0001. (D) (Left) visualization of representative simulated cell-ECM interactions. Top: both cells 

actively contract. Middle: one cell actively contracts, another cell is fixed. Bottom: only one cell is 

present and active. (Right) Correlation measurements. Left: correlation of communicating cell pairs at 

distance 4 cell diameters, i.e., both cells actively contract. Middle: correlation of cell pairs where one, but 

not the other, is actively contracting. Right: correlation of a simulated single cell without a 

communication partner. A quantification window was placed at the same distance as the second cell 

would have been in the other simulations. N = 11 independent simulations per simulation condition.  
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Figure S2. ECM remodeling dynamics are quantified along the connecting axis between the cells: 

illustration of the side view (top) and top view (bottom). Microscopy axes (X’, Y’, Z’) marked with 

dashed arrows, transformed visualization and quantification axes (connecting axis, XY, Z) marked with 

solid arrows. The cuboid region in-between the cell pair (brown), has the width of a cell diameter, and is 

used for quantification along the connecting axis. The length of the cuboid region is the pair distance. The 

cuboid left and right sides were parallel to the microscopy axial plane. The Z-axis (cyan) and the XY-axis 

(purple) are perpendicular to each other and to the connecting axis (black). 
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Figure S3. The distance between pairs of communicating cells is negatively correlated to the density of 

fibrous regions further away from the cell. I.e., as the quantification region moves away from one cell, the 

effect of the other cell drops as a function of the pair distance, implying a stronger mechanical interaction 

with the other cell for closer pairs. (A) Schematic sketch. Pair distance (purple) between cell pairs at the 

onset of imaging. Window distance (cyan) is measured from the boundaries of one cell toward the other 

cell in the pair, along the axis (in 3D) defined by the pair. (B) Correlation between the window distance 

and the correlation between pair distance and fiber density across cell pairs. N = 15 window distances. 

Pearson correlation coefficient = -0.76, p-value < 0.001. Red asterisks reflect a significance level below 

0.05. Insets: two significant correlations between fiber density pair distance for window distance of 1 

(top) and 2.6 (right) cell diameters. N = 38 (top) and 10 (right) communicating cell pairs. Pearson 

correlation coefficient = -0.37 (top) and -0.71 (right), p-value = 0.02 for both. The reduced number of cell 

pairs (right) stems from overlapping of the quantification regions due to short pair distances. Note that the 

color coding (purple, cyan, green) is matching the sketch in panel A. (C) Summary table for the data in 

panel B. Bold rows with red asterisk reflect correlations with significance levels below 0.05. 
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Figure S4. Comparison of fibrous material models with linear and stiffening behavior. (A) 
Stress-strain curves representing the mechanical behavior of the fibers used in the simulations. 
Stiffening model is based on 2.4 mg/ml collagen, linear model is based on 4 mg/ml fibrin 52. (B) 
Same network correlations minus different network correlations as a function of the cell-to-cell 
pair distance (second derivative of fiber density, cell heterogeneity of mean contraction of 1% 
and standard deviation of 0.5%). Correlations were calculated for cell-to-cell pair distances of 4 
(20 pairs for the stiffening model and 10 pairs for linear model), 5 (19 pairs for the stiffening 
model and 10 pairs for the linear model), 7 (19 pairs for the stiffening and 10 pairs for the 
linear), and 9 (19 pairs for the stiffening model and 10 pairs for the linear model) cell diameters. 
For ‘stiffening’, “same” > “different” in 72% of the matched same-versus-different pair analysis 
(92%, 79%, 70% and 68% for pair distances of 4,5,7 and 9 cell diameters, correspondingly), 
whereas in for ‘linear’, “same” > “different” in 61% of the matched same-versus-different pair 
analysis (76%, 68%, 71% and 43% for pair distances of 4,5,7 and 9 cell diameters, 
correspondingly). 
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Figure S5. Detrending fiber density of single cell and cell pairs. Shown are correlations between fiber 

density (D), first temporal derivative (D’) and second temporal derivative (D’’) in time. (A-C) Cell pairs. 

