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Abstract

Motivation: As the UniProt database approaches the 200 million entries’ mark, the vast
majority of proteins it contains lack any experimental validation of their functions. In this con-
text, the identification of homologous relationships between proteins remains the single most
widely applicable tool for generating functional and structural hypotheses in silico. Although
many databases exist that classify proteins and protein domains into homologous families,
large sections of the sequence space remain unassigned.

Results: We introduce DPCfam, a new unsupervised procedure that uses sequence align-
ments and Density Peak Clustering to automatically classify homologous protein regions. Here,
we present a proof-of-principle experiment based on the analysis of two clans from the Pfam
protein family database. Our tests indicate that DPCfam automatically-generated clusters
are generally evolutionary accurate corresponding to one or more Pfam families and that they
cover a significant fraction of known homologs. Overall, DPCfam shows potential both for
assisting manual annotation efforts (domain discovery, detection of classification inconsisten-
cies, improvement of family coverage and boosting of clan membership) and as a stand-alone
tool for unsupervised classification of sparsely annotated protein datasets such as those from
environmental metagenomics studies (domain discovery, analysis of domain diversity).

Availability: Algorithm implementation used in this paper is available at
https://gitlab.com/ETRu/dpcfam (Requires Python 3, C++ compiler and runs on Linux sys-
tems.); data are available at https://zenodo.org/record/3934399

1 Introduction

Conserved evolutionary modules shared by different proteins typically present some degree of
structural and, to a lesser extent, functional similarity [30]. The identification of homologous pro-
tein families is thus of great importance for in silico protein annotation. Several resources have
been developed toward this goal, including but not limited to, Pfam [10], SMART [20], TIGR-
FAMs [13], PANTHER [25], SFLD [1], CATH-Gene3D [21], SUPERFAMILY [36] and ECOD [7].
Some databases restrict themselves to specific functional categories (SMART, SFLD), phylogenetic
groups (TIGRFAMs) or to families for which structural information is available (CATH-Gene3D,
SUPERFAMILY , ECOD). Others aim to classify the protein sequence space more widely (Pfam,
PANTHER). Most databases try to identify domains (evolutionary, structural and/or functional
units) while some build families for full-length protein sequences (TIGRFAM, PANTHER). All of
these resources take advantage, at some level, of expert manual curation. While this helps increas-
ing quality of defined families, it can limit the area of the sequence space that each classification is
able to cover at any point in time. For example, Pfam residue coverage of the UniProtKB database
as of release 04/2018 [10] was around 53% with more than 20% of all UniProtKB sequences lacking
any type of Pfam annotation. In order to alleviate this problem, databases have been developed
that integrate into a single platform families from several other resources (InterPro [28], CDD [24]).

An alternative approach to manually curated family classification is performing automatic,
sequence-based clustering of protein regions. Although unsupervised clustering will generally result
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in a less accurate classification, it has the advantage that high coverage of the protein sequence space
can be achieved, at limited cost. As a consequence, it can be used effectively to complement manual
annotations. Automated family classification has a long history in protein bioinformatics and over
the years has led to the development of algorithms such as ADDA [14], COG [35], EVEREST [31],
and MCL [11], among others. Until 2015, the ADDA clustering algorithm was used to produce
Pfam-B, which was an automatically-built companion to the manually curated Pfam main family
collection. Pfam-B, however, has since been discontinued due to the heavy computational cost of
running ADDA on modern day, large sequence databases [12]. MCL [11] has been widely used for
automatic clustering of both amino-acid and nucleotide sequences (e.g. [8], [27], [3], [23], [19]).
MCL underlying algorithm groups protein sequences into families using stochastic flows on pre-
computed graphs where nodes represent protein sequences and edges are sequence similarity scores
obtained from pairwise alignments. A recent high-performance parallel implementation of MCL
(HIpMCL) allows for efficient clustering of large-scale networks [2]. Although MCL is very effective,
it is not meant to cluster together individual domains but rather full-length sequences in this being
similar to COG [35] and other ortholog/paralog clustering methods. Here we introduce DPCfam,
a new method for automated classification of homologous protein sequences into families based on
all-versus-all sequence similarity scores and Density Peak Clustering (DPC) [33]. Given an initial
list of query sequences and a dataset of search sequences (the latter including the queries), we
run BLAST alignments of all query vs all search sequences. Next, search sequence regions that
align to similar parts of a query are grouped together into primary clusters by DPC. Primary
clusters are grouped into “metaclusters” (MCs) based on the number of search sequence regions
they have in common and on the correspondence between their respective boundaries. Finally,
MCs are merged if they still share a significant number of search sequence regions. The sequences
that form an MC can be used as seeds to build a Multiple Sequence Alignment (MSA) and a
corresponding profile-HMM, similarly to what is done in Pfam [10]. In this work, we use the
Pfam database family classification as our ‘ground truth’ for protein annotation. In particular, by
analyzing two Pfam clans (also known as superfamilies) we provide a proof-of-principle of the ability
of DPCfam to produce MCs that are constituted of protein sequences sharing a core homologous
region (families). We show that the families produced by DPCfam can represent single domains or,
sometimes, conserved domain architectures. Although in principle the DPCfam algorithm can be
applied to the analysis of large sequence databases such as UniprotKB or metagenomic datasets,
the specific implementation presented in this paper is only suitable for analysis of relatively small
datasets. We are currently working on a parallelized c++ version of the algorithm which, when
ran on Tier-0 supercomputers, we estimate will take about 50,000 CPU hours to complete the
clustering of the whole UniRef50 database (v 07/2017, about 23 million sequences).

2 Methods

In the following sections we describe the DPCfam workflow, which consists of: running BLAST
alignments of our query (clan) database against Uniref50 (2.1), primary clustering of alignments
falling on the same query sequence (2.2.1), metaclustering of primary clusters (2.2.2) and, finally,
merging of metaclusters (2.2.3). In sections 2.3 and 3.4 we describe our protocols for comparing
DPCfam clusters with the Pfam-annotated families. Finally, in section 2.5, we report on the choice
of the two Pfam clans that we analyse here.