Pairs distance 60-150 μm (4-10 cell diameters). N = 42 cell pairs. (A) Wilcoxon signed-rank testing the 

null hypothesis that the correlations are distributed around a mean = 0: p-value < 0.0001 (D), not 

significant (D’, D’’). (B) Kwiatkowski–Phillips–Schmidt–Shin (KPSS) testing the null hypothesis that the 

data is stationary. Each data point is the KPSS test p-value rejecting the null hypothesis that the time 

series is stationary, with p-value < 0.05. The null hypothesis is rejected for 99% of the raw and for 100% 

of first or second derivative time series. (C) Augmented Dickey Fuller test (ADF) testing the null 

hypothesis that the data is non-stationary. Each data point is the ADF test p-value rejecting the null 

hypothesis that the time series is not stationary, with p-value < 0.05. The null hypothesis is rejected for 

24% of the raw time series, 46% for the first derivative and 55% for the second derivative. (D-F) Single 

cells. N = 7 cells. Correlations are computed between all possible pairs of single cells, total of 21 

correlations. (D) Wilcoxon signed-rank p-value not significant (D, D’, D’’). (E) KPSS is not rejected for 

all raw, first, or second derivative time series. (F) ADF is rejected for 29% of the raw time series, 71% for 

the first derivative and 57% for the second derivative. 
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Figure S6. Enhanced identification of communicating cells by shifting the quantification window’s 

location. Same-versus-different pair analysis for different locations of the quantification window. Pair 

distance was 60-150 μm (~4-10) cell diameters, window distance = 0, correlations were calculated using 

the first derivative of fiber density dynamics. All combinations of “same”/”different” were considered. 

Slightly different numbers of cell pairs per quantification window location stems from discarding pairs 

where the quantification windows exceeded beyond the image boundaries. See Fig. 7A for axes 

schematics. Top panel (Z = 0.5, XY = 0): N = 48 cell pairs. “Same” pair had a higher correlation than 

“different” pair in 94% of the matched correlations. Wilcoxon signed-rank p-value < 0.0001. Left panel 

(Z = 0, XY = -0.5): N = 42 cell pairs. “Same” pair had a higher correlation than “different” pair in 50% of 

the matched correlations. Wilcoxon signed-rank p-value not significant. Middle panel (Z = 0, XY = 0): 

N = 42 cell pairs. “Same” pair had a higher correlation than “different” pair in 52% of the matched 

correlations. Wilcoxon signed-rank p-value < 0.001. Right panel (Z = 0, XY = 0.5): N = 42 cell pairs. 
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“Same” pair had a higher correlation than “different” pair in 56% of the matched correlations. Wilcoxon 

signed-rank p-value < 0.0001. Bottom panel (Z = -0.5, XY = 0): N = 36 cell pairs. “Same” pair had a 

higher correlation than “different” pair in 88% of the matched correlations. Wilcoxon signed-rank p-value 

< 0.0001. 

 

 

Figure S7. Identification of communicating cells in different pair distances. Same-versus-different pair 

analysis. Quantification windows were placed 7.5 μm above the connecting axis between the cells (see 

Fig. 5E for schematics). Correlations were calculated using the first derivative of fiber density dynamics. 

All combinations of "same"/"different" were considered. Partitioning the data to cell pairs intervals of 4-

6, 6-8, or 8-10 cell diameters was performed under the assumption of a mean fibroblast diameter of 15 

μm. (A) Pair distance 60-90 μm (4-6 cell diameters). N = 18 cell pairs. “Same” pair had a higher 

correlation than “different” pair in 93% of the matched correlations. Wilcoxon signed-rank p-value < 

0.0001. (B) Pair distance 90-120 μm (6-8 cell diameters). N = 19 cell pairs. “Same” pair had a higher 

correlation than “different” pair in 96% of the matched correlations. Wilcoxon signed-rank p-value < 

0.0001. (C) Pair distance 120-150 μm (8-10). N = 11 cell pairs. “Same” pair had a higher correlation than 

“different” pair in 91% of the matched correlations. Wilcoxon signed-rank p-value < 0.0001. 
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Figure S8. Controlling for potential masking of cell-ECM-cell communication by local ECM remodeling 

fluctuations. (A) Schematic sketch of a “fake-following” pair (cyan) mimicking a real cell pair (green) by 

repeating the cells’ shifts in X and Y axes (green shadow) in a fixed distance from the real pair (cyan 

shadow). (B) Quantification of same-versus-different analysis for “fake-following” pairs. N = 25 fake cell 

pairs. “Same” pair had a higher correlation than “different” pair in 46% of the matched correlations. 

Wilcoxon signed-rank p-value < 0.0001. (C-F) Cell-ECM-cell communication is more prominent than the 

masking by local ECM remodeling fluctuations. Same-vs-different pair analysis of cell pairs and their 

corresponding “fake-follower” cell pair. Pair distance 60-150 μm, correlations were calculated using the 

first derivative of fiber density dynamics. All combinations of "same"/"different" were considered for 

both the cell pairs and the “fake” cell pairs independently. Left panels compare the distribution of same-

versus-different pair analysis of cell pairs (“real”) versus “fake-follower” pairs (“fake”). Right panels 

compare matched same-vs-different pair analysis for each cell pair (“real”) and its corresponding “fake-

follower” pair (“fake”). Panels C-D and E-F are the same analysis with low (15 minutes) versus high (5 
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minutes) temporal resolution correspondingly. In panels C and E the quantification window is located at 

the focal plane between the cell pair, while in panels D and F 7.5 μm above the focal plain between the 

cell pair. (C) Quantification window at the focal plane between the cell pair. Temporal resolution = 15 

minutes. N = 20 matched pairs. Left: “same” > “different” in 54% (“real”) and 62% (“fake”) of the same-

versus-different pair analysis. Wilcoxon signed-rank p-values < 0.0001. Right: “real” > “fake” in 43% of 

the matched same-versus-different pair analysis. Wilcoxon signed-rank p-value < 0.0001. (D) 

Quantification window 7.5 μm above focal plane between the cell pair. Temporal resolution = 15 minutes. 

N = 25 matched pairs. Left: “same” > “different” in 98% (“real”) and 46% (“fake”) of the same-versus-

different pair analysis. Wilcoxon signed-rank p-values < 0.0001. Right: “real” > “fake” in 90% of the 

matched same-versus-different pair analysis. Wilcoxon signed-rank p-value < 0.0001. (E) Quantification 

window at the focal plane between the cell pair. Temporal resolution = 5 minutes. N = 19 matched pairs. 

Left: “same” > “different” in 56% (“real”) and 57% (“fake”) of the same-vs-different pair analysis. 

Wilcoxon signed-rank p-values < 0.001. Right: “real” > “fake” in 54% of the matched same-vs-different 

pair analysis observations. Wilcoxon signed-rank p-value < 0.05. (F) Quantification window 7.5 μm 

above focal plane between the cell pair. Temporal resolution = 5 minutes. N = 14 matched pairs. (G) 

“Same” > “different” in 100% (“real”) and 67% (“fake”) of the same-versus-different pair analysis. 

Wilcoxon signed-rank p-values < 0.0001. (H) “Real” > “fake” in 100% of the matched same-vs-different 

pair analysis observations. Wilcoxon signed-rank p-value < 0.0001. 