2.1 BLAST searches
Our database of reference throughout this work is Uniref50 (v. 07/2017). Given a Pfam clan,
for example PUA, we generate a dataset constituted of all Uniref50 full-length sequences that
carry a PUA clan member annotation by matching their UniProtKB ids with those of sequences
in Pfam-A.full v.31. We name such a dataset PUA_UR50. Next, for each sequence (query) in
the dataset, we perform a local alignment search against the full Uniref50 database using NCBI
BLAST (v. 2.2.30+)[6] and save all alignments with E-value < 0.1 (up to 5 millions, using the
max_target_seqs option of BLAST).

We define a BLAST alignment, labeled by an index i, as:

Bi =
⇣
qi, si,Qi,Si

⌘
(1)
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where qi is the identifier of the query sequence, si is the identifier of the search sequence, Qi and Si

are regions on, respectively, the query and the search sequence. More in detail, Qi and Si represent
the boundaries (start and end points) of the pairwise alignments on the query search sequences,
respectively (see Figure S1 A). Note that gaps and insertions are not taken into account.

2.2 Clustering of BLAST alignments
DPC [33] entails the following steps: i) defining a distance in the space of the objects that are to
be clustered; ii) for each object estimating its local density using the distance defined in (i); iii)
selecting density peaks (cluster centers) and, finally, iv) assigning of non-peak objects to density
peaks (clustering). In DPCfam we perform two rounds of DPC. The first round allows us clustering
alignments that cover similar regions of the query sequences (primary clusters); in the second round
we group together primary clusters that share a number of overlapping alignments (metaclusters).
As a final step, in DPCfam, we apply an ad hoc merging procedure to further group metaclusters
that share many of their member alignments. Alignments belonging to merged metaclusters can
then be linked back to the respective aligned sequences, thus obtaining clusters of protein regions,
which are meant to represent families (see Results).

2.2.1 Primary clustering

For a query q0 we write the set of all of its alignments as:

Bq0 = {Bi : qi = q0} (2)

We define the distance between alignments in Bq0 as:

dQi,j = 1� |Qi \Qj |
|Qi [Qj |

(3)

where |Qi \ Qj | is the length (intended as number of residues) of the intersection between the
segments identified by Qi and Qj , while |Qi [Qj | is the length of their union (see Figure S1 B).
This distance is 0 if Bi and Bj are aligned to the same portion of the query q0, that is, Qi = Qj ;
while it is 1 if Qi and Qj do not overlap at all. As defined, dQi,j represents a metric since it is
symmetric and satisfies the triangular inequality. Using the distance in Eq. 3, we estimate the
density ⇢i of the alignment i:

⇢i =
X

j

�k1(d
Q
i,j) (4)

where �k1(x) = 1 if x < k1 and zero otherwise. Thus, the density of an alignment Bi is given by
the number of alignments that belong to the same set Bq0 and that are found at a distance less
than k1 from Bi. In the algorithm, we set k1 = 0.2, according to the rule of thumb in [33]: the
average number of neighbours closer than k1 to a point is around 1 to 2% of the total number of
points in the data set. Note that when two alignments with the same search sequence are such
that dQi,j < k1, we retain only the alignment with the lowest E-value (for each query, this happens
for 1% or less of the alignments).

Next, following [33] we define �i = �i⇢i, where �i = minj:⇢j>⇢i d
Q
i,j , or the minimum distance

of i to a higher density neighbour j. Then we sort the alignments according to decreasing values of
�i, �(q0) = {�s, �s > �s+1 8s}. Finally we select density peaks by identifying a �g in �(q0) such
that �g�1

�g
� 10� & �s�1

�s
< 10� 8s > g & g  gmax. This is equivalent to looking for a gap of size

� between values in �(q0) (this was done by eyesight in [33]). We choose heuristically � = 0.5
and gmax = 20, where gmax is the maximum number of peaks (primary clusters, see below) that
we allow on a query sequence. As a final step, we assign to each density peak all alignments that
are found at a distance smaller than k1 from the peak, and further away from any other peak:
alignments mapping to a peak constitute what we call a primary cluster. Note that, generally, not
all Bi alignments are assigned to a primary cluster: we discard the non-clustered alignments from
the rest of the analysis.

The clusters we obtain are subsets of the previously defined Bq0 ensemble, where each subset
includes alignments located around the same region of the query sequence. The clustering proce-
dure we described is schematically shown in Figure 1 (A and B), and two examples of primary
clustering are shown in Figure S3.
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Figure 1: Representation of the clustering and metaclustering process. Schematically, alignments
that lie on the same region of the query sequence are clustered; subsequently, different clusters are
"metaclustered", by considering close those clusters that contains a number of alignment overlap-
ping on the same search sequence of the other cluster’s alignments; finally, metaclusters are merged
by grouping those that still share a significant number of search sequence regions.

.
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2.2.2 Metaclustering

We denote the set of alignments belonging to a primary cluster c as Bc and we call Nc the number
of is elements.

We define the distance between two clusters c and c0, associated to two queries q and q0 as:

Dc,c0 = 1� 1

min(Nc, Nc0)

X

m2Bc,n2Bc0

�smsn�kd(d
S
m,n) (5)

where dSi,j is defined as in Eq. 3 using segments Si and Sj in place of Qi and Qj , and kd = 0.2 is
chosen coherently with k1 in Eq.3. This distance is shorter the higher the number of alignments
in the two clusters sharing the same search sequence and having a significant overlap, namely
dSi,j < kd.

We estimate the density ⇢c similarly as in Eq. 4:

⇢c =
X

c0

�k2(Dc,c0) (6)

where k2 = 0.9 was also chosen following the rule of thumb in [33]. Then, similarly to what done in
2.2.1, we compute �c = minc0:⇢c0>⇢c Dc,c0 . This time, however, we use a more restrictive criterion
for the identification of density peaks by choosing as peaks those primary clusters for which �c
takes its maximum value of 1, and for which ⇢c > 1. The reason for this is that different peaks in
the primary cluster space should not have significant overlaps between each other. Finally, as in
2.2.1, we assign to each density peak all primary clusters that are found at a distance smaller than
k2 from the peak, and further away from any other peak; the set of primary clusters assigned to a
peak constitute what we call a metacluster or MC. Primary clusters not assigned to any peak are
discarded.

2.2.3 Merging metaclusters

We merge similar MCs by computing the quantity DMC0,MC00 = 2
NMC0NMC00

P
c02MC0,c002MC00

Dc0,c00 ,

where MC 0 and MC 00 are any two metaclusters and NMC0 and NMC00 is the number of their
primary clusters. DMC0,MC00 is the average of the distances between primary clusters contained
in the two MCs. We decide to merge all MC pairs for which DMC0,MC00 < 0.9 based on the
sorted values of all DMC0,MC00 obtained from clustering sequences in the PUA clan (see Support
Information, Figure S2 )

2.2.4 Filtering metaclusters’ alignments and building profile-HMMs

A metacluster is a collection of protein regions Si. In order to reduce the level of noise coming
from outlier sequences within an MC, from the list of all regions obtained in the previous section
we remove those that don’t overlap with any other sequence in the MC. More specifically, we
keep region i if it exists another region j in the same MC such that �sisj�kd(d

S
i,j) = 1 (cfr. Eq.

6). We additionally reduce redundancy at 95 percent identity using CD-HIT [22] (v4.7). MCs
that at this stage contain less than 100 elements are removed from the rest of the analysis. For
the sake of our comparison with Pfam annotation, only up to 5,000 members per MC are taken
into consideration; if an MC has >5,000 members, we select 5,000 randomly to represent it. For
the purpose of building MC-associated profile-HMMs, we further reduce MCs’ size by reducing
redundancy at 60% (CD-HIT [22]) and considering maximum 1,000 members (if >1,000, we select
1,000 randomly). Next, we build an MSA using MUSCLE [9] and use the MSA to construct a
profile-HMM, using HMMER (v3.1b) [26].

2.3 In-house Pfam annotation of the Uniref50 database and definition
of Dominant Ground Truth Architectures of a metacluster.

We use the Pfam classification as a gold standard to help us identifying ’true’ evolutionary re-
lationships between sequences in our MCs. In particular, we adopt the Pfam classification for
determining both the evolutionary consistency of our MCs (homology between member regions)
and the quality of their members’ boundaries. Since not all sequences in our reference Uniref50
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database are annotated in Pfam, we are not able to use the Pfam database family assignments
directly. Instead, we run each sequence in Uniref50 against the set of all Pfam_A.hmm models (v.
31) using the hmmscan program from the HMMER 3.1b2 suite. We assign to each protein sequence
a Pfam family architecture according to the models’ manually-curated gathering thresholds. In
the case of multiple significant matches overlapping along the same protein sequence, we keep only
the Pfam annotation corresponding to the lowest E-value, Overlaps are calculated using start and
end alignment positions; as a consequence, instances of nested domains are likely discarded (see
the discussion of iron-sulfur cluster binding motifs nested within Radical_SAM domains in the
Suppl. Mat.). We define the Pfam Ground Truth Architecture (GTA) pi of a region Si as the
ordered set of Pfam families that overlap with Si, if any. The order of the families reflects their
relative position along Si. For example, suppose that we want to determine the GTA of the region
of protein si =Q5BH58 spanning positions 132 to 567. Pfam annotation for Q5BH58 is as follows:
PF02190 (aa 10-258), PF00004 (aa 482-625), PF05362 (aa 706-915). In this case, the GTA of Si is
represented by pi =PF02190_PF00004, comprising all Pfam families having at least a one-residue
overlap with this region. We can alternatively define the GTA in terms of Pfam clans to which each
Pfam family is associated (in this case pi(clan) =CL0178_CL0023); again, the GTA is an ordered
string of (clan) ids. If a family is not associated to a clan in Pfam, we use the family id in the clan
GTA. The boundaries of the sub-region of Si covered by the GTA pi will be indicated as Pi. If
pi includes two or more families, Pi will span also non-annotated residues between those families,
if present (See Supporting Information Fig. S4). In the example above the Pi of Si is the inter-
val between residue 132 and 567. Next, we define the Pfam Dominant Ground Truth Architecture
(DGTA) of a metacluster pMC as the most abundant GTA (pi or, alternatively, pMC(clan)) among
all of its member regions. Note that the clan(s) in pMC(clan) may not necessarily correspond to
the clan(s) of the families in pMC .

2.4 Comparing DPCfam metaclusters with the Pfam “ground truth”
When using Pfam annotations to analyze the evolutionary consistency of our MC classification,
one should take into account the following: i) evolutionary distances between families within a
Pfam clan can differ greatly; in particular, some families may be very closely related to each other.
For this reason, it is often more informative to look at consistency of annotation in MCs at the clan
level; ii) along with many full-length sequences, Uniref50 also contains sequence fragments. This
may be relevant when comparing MC member annotations, especially for those MCs with a multi-
domain DGTA. iii) Pfam classification of families and clans can be incomplete; as a consequence,
regions in Uniref50 that are not currently annotated in Pfam may still belong to known Pfam
families and clans.