 

 

 

Figure S9. Cell-ECM-cell communication in Murine cancer Hras mutated cells. Same-versus-different: N 

= 48, 94% “same” > “different, p-value < 0.0001. Real-versus-fake: N = 48, 86% “real” > “fake”, p-value 

< 0.0001. Matchmaking analysis: N = 96, correct matching probability = 72%. 
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Figure S10. Sensitivity of same-versus-different pair analysis to the temporal resolution. Pair distance 60-

150 μm, quantification windows were placed 7.5 μm above the connecting axis between the cells (see Fig. 

7E for schematics). Correlations were calculated using the first derivative of fiber density dynamics. (A) 

Identification of communicating cells in higher temporal resolution of 5 minutes per frame. Same-versus-

different pair analysis. All combinations of "same"/"different" were considered. Pairs with a visible band. 

N = 14 cell pairs. “Same” pair had a higher correlation than “different” pair in all (100%) of the matched 

correlations. Wilcoxon signed-rank p-value < 0.0001. (B) Sensitivity of same-versus-different pair 

analysis to the temporal resolution. The experimental temporal resolution was artificially down-sampled 

to create multiple time series with reduced time resolutions with different starting times. All possible time 

intervals under a given temporal resolution (different starting time) were considered leading to multiple 

recorded observations for a single pair of communicating cells (Methods). Left: Low temporal resolution 

experiments. Original time resolution was 15 minutes per frame. N = 2 experiments, same-versus-

different pair analysis was performed independently for each experiment and the results were pooled 

together without mixing pairs from different experiments. N = 48 pairs (15/30/45 minutes), N = 43 pairs 

(60 minutes) and N = 14 pairs (75 minutes). “Same” pair had a higher correlation than “different” pair in 

94% (15 minutes), 87% (30 minutes), 77% (45 minutes), 68% (60 minutes) and 67% (75 minutes) of the 

matched correlations. Wilcoxon signed-rank p-value < 0.0001 for all temporal resolutions. Right: High 

temporal resolution experiments (5 minutes per frame). N = 3 experiments, same-versus-different pair 

analysis was performed independently for each experiment and the results were pooled together without 

mixing pairs from different experiments. N total pairs = 14 pairs (5/10/15 minutes, 100/99/99% “same” > 

different” correspondingly), N = 13 pairs (20 minutes, 99% “same” > different”), N = 12 pairs (25 
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minutes, 99% “same” > different”), N = 9 pairs (30/35/40 minutes, 99/98/98% “same” > different” 

correspondingly), N = 8 pairs (45/50/55 minutes, 98/96/97% correspondingly), N = 7 pairs (60/65/70/75 

minutes, 95/92/92/91% “same” > different” correspondingly), n = 6 pairs (80/85 minutes, 91/86% “same” 

> different” correspondingly). (C) Real-versus-fake for high temporal resolution: N = 13, 100% “real” > 

“fake”, p-value < 0.0001. (D) Matchmaking analysis for high temporal resolution: N = 28 cells, correct 

matching probability = 100%. 

 

Figure S11. Association between cell pair correlations and the fraction of saturated pixels in the region 

used to measure cell-cell communication. For both panels, pair distances range between 4 and 10 cell 

diameters (60-150 μm, assuming mean fibroblast diameter of 15 μm). Correlations were calculated using 

the first derivative of fiber density dynamics. (A) Saturation-independent correlations along the 

connecting axis between the cells (Pearson correlation coefficient p-value > 0.05), N = 42 cell pairs. 

Image saturation does not hamper the ability to identify cell-ECM-cell communication along the dense 

fibrous band. (B) Image saturation slightly reduces the ability to identify cell-ECM-cell communication 

0.5 cell diameters (7.5 μm) above the connecting axis between the cells. N = 48 cell pairs, Pearson 

correlation coefficient = -0.18, p-value < 0.0001. 
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Figure S12. Spatial decoupling of band formation and cell-ECM-cell communication in cell pairs with a 

visible band imaged in high temporal resolution of 5 minutes per frame. Pair distance of 60-150 μm. (A) 

Fiber density. Mean fiber density for systematic offsets in Z and XY axes. (B) Cell-ECM-cell 

communication. Mean fraction of higher “same”, correlation between communicating pairs, versus 

“different”, correlation between one cell from that pair and another cell from a different communicating 

pair for systematic offsets in Z and XY axes. Red ‘x’ marked that the null hypothesis that “same” - 

“different” correlations are distributed around zero was not rejected with p-value ≤ 0.05. 