Given an MC, we first determine its DGTAs both at the family and at the clan level and we
indicate with %DAF (family) and %DAC (clan) their relative frequencies among MC members.
Hereafter, we call “DGTA members” those for which, at the clan level, pi = pMC . Next, we
consider MC members that match the DGTA (again, at the clan level) only partially. While this
makes sense in light of observations (ii) and (iii) above, it also allows for some variability in length
among MC members. We compute the percentage of MC members with a GTA that lacks one or
more of the DGTA clans but, at the same time, doesn’t feature any extra clan(s). We sum this
percentage to %DAC and report it as %DACF (F=fewer); we still ask that the remaining clans
are in the same order as in the DGTA. Note that MC members lacking any Pfam annotation are
counted in %DACF. This is consistent with the idea that having no Pfam annotation does not
imply that a region is not part of an existing Pfam clan (observation (iii) above). Finally, we
compute the percentage of MC members with a GTA that features one or more Pfam clans not
found in the DGTA but, at the same time, contains at least one of the original DGTA clans. We
sum this to %DACF and call it %DACFA (A=additional). We will see in the Results section that
the analysis of differences between these percentage scores greatly facilitates the identification of
MCs that may not be evolutionarily sound, as well as, those MCs that may help improving the
Pfam classification by expanding family and clan membership, by uncovering novel domains or by
pointing to potential inconsistencies in the existing annotation. Comparison between the DPCfam
and Pfam classifications cannot be reduced to presence or absence of families and clans on MC
members. Indeed, the degree of agreement between the boundaries Si of the MCs’ regions and the
boundaries Pi of the Pfam annotations is also important.
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Fred,i =
|Pi \ [Si \ Pi]|

|Pi|
(7)

Fext,i =
|Si \ [Si \ Pi]|

|Si|
(8)

Fred,i represents the fraction of the DGTA Pi that is not covered by the region Si; vice versa,
Fext,i is the fraction of the region Si that is not covered by the DGTA. We use these two measures
to characterize boundaries of entire MCs with respect to Pfam annotations by computing their
average over all of the MC cluster’s DGTA members. We denote these averages as Fred and Fext.

2.5 Pfam clans used in this work as DPCfam query datasets
In the Pfam classification, clans group together families that are evolutionary related. As pre-
viously mentioned, families in clans may be remotely related (possibly representing domains of
different function) or, sometimes, evolutionarily close (sharing a sizable number of member re-
gions). In this work, we study two Pfam clans: PUA [15] and P53-like [4]. As of Pfam v.31,
which we use throughout unless otherwise specified, the PUA clan comprised the following 11 fam-
ilies (25,659 sequences in total): ASCH, DUF3850, EVE, LON_substr_bdg, Methyltranf_PUA,
PUA, PUA_2, TruB-C_2, TruB_C, UPF0113 and YTH. The P53-like clan, instead, comprised 9
families (8,857 sequences in total): T-Box, STAT_bind, Runt, RHD_DNA_bind, PAD_M, P53,
NDT90_PhoG, LAG1-DNAbind and CEP1-DNA_bind. Both clans were selected because: 1)
they are of medium size, thus rendering manual validation of results a more manageable task while
still providing a rather complex set of relationships between sequences within and outside of the
clan; 2) an extensive structural information is available for most of their families, which provides
key insight for comparing the DPCfam and Pfam classifications. Additionally, the PUA clan is
well-known to us from previous studies [5]. We note that since the DPCfam algorithm is run on
full-length sequences, the MCs it generates when using PUA and P53-like annotated proteins as
queries can map to any family that is found in a shared architecture with elements of those two
clans.

3 Results

We first present in details the results obtained when running DPCfam on the PUA clan (section
3.1). Note that we used this clan to empirically adjust some aspects of our method (including
parameters k1 and k2 see Eq. 4 and 6, the procedure to merge clusters and the BLAST search
parameters). In the second part (3.2), we discuss clustering of the P53-like clan when using the
same exact protocol used for PUA.

3.1 DPCfam clustering of the PUA clan
Starting from the PUA_UR50 sequence dataset (see Methods), DPCfam produces 74 MCs in total
(Figure Suppl Mat. S5 for the MC size distribution). Hereafter, we focus on the subset of 32 MCs
with at least 500 members (MC1_PUA to MC32_PUA, Table S1). As previously mentioned, MCs
can represent single or multi-family architectures and their DGTAs can contain PUA clan families
(5 in total, in bold in Table 1) or not (27 total). Also, different MCs can map to the same Pfam
family or architecture.

3.1.1 Evolutionary consistency of MCs

The first question we address is whether DPCfam-generated MCs are evolutionarily consistent. In
other words, we ask if MCs are formed of member sequences that share a core homologous region
and can thus be used as seeds for building protein families. In Table 1, for each MC with more
than 500 members, we report the percentage of member regions with a GTA that matches exactly
(%DAF - family level and %DAC – clan level) or partially (%DACF and %DACFA) the DGTA of
the cluster (see Methods). %DAF or %DAC close to 100% indicate that, according to Pfam, most
member sequences share a homologous core region that covers all families or clans in the DGTA.
For example, 99.7% of 1,795 MC4_PUA member regions are annotated in Pfam as Acetyltransf_3
(PF13302). Overall, 43.7% of MCs have %DAC>95%. Differences between %DAF and %DAC
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tell us to which extent member sequences are spread out across multiple families pertaining to
the clan(s) represented in the DGTA. The number of Pfam families and their relative weight
within an MC can be better appreciated from the graphical representation in Figure 2 (Suppl.
Figure S6 for a clan level view of the same). For instance, MC17_PUA maps to several different
families within the RING (CL0229) clan. This is not surprising given that the Pfam evolutionary
profiles of zinc finger families within the RING clan tend to overlap (see e.g. the E-values of
the families’ profile-profile alignments in the clan’s “Relationships” tab on the Pfam webserver).
When we add to %DAC all those members with a GTA matching only partially the DGTA of
the MC (%DACF and, finally, %DACFA) we achieve close to full coverage in most MCs. Indeed,
only one MC (MC26_PUA) has %DACFA<98 (Figure 2 and, again, Table 1). Large percentage
increases in the %DACF and %DACFA columns can have different meanings, but generally reflect
MCs with a significant number of members sharing a core homologous region that spans less or
more clans, respectively, than those found in the DGTA. Note that, in principle, it is possible for
members counted as part of %DACFA to map to completely different, non-overlapping sections of
the DGTA. These would be regions that are not homologous to each other. During our analysis,
however, we did not come across any such outstanding example, suggesting that these are unlikely
to be common occurrences. In summary, percentage values reported in Table 1 suggest that most
of the MCs generated by DPCfam could be used as seeds for building homologous protein families.

Another important aspect of comparing two protein classifications is to measure by how much
the boundaries of the respective clusters or families differ when evaluated on the same sequences.
The quantities F ext

MC and F red
MC in Table 1 indicate the extent of the agreement between the bound-

aries of DGTA MC members and the respective Pfam annotations (these are averages over all
DGTA members). To provide some qualitative insight, we classify MCs into the following four
categories according to the agreement of their DGTA members with the DGTA family bound-
aries (see Figure in Table 1): equivalent (both FMC

ext and FMC
red < 0.1, yellow; Table 1, reduced

(FMC
ext < 0.1 and FMC

red � 0.1, blue), extended (FMC
ext � 0.1 and FMC

red < 0.1, pink) and, finally,
shifted (both FMC

ext and FMC
red are � 0.1, green). We can see that the MCs in Table 1 are roughly

equally split between these categories. Equivalent MCs are the closest to the DGTA architectures
in terms of their boundaries; the other categories feature cases that deserve further inspection (see
section 4.1.6).

3.1.2 Degeneracy of MCs with respect to Pfam families

In some instances, DPCfam produces multiple clusters that map to the same Pfam family or group
of families. Here it is worth pointing out that we use the DPCfam algorithm to cluster alignments
rather than protein sequences. This means that alignments of the same protein region to different
proteins are treated as separate entities. Our clustering protocol tries to ensure that when two
regions of the same protein about the same size have a large overlap, they are classified as belonging
to the same cluster. For overlaps that are small with respect to the length of the alignments being
compared, the regions may end up in different MCs. One such example is represented by the
trio of clusters MC16_PUA, MC21_PUA and MC32_PUA all of which feature the same DGTA,
namely, TruB_N + TruB_C_2 (PF01509+PF16198). Both of these families are part of the
PseudoU_synth (CL0649) Pfam clan. In Suppl. Figure S9, we show that although the 3 clusters
share the same DGTA, the part of the DGTA they cover is quite different. In fact, the three MCs
belongs to three different boundary categories (see Table 1): reduced (MC16_PUA), extended
(MC21_PUA) and shifted (MC32_PUA). Although MC21_PUA is listed as extended, FMC

ext is
still rather small (0.13) and the MC represents a good match to the full DGTA. MC16_PUA
and MC32_PUA, instead, cover mainly TruB_C_2 and TruB_C_2 + TruB-C_2 (i.e., PUA clan
family PF09157), respectively. The complex boundary relationships between these three MCs may
at least in part reflect the rather complicated evolutionary make-up of the PseudoU_synth clan
(see Supplementary Materials for an in depth discussion).

3.1.3 MCs with potentially high levels of non-homologous member regions.

Values of %DACFA significantly lower than 100% indicate the presence of a sizable subset of MC
members that have a completely different clan-level Pfam annotation with respect to the DGTA.
In other words, Pfam annotation for these members suggests that they may not share any region
of homology with the other “DGTA-complying” MC members. From Table 1 we can see that
only one metacluster, MC26_PUA, falls into this category (%DACFA=89.6). A closer inspection,
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Figure 2: PUA_UR50 MCs vs Pfam annotation. On the x-axis, we list the MCs (sorted as in
Table 1) , while on the y-axis we list the Pfam GTAs (family level) represented in each MC. We
report only GTAs mapping to at least 10% of MC members and we aggregate all the remaining
ones under the label "other"; finally, we label “UNK” MC members with no Pfam annotation. The
heatmap is colored according to GTA abundance.

.
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however, reveals that this low %DACFA value is an artefact of our Pfam annotation protocol,
which currently does not allow for domain nesting (see Suppl. Mat. for a detailed discussion of
this MC, including our suggestions for improving annotation of the 4Fe-4S - CL0344 clan in Pfam).
Another category of metaclusters to consider carefully are MCs that present large increases in
%DACFA attributable to multiple (>1) Pfam clans not in the DGTA (last column in Table 1).
This is the case for MC24_PUA. This MC has FMC

ext = 0.47, indicating that most DGTA members
extend well beyond the Pfam DGTA. Additionally, a considerable fraction of members lack Pfam
any annotation (37%). Most of the remaining ones feature either a TGT_C2(PF14810) + PUA
architecture (14%) or a DUF1947 (PF09183) + PUA architecture (8%). Worryingly, the DUF1947
family is part of the pre-PUA clan, while TGT_C2 is currently not classified as part of a clan (that
is, Pfam offers no evidence that the two are evolutionarily related). However, TGT_C2 regions
are almost always found N-terminal to PUA domains and, more importantly, TGT_C2 regions
display significant structural similarity to pre-PUA clan domains (see Suppl Figure S12 (Suppl
Mat. MC24_PUA)). This evidence suggests that TGT_C2 is indeed likely to be a novel pre-PUA
domain, thus apparently resolving the potential inconsistency we observe in the Pfam annotation of
some MC24_PUA members. Interestingly, even a very sensitive profile-profile alignment method
such as HHpred [38] does not appear to recognize a relationship between TGT_C2 and pre-PUA.
In particular, we ran MC24_PUA MSA against Pfam v.32 and the first match to a pre-PUA clan
family is represented, in 11th position, by the namesake “pre-PUA” with HHpred probability of
only 27.31. This may be due to the fact that the TGT_C2 family appears to be quite divergent
in sequence; for example, only a small fraction of the lone TGT_C2 region for which we have a
structure (protein O58843, e.g. PDBis: 1iq8A:438-506) aligns to MC24’s profile-HMM.