 

 

Figure S13. Spatial decoupling of band formation and cell-ECM-cell communication in pairs with no 

visible band imaged in high temporal resolution of 5 minutes. Pair distance of 60-150 μm. (A) Fiber 

density. Mean fiber density for systematic offsets in Z and XY axes. (B) Cell-ECM-cell communication. 

Mean fraction of higher “same”, correlation between communicating pairs, versus “different”, correlation 

between one cell from that pair and another cell from a different communicating pair for systematic 

offsets in Z and XY axes. Red ‘x’ marked that the null hypothesis that “Same” - “different” correlations 

are distributed around zero was not rejected with p-value ≤ 0.05. 
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Figure S14. Higher ECM intensities along the fibrous band confound our ability to sensitively measure 

the ECM fluctuations as a signature of cell-ECM-cell communication. (A) Association between fiber 

density and our ability to identify cell-ECM-cell communication with same-versus-different pair analysis. 

Each data point represents the mean fiber density in the quantification window (x-axis) and the fraction of 

cell pairs with “same” correlation higher than “different” correlation (y-axis) for different locations of the 

quantification window. The data here was derived from matched bins in Fig. 7B (x-axis) and Fig. 7C (y-

axis) in a region that spans 1 cell diameter away (15 µm) from the quantification plane defined adjacent to 
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the cells in the connecting axis between the communicating cells: all bins in the range -1≤XY≤1 and -

1≤Z≤1. Pearson correlation coefficient = -0.26, p-value < 0.0001. Note the stiff drop in cell-ECM-cell 

communication around fiber density of ~3-4 z-scores. (B) The band intensity is maximal along the 

connecting axis between the cells. The magnitude of the changes in ECM intensity is similar along the 

connecting axis and slightly above it, where communication is optimal. Top: imaging at temporal 

resolution of 15 minutes per frame (left-most and right most are duplication of Fig. 7B and Fig. 7C 

correspondingly), bottom: imaging at temporal resolution of 5 minutes per frame (left-most and right 

most are duplication of Fig. S12A and Fig. S12B correspondingly).  

 

 

Figure S15. Contractility inhibition experiments measured with same-versus-different analysis (first 

column), real-versus-fake analysis (middle column), and match making analysis (right column). (A) 85 

nM Blebbistatin. Same-versus-different: N = 42, 95% “same” > “different, p-value < 0.0001. Real-versus-

fake: N = 42, 90% “real” > “fake”, p-value < 0.0001. Matchmaking analysis: N = 84, correct matching 

probability = 79%. (B) 150 nM Blebbistatin. Same-versus-different: N = 34, 66% “same” > “different, p-

value < 0.0001. Real-versus-fake: N = 34, 50% “real” > “fake”, p-value not significant. Matchmaking 

analysis: N = 68, correct matching probability = 13%. 
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Figure S16. Identifying leader-follower relation in communicating cell pairs. (A) Schematic sketch of the 

simulation. Right cell (red, follower) mimics the contraction of the left cell (purple, leader) at the previous 

time point (Methods). (B-E) Simulated cell pair cross correlation for different time lags. N = 13 cell pairs. 