3.1.4 MCs with potential to extend annotation of existing Pfam families and clans.

MCs with the potential to increase coverage of existing Pfam families or clans can be typically
be found among those displaying large percentage increases in the %DACF or %DACFA columns.
For example, metaclusters MC19_PUA and MC23_PUA feature rather large increases in %DACF
(25.7% and 30.5%, respectively). Given that the DGTA of these MCs is single-domain, the increases
correspond to the percentage of member regions lacking any annotation in Pfam. MC19_PUA
DGTA is composed of the single helicase family DEAD (PF00270). Unannotated MC19_PUA
member regions are almost always found at the N-terminus of proteins with one or more families in
the Helicase_C + HA2 + OB_NTP_bind architecture. Since this is a common Pfam architecture
for the DEAD domain, unannotated regions in MC19_PUA are likely to represent yet unrecognized
members of the DEAD family. The DGTA of MC23_PUA, instead, corresponds to the ASCH
domain (PUA clan). A lookup of MC23_PUA unannotated members in InterPro shows that
many of them carry an ASCH annotation in that database, suggesting that MC23_PUA may be
used to enlarge the Pfam ASCH family. In fact, MC23_PUA is particularly interesting because
it appears to represent the "ASC-1 proper family” [16] potentially worth building as a separate
entity in Pfam (see Suppl Mat. for more details). Similar examples are further discussed in the
Suppl. Mat.

Clusters such as MC1_PUA, MC6_PUA, MC29_PUA and MC32_PUA feature sizable in-
creases in the %DACFA column. Similar to what we saw for %DACF, a large increase in %DACFA
can be ascribed to a number of reasons. Incomplete Pfam annotation of member sequences is one
of them (e.g., MC1_PUA, in which several member regions are likely to lack annotation for the
C-terminal domain OB_NTP_bind - PF07717). Variation in length among member regions can
have a similar effect (MC6_PUA, Suppl. Mat. Figure S17). Finally, in some instances, increase
in %DACFA can be due to the presence of a fraction of member regions having minimal overlap to
a family outside of the DGTA. This seems to be the case, for example, of MC29_PUA with about
33% of members overlapping with a small portion of domain PF17125, located N-terminal to the
DGTA.

3.1.5 MCs with boundaries that differ significantly from those of the DGTA families.

MCs with large values of FMC
ext and/or FMC

red , the range of which is between 0 and 1, grant further
inspection. In the case of MC15_PUA, member regions typically cover only about half of the
DGTA annotation on the respective full-length proteins. In particular, the DGTA is represented by
the tRNA (Uracil-5-)-methyltransferase - PF05958 family. Structural data indicate that PF05958
covers two structural domains: a so-called central domain, which hosts a [Fe4S4] cluster, and
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MC DGTA % DAF %DAC %DACF %DACFA FMC

ext

FMC

red

Extra

Clans

1 PF00271_PF04408 56.6 56.6 62.4 100.0 0.09 0.09 1
2 PF00083 70.4 94.6 94.8 100.0 0.07 0.10
3 PF08282 99.1 99.1 99.1 100.0 0.02 0.02
4 PF13302 99.7 99.7 99.7 100.0 0.09 0.00
5 PF02190 81.3 81.3 83.4 98.9 0.03 0.03 1
6 PF00696 51.9 51.9 52.0 99.7 0.09 0.01 1
7 PF01583 98.1 99.1 99.1 99.9 0.08 0.01
8 PF01507 98.3 98.3 99.2 100.0 0.08 0.04
9 PF04146 98.5 98.5 99.0 99.9 0.07 0.03

10 PF00069 82.6 98.9 98.9 100.0 0.02 0.15
11 PF13561 66.7 99.6 99.6 100.0 0.04 0.12
12 PF00067 97.1 97.1 97.5 100.0 0.01 0.37
13 PF05362 83.5 97.0 98.6 99.7 0.06 0.10

14
PF02190_PF00004_
PF05362 62.2 62.2 95.2 100.0 0.00 0.14

15 PF05958 45.2 98.9 99.0 100.0 0.01 0.55
16 PF01509_PF16198 74.7 74.7 100.0 100.0 0.00 0.75
17 PF13923 23.3 96.6 99.5 99.8 0.16 0.02
18 PF00004 77.3 96.8 97.4 100.0 0.14 0.05
19 PF00270 70.9 73.9 99.4 99.9 0.17 0.01
20 PF13181 6.6 33.7 87.4 99.8 0.15 0.09
21 PF01509_PF16198 53.0 53.6 80.0 99.8 0.13 0.02 1
22 PF04408_PF07717 84.4 84.4 99.7 100.0 0.16 0.10
23 PF04266 69.1 69.1 99.6 99.7 0.16 0.01
24 PF01472 38.4 38.4 75.0 98.5 0.47 0.01 2
25 PF10672 93.1 97.3 97.7 99.8 0.37 0.00
26 PF13187 23.7 71.8 73.2 89.6 0.15 0.09
27 PF01189 75.3 75.6 75.8 100.0 0.13 0.10
28 PF07728 98.0 98.3 99.9 99.9 0.42 0.10
29 PF01189 66.7 66.9 66.9 100.0 0.19 0.62
30 PF00642 27.6 31.3 77.8 99.7 0.69 0.14
31 PF00004 6.2 7.2 99.0 99.0 0.89 0.91
32 PF01509_PF16198 50.1 50.1 58.2 99.5 0.36 0.65 1