Pair distance = 7 cell diameters. The leader cell draws its contraction in each step independently from a 

normal distribution with mean of 1% and standard deviation of 0.5%. The follower cell draws its 

“intrinsic” component (contraction follower) from the same distribution. The second derivative of the 

fiber density dynamics was used for correlation. Time lag is applied to the follower’s time series before 

correlation is calculated. (B) Distribution of cell pair correlations as a function of the time lag. (C-D) 

Identifying leaders and followers as a function of varying values of ⍺. Increased ⍺ values imply an 

increased contribution of the extrinsic component - the influence by the leader cell. (C) Distribution of 

cell pair correlation with time lag = 1 as a function of ⍺ values. (D) Fraction of cell pairs where the leader 

(time lag 1 or 2), follower (time lag -2 or -1) or none (time lag 0) lead to maximal cell pair correlation, 

and is thus identified as leader, as a function of ⍺ values. (E) Distribution of cell pair correlation with 

time lag = 1 as a function of ꞵ values. Increased ꞵ implies an increased contraction by the follower cell. ⍺ 

value was set to 1. 
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Figure S17. Leader-follower lag time analysis in simulated cell pairs. Cell pair cross correlation for 

different time lags. N = 13 cell pairs. Pairs distance = 7 cell diameters. The leader cell draws its 

contraction in each step independently from a normal distribution with mean of 1% and standard 

deviation of 0.5%. The follower cell draws its “intrinsic” component (contraction follower) from the same 

distribution. The second derivative of the fiber density dynamics was used for correlation. Time lag is 

applied to the follower’s time series before correlation is calculated. (A) Distribution of time lags that 

lead to maximal cell pair correlation. (B) Fraction of cell pairs where the simulated time lag (that was set 

to one step) leads to maximal cell pair correlation as a function of ⍺ values. Increased ⍺ implies an 

increased contribution of the extrinsic component - the influence by the leader cell. Note that ⍺ = 0 

implies no leader effect and thus the fraction is expected to be random. (C) Fraction of cell pairs where 

the simulated time lag leads to maximal cell pair correlation as a function of ꞵ values. Increased ꞵ implies 

an increased contraction by the follower cell. ⍺ value was set to 1. 
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Figure S18. Cross correlation analysis of artificial pairing of simulated leader/follower cells that did not 

interact with one another as a control. Cross correlation for different time lags between a cell from one 

communicating pair and another cell from a different communicating pair. N = 13 cell pairs, pair distance 

= 7 cell diameters. The leader cell draws its contraction in each step independently from a normal 

distribution with mean of 1% and standard deviation of 0.5%. The follower cell draws its “intrinsic” 

component (contractionfollower) from the same distribution. The second derivative of the fiber density 

dynamics was used for correlation. The time lag is applied to the follower’s time series before the 

correlation was calculated. (A) Distribution of correlations as a function of the time lag. (B) Distribution 

of time lags that lead to maximal correlation. (C) Distribution of the correlation for time lag = 1 as a 

function of ⍺ values. Increased ⍺ implies an increased contribution of the extrinsic component for the 

communicating cell paris before the artificial pairing to cells that never communicated with one another. 
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(D) Fraction of cell pairs where the simulated time lag (that was set to one step) leads to maximal 

correlation as a function of ⍺ values. (E) Distribution of the correlation for time lag = 1 as a function of ꞵ 

values. Increased ꞵ implies an increased contraction by the follower cell. ⍺ value was set to 1. (F) 

Fraction of cell pairs where the simulated time lag leads to maximal correlation as a function of ꞵ values. 

 

Figure S19. Cross correlation analysis did not identify leader-follower relations in experimental data. N = 

19 communicating cell pairs with visible bands. Temporal resolution = 5 minutes between consecutive 

time frames. Pair distance of 60-150 μm. Quantification windows were placed 7.5 μm above the 

connecting axis between the cells. Correlations were calculated using the first derivative of fiber density 

dynamics. Time lags were recorded with their absolute value (symmetry argument: no preference to a 

specific cell as in the simulations). (A-B) Cell pair cross correlation for different time lags. (A) 

Distribution of cell pair correlations as a function of the time lag. (B) Distribution of time lags that lead to 

maximal cell pair correlation. (C-D) Cross correlation for different time lags between one cell from a 

communicating pair and another cell from a different communicating pair as a control. (C) Distribution of 

correlations as a function of the time lag. (D) Distribution of time lags that lead to maximal correlation. 
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Figure S20. Methods. (A) Components of a finite-element simulation network. Fibers are represented by 

discrete one-dimensional elements (red) connected by two nodes (blue). (B) Finite-element network 

dimensions. The simulated fibrous network was defined as a circular arena, of radius 2 AU, that is 

composed of connected elements. One or two circular voids, of radius 0.08 AU (green), define the cell/s. 

The center of the network is called the origin (purple). Single cells centers are located in the origin. Cell 

pairs centers are located along the X axis in predefined distance from the origin. Ratio of cell radius and 

the network radius in the depiction does not resemble the actual proportion between the two. (C) 

Transformation of cell pairs images. First transformation (top-left to bottom-left) aligns the cell centers to 

a common Y’-axis. Images are in top-view perspective. We use X’ and Z’ axes for cell pair visualization 

(top-right). The second transformation (top-right to bottom-right) aligns the cell centers to a common Z’-

axis. Images are in side-view perspective. The transformed image (bottom-right) is used for cell pair 

quantification. (D) Transformation of single cell images. Illustration is in top-view perspective. First 

transformation (blue) in 0o, 45o, 90o or 135o in the XY axis. Second transformation (green) in 0o, 45o, 90o 

or 135o in the Z’ axis. (E) Quantifying fiber (simulation elements) intersection with the quantification 

windows in simulations. The quantification window is illustrated with a dashed box. To be considered, a 

fiber must be either exclusively inside the quantification window or crossing the window’s boundaries. 

The sub-fiber within the window’s boundaries (green) are included while sub-fibers external to the 

quantification window (red) are excluded from the quantification. (F) The quantification windows for 

simulated single cells are placed in four directions at 90 degrees radial intervals. (G) Quantification 

windows in simulations used for computing the normalization parameters. Quantification window (blue 

as an example) is the size of a cell diameter by a cell diameter (0.08 x 0.08 AU). All quantification 

windows used for this computation (cyan) are located inside the network boundaries and outside the cells 

with a step resolution (overlap) of 0.02 (AU) in each of the axes. (H) Quantification windows in 

experiments used for computing the normalization parameters. Quantification window (blue as an 

example) length is 15 μm, approximately the cell diameter in 3D. All quantification windows used for this 

computation (cyan) are located exclusively inside the image boundaries in all axes and without 

intersection with bounding boxes (orange) around the cells, with a step resolution (overlap) of 1/10 of the 

image axis length for each axis. (I) An example of overlapping quantification windows between a pair of 

communicating cells. Images are in a side-view average projection perspective. Quantification windows 

are marked in white dashed boxes. At the onset of imaging (top) the quantification did not overlap, 

however after 3.5 hours of live cell imaging (bottom) the quantification windows did overlap (orange 

area). Scale bar = 15 μm. (J) An example of a quantification window extending beyond the image 

boundaries at the onset of imaging. Image is in a side-view perspective with averaged pixel intensities 

visualization after the transformation. Quantification windows are marked in white dashed boxes. Red 

area represents the sub-window outside the image boundaries. Scale bar = 15 μm. (K) Valid (“V”) and 

invalid (“X”) quantification windows (see Methods for definition) over time of three different cells. Blue 

rectangle represents the longest shared valid temporal sequence for cell #1 and cell #2 and the green 

rectangle for cell #2 and cell #3. 
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Figure S21. Sensitivity analysis for the size of the quantification. Same-versus-different pairs analysis for 

window size of 0.5-3 cell diameters. We selected window size of 1-cell diameters because it balanced 

same-versus-different performance and the number of cell pairs that can be analyzed (larger windows 

reduces the number of cell pairs due to overlap). Window size = 0.5: N=51 pairs, "same" pair had higher 

correlation in 60.9% matched correlations. Window size = 0.75, N=51 pairs, "same" pair had higher 

correlation in 86.7% matched correlations. Window size = 1, N=48 pairs, "same" pair had higher 

correlation in 94.4% matched correlations. Window size = 1.5, N=44 pairs, "same" pair had higher 

correlation in 98.5% matched correlations. Window size = 2, N=36 pairs, "same" pair had higher 

correlation in 96.5% matched correlations. Window size = 3, N=12 pairs, "same" pair had higher 

correlation in 76.5% matched correlations. 
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Supplementary tables legends 