Table 1: DGTA annotation of PUA_UR50 MCs,(only MCs with >500 members). Top panel:
pictorial representation of how MCs are qualitatively classified based on the overlap between DGTA
and DGTA members (additionally see Methods for the definition of these categories). In the Table,
for each MC, we report: the family-level Pfam Dominant Ground Truth Architecture (DGTA); the
percentage of members featuring a DGTA annotation either at the family (%DAF) or at the clan
(%DAC) level; %DAC plus the percentage of members lacking one or more of the DGTA clans
but having no additional clan’s annotation (%DACF); %DACF plus the percentage of members
having clans outside of the DGTA but at least one DGTA clan (%DACFA); for DGTA members,
the extent of the overlap with the DGTA, FMC

ext , FMC
red ; the number of extra clans that feature in

%DACFA (only those present in at least 10% of clan members). MCs are colored according to
the overlap between DGTA members and DGTA annotation: equivalent (yellow), reduced (blue),
extended (pink) and shifted (green).
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a catalytic domain typical of SAM-dependent methyltransferases. MC15_PUA covers only the
catalytic domain of the tRNA (Uracil-5-)-methyltransferase, albeit imperfectly (see Figure S10A).
We have already discussed in previous sections several other cases with large FMC values, including
MC16_PUA (FMC

red = 0.75) and MC24_PUA (FMC
ext = 0.47), the ‘true’ DGTAs of which appear to

be the single-domain architecture TruB_C_2 and the double domain-architecture pre-PUAPUA,
respectively.

3.1.6 Coverage of the PUA clan by DPCfam MCs.

So far, we have looked at how consistent the Pfam annotations are within the DPCfam-generated
MCs (accuracy). Clearly, it is also important to know to what extent the automatically-generated
DPCfam classification recapitulates the Pfam’s one in terms of coverage of all such regions anno-
tated by Pfam. In this section, we use all MCs (size >=100 members) created by DPCfam when
run on the PUA clan and consider different values of percentage overlap between regions for cal-
culating the MCs’ coverage of the Pfam clan. In particular, we ask how many Pfam PUA regions
are covered >=25, 50, 75% or =100% by at least one MC member. In Figure S18 A, we plot the
cumulative coverage of the Pfam PUA clan when ranking MCs from the one that contributes the
highest coverage to the one that contributes the 15th highest coverage. We can see, for example,
that >65% of PUA regions are covered for at least 75% of their length. We can ask the same
question when using, instead of the MC members, the alignments generated by the profile-HMMs
built from the MCs MSAs (hmmscan, E-value<10.0). This is akin to using the MCs as a source
for a Pfam-style family ‘seed’ alignment. In this case, >85% of the PUA clan regions are covered
for at least 75% of their length (Figure S18 B). Finally, we need to remember that most MCs cover
at least some additional regions not currently annotated in Pfam that may represent new clan
members (see in particular paragraph 3.1.3 above).

3.2 DPCfam clustering of the P53-like clan.
Next, we ran DPCfam according to the same specifications described before on sequences of the
P53-like (CL0073) Pfam clan and performed a similar analysis to the one done on the PUA clan.
Results can be seen in Tables S2 and 2. In this case, given the smaller size of P53-like with
respect to PUA, we report on all DPCfam-generated metaclusters (>100 members). Overall, the
results appear to be in line with the ones obtained for PUA but for a few, interesting differences.
DPCfam generates 28 MCs of size >100, of which 53.6% have %DAC>95%. Only two MCs have
%DACFA<98%: MC25_P53 and MC28_P53. MC25_P53 is peculiar in that the vast majority
of its members lack Pfam annotation (+95.4% in the %DACF column with respect to the single-
domain DGTA). This may be explained by the high value of the low-complexity residue fraction
in this MC (LC = 0.57, Table S2), suggesting that its member regions are unlikely to represent a
structural domain. Additionally, low-complexity regions are more likely to align to non-homologous
sequences (thus %DACFA<95.9%). Also in the case of MC28_P53, a large fraction of members
have no Pfam annotation (54.5%); further, 33.3% are annotated as BTD (PF09270, the DGTA),
6.8% as TIG (PF01833, in a different clan with respect to BTD) and 5.3% as BTD + TIG. Large
values of both FMC

ext and FMC
red indicate that DGTA members have very little overlap with BTD and

extend well beyond it. Indeed, most members cover a region C-terminal to BTD, which based on
the few existing Pfam annotations and on structural considerations is likely to be a yet uncovered
part of the Pfam TIG family (see Suppl. Mat. and Figure S19). Coverage of Pfam P53-like clan’s
regions by MC_P53 MCs is comparable to the one observed for the PUA clan (see Figure S18).
In general, in the case of P53-like, we notice two main differences with respect to the clustering of
the PUA clan. First, we see a much higher degree of MC redundancy with respect to the Pfam
classification. For example, 6 MCs have PF00907 as their DGTA and 4 MCs feature PF05224 in
theirs. It should be noted, however, that in the case of PF00907 only two MCs have an average
length of more than 50aa, which is much shorter than the length of the average protein domain
[17]. In fact, MC22_P53 and MC27_P53 have length <30aa. In Figure S16 we show a graphical
view of how the different MCs map to this Pfam family. Second, with respect to the PUA clan, on
average, MC boundaries appear to match less well those of the DGTA families. Indeed, in Table
2 we observe several MCs with high FMC

ext and/or FMC
red . . We notice, again, that this is often the

case for short MCs.
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MC DGTA % DAF %DAC %DACF %DACFA FMC

ext

FMC

red

Extra

Clans

1 PF00907 97.7 97.7 99.9 100.0 0.03 0.02
2 PF00554_PF16179 88.8 88.8 98.1 100.0 0.03 0.00

3
PF00400_PF00400_
(...)_PF00400 18.2 19.3 99.4 100.0 0.02 0.04

4 PF00870 84.9 84.9 90.2 100.0 0.07 0.06 1
5 PF00853 99.4 99.4 100.0 100.0 0.04 0.04
6 PF00907 98.3 98.3 100.0 100.0 0.03 0.57
7 PF00907 99.2 99.2 100.0 100.0 0.01 0.73
8 PF00554 99.6 99.6 100.0 100.0 0.03 0.28
9 PF05224 99.6 99.6 100.0 100.0 0.04 0.61