Table S1: Summary of experimental results, measuring cell-ECM-cell communication in different cell 

systems, imaging and experimental conditions. Same-versus-different, real-versus-fake and matchmaking 

results were recorded for each condition.  

Table S2: Simulation data table. These data include single cells and cell pairs, heterogeneity and leader / 

follower in pair distances 5, 7 and 9 cell diameters.  

Table S3: Experimental data table. Experimental data was partitioned to different categories as followed. 

(1) Whether the experiment involved single cell or cell pairs, (2) Which cell line (fibroblasts/cancer) or 

beads were used, (3) Whether cells were treated with Blebbistatin or whether the (control) experiment 

included dead cells, (4)  Are the cells “real” or is it a “fake” cells analysis, (5) Whether the cell pairs had a 

dense fibrous band between them, (6) What was the temporal resolution (in minutes), (7) What was the 

pair distance between the cells (4-6, 6-8 and 8-10 cell diameters, where cell diameter is estimated at 

~15µm), (8) What was the Blebbistatin dosage (in nM), (9) Whether the experiment consisted exclusively 

dead cells, (10) What was the number (N) of observations (mostly cell pairs) in the category.  

 

 

Supplementary video legends 

Video S1: Finite-element simulation of a cell pair contracting in a 2D fibrous network. Pair distance = 7 

cell diameters. Both cell contracts 1% for 50 steps (Methods). 

Video S2: 3D representation of a cell pair quantification axes. Microscopy axes in the left bottom corner: 

X’ (dark green), Y’ (orange) and Z’ (cyan). Cells (green) are in different Z’ coordinates. Connecting axis 

(black) is between the cell’s centers. Quantification windows (yellow) are adjacent to each cell along the 

connecting axis (black) between the cell’s centers, left and right sides are parallel to the microscopy axial 

plane. The Z-axis (cyan) and the XY-axis (purple) are perpendicular to each other and to the connecting 

axis (black). The video demonstrates offsets between -1 and 1 cell diameters of the quantification 

windows in the Z (cyan) and XY (purple) axes. 

Video S3: Time-lapse confocal imaging of a single fibroblast embedded in a 3D fibrin gel. XY/Z average 

projection visualization of a single cell (Methods). Time resolution: 21 minutes. Scale bar = 15 μm.  

Video S4: Time-lapse confocal imaging of a pair of fibroblast cells embedded in a 3D fibrin gel forming a 

band of dense fibers in the connecting axis between the cells. XY/Z average projection visualization of a 

pair of cells (Methods). Pair distance: 117 μm. Time resolution: 15 minutes. Scale bar = 15 μm. 

Video S5: Matchmaking between communication partners. Images are in a side-view perspective. Cell 

pairs are with visible bands. Quantification windows (white dashed rectangles) are adjacent to each cell 

along the connecting axis (black) between the cell’s centers. The video demonstrates the analysis of a cell 

by correlating it’s ECM remodeling dynamics with all other candidates. Correlation results are for 

demonstration purpose only. 

Video S6: Time-lapse confocal imaging of a pair of fibroblast cells embedded in 3D fibrin gel not 

forming a band of dense fibers in the connecting axis between the cells. Pair distance: 110 μm. Time 

resolution: 15 minutes. Scale bar = 15 μm. 

Video S7: Time lapse imaging of a cell pair with a manually identified illumination artifact in several 

time frames that were excluded from analysis. 
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