10
PF02865_PF01017_
PF02864_PF00017 29.0 29.0 98.2 100.0 0.06 0.11

11 PF00554 100.0 100.0 100.0 100.0 0.08 0.72
12 PF00853 100.0 100.0 100.0 100.0 0.06 0.60
13 PF09271 97.9 97.9 100.0 100.0 0.07 0.69
14 PF00005 95.8 95.8 95.8 100.0 0.30 0.02 2
15 PF13884 82.5 82.8 99.1 100.0 0.57 0.00
16 PF05224 98.7 98.7 100.0 100.0 0.16 0.01
17 PF09271_PF09270 86.6 86.6 97.8 100.0 0.13 0.01
18 PF03068 53.0 53.0 56.6 100.0 0.12 0.05 2

19
PF05224_PF13884_
PF13887 85.5 85.5 100.0 100.0 0.24 0.00

20 PF09751 88.2 88.2 100.0 100.0 0.16 0.01
21 PF12796_PF12796 26.1 52.2 68.0 100.0 0.10 0.11
22 PF00907 98.1 98.1 100.0 100.0 0.13 0.76
23 PF00907 99.4 99.4 100. 100.0 0.14 0.77
24 PF02864_PF00017 67.5 67.5 99.5 99.5 0.21 0.60
25 PF15709 0.5 0.5 95.9 95.9 0.11 0.41
26 PF05224 98.7 98.7 100.0 100.0 0.27 0.57
27 PF00907 98.5 98.5 100.0 100.0 0.38 0.87
28 PF09270 33.3 33.3 87.9 93.2 0.94 0.93

Table 2: DGTA annotation of P53_UR50 MCs (see Table 1 for column description.) DGTA
including "(...)" represent a very long repeat, which has not been reported entirely for formatting
reasons.)

4 Discussion

Automatic classification of proteins into homologous regions or domains is a notoriously difficult
problem due to the complexity of evolutionary relationships between proteins, which include but
are not limited to the existence of multi-domain architectures, domain nesting and tandem re-
peats. Moreover, domain evolutionary divergence at the sequence level can be extremely high thus
making it exceedingly difficult, if not impossible, to group into individual families all homologous
regions. Finally, domain boundaries can be blurry. For these reasons, protein family databases
that attempt to classify protein domains (Pfam [32], InterPro [28] , CDD [24], SCOP [29], ECOD
[7] to name but a few) use extensively either manual annotation or structural knowledge (often
both). Nonetheless, unsupervised, automatic domain classification from sequence [14] [31] [11] is
extremely relevant both to identify conserved regions that can later be manually refined and anno-
tated to create novel families and for complementing manual classification in differential domain
analysis of large datasets with a high degree of sequence novelty (such as for example sequences
from environmental genomics [34] [18]. Here, we have presented a new unsupervised method based
on Density Peak Clustering, which we named DPCfam, for the purpose of automatic protein do-
main classification. Although the clustering protocol parameters have been selected heuristically,
benchmarking experiments suggest that the clustering is robust with respect to their choice and,
additionally, to the size of the starting (query) dataset (Table. S3) (See Supplementary Materials).

In this proof-of-principle experiment, we ran DPCfam on proteins that feature domains from
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two separate Pfam clans (PUA and P53-like). We showed that, in most cases, the DPCfam
automatically-generated metaclusters (MCs) represent single or multi-domain architectures which,
overall, display a good agreement with the Pfam annotation. In particular, we have discussed
several examples of MCs mapping well to individual Pfam families. With respect to the presence
of multi-domain MCs, we should emphasize that DPCfam clusters evolutionary modules (using
sequence similarity) rather than directly structural domains (see definitions in [30]). Because of
this, it may be difficult for our method to split into separate MCs structural domains that are
only (or overwhelmingly) observed in joint architectures, unless these domains are separated by
long regions of low conservation. Boundaries of MCs’ member regions show, on average, a good
agreement with Pfam-defined boundaries. Further, for the two clans we have analysed, DPCfam
achieves a good coverage of their member regions when considering a number of MCs that is
roughly comparable to the number of families in the Pfam clans. However, we do observe especially
in the analysis of the P53-like clan, a certain degree of redundancy between MCs (i.e. multiple
MCs mapping to the same Pfam family). Although it is possible that this redundancy could be
significanlty reduced by discarding short length MCs, especially when they are of small size, this is
an area that we believe could potentially be improved upon by devising a more performant strategy
for the metaclusters’ merging step.

In general, significant differences between clans exist in terms of size, evolutionary divergence,
complexity of architecture and structural class of their families. Although these diversity cannot
be recapitulated in full by the analysis of only two Pfam clans, it is worth pointing out that our
clustering experiment did extend to numerous families outside of the PUA and P53-like clans (see
both Table 1 and 2, where MCs mapping to PUA and P53-like families are highlighted in bold).
This is due to the fact that DPCfam runs on full-length sequences and that about 45% and 39%
of PUA and P53-like member regions, respectively, are part of multi-domain proteins.

Overall, we believe to have shown that DPCfam can support manual annotation by pointing
to opportunities for expand existing families or clans and, occasionally, by identifying inconsis-
tencies in the current classification (including incorrect domain boundaries and incomplete clan
memberships). Also, we believe that DPCfam could be used effectively in combination with ex-
isting databases to expand the purpose of comparative domain analysis in datasets that include a
significant fraction of unannotated sequences, such as those obtained from environmental sequenc-
ing projects. Future plans include wholesale, all vs all clustering of the Uniref50 database from
which we expect to derive interesting new insights into existing family classifications and a list of
potential new domains.
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