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Abstract 

 

The contribution of low-frequency variants to the genomic architecture of normal-range 

facial traits is unknown. Therefore, we studied the influence of 31347 low-frequency 

coding variants (MAF < 1%) in 8091 genes on multi-dimensional facial shape phenotypes 

in a European cohort of 2329 healthy individuals. Using three-dimensional facial images, 

we partitioned the full face into 31 hierarchically arranged segments to model global-to-

local features, and generated multi-dimensional phenotypes representing the shape 

variation within each segment. We used MultiSKAT, a multivariate kernel regression 

approach to scan the exome for face-associated low-frequency variants in a gene-based 

manner. After accounting for multiple tests, seven genes (AR, CARS2, FTSJ1, HFE, LTB4R, 

TELO2, NECTIN1) were significantly associated with morphology of the cheek, chin, nose 

and philtrum. These genes displayed a wide range of phenotypic effects, with some 

impacting the full face and others affecting localized regions. Notably, NECTIN1 is an 

established craniofacial gene that underlies both syndromic and isolated forms of cleft lip 

and palate. The missense variant rs142863092 in NECTIN1 had a significant individual 

effect on chin morphology, and it is predicted bioinformatically to be deleterious on the 

nectin-1 protein. We show that the zebrafish nectin1a mutation affects craniofacial 

development and leads to abnormal size and shape of the palate and Meckel’s cartilage. 

These results expand our understanding of the genetic basis of normal-range facial shape 

by highlighting the role of low-frequency coding variants in novel genes. 
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Introduction 

 

Significant progress has been made in elucidating the genetic basis of human facial traits 

[1-3]. Genome-wide association studies (GWAS) have now identified and replicated several 

common genetic variants with phenotypic effects on normal-range facial morphology [4-

12]; however, these variants cumulatively explain only a small fraction of the heritable 

phenotypic variation.  Based on large-scale genomic studies of other complex 

morphological traits such as height [13-15], we hypothesize that functional variants at 

hundreds or perhaps thousands of loci have yet to be discovered.  While we expect that 

common variants, with a minor allele frequency (MAF) greater than 1%, account for much 

of the heritable variation in facial morphology, low frequency (<1% MAF) genetic variants 

may also play an important role.  An exome-wide study of human height, for example, 

discovered 29 low-frequency coding variants with large effects of up to 2 centimeters per 

allele [13].  

 

Our previous GWAS in a modestly sized cohort of healthy individuals identified 1932 

common genetic variants associated with facial variation at 38 loci, 15 of which were 

independently replicated [5]. The success of this GWAS was attributed in part to an 

innovative data-driven phenotyping approach, in which 3D facial surfaces were partitioned 

into hierarchically organized regions, each defined by multiple axe of shape variation.  This 

approach allowed for simultaneous testing of genetic variants on facial morphology at 

multiple levels of scale – from the entire face to highly localized facial region. Extending this 

global-to-local analysis of facial traits to the analysis of low-frequency variants requires an 

appropriate and scalable statistical framework capable of accommodating the multivariate 

nature of the facial shape variables. A recently developed approach, MultiSKAT [16] has 

been proposed for this purpose and showed desirable performance in its original 

development.  

 

In this study, we evaluate the influence of low frequency coding variants, captured by the 

Illumina HumanExome BeadChip, on normal-range facial morphology in 2,329 individuals. 

We apply multivariate gene-based association testing methods to multi-dimensional facial 

shape phenotypes derived from 3D facial images. The results of our analyses point to novel 

genes, including at least one with a role in orofacial clefting and several others with no 

previously described role in craniofacial development or disease. Moreover, we provide 

experimental validation of our genetic association results through expression screening 

and knockout experiments in a zebrafish model. These results enhance our understanding 

of the genetic architecture of human facial variation. 
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Materials and Methods 

 

Ethics statement  

Institutional ethics (IRB) approval was obtained at each recruitment site and all subjects 

gave their written informed consent prior to participation (University of Pittsburgh 

Institutional Review Board #PRO09060553 and #RB0405013; UT Health Committee for 

the Protection of Human Subjects #HSC-DB-09-0508; Seattle Children’s Institutional 

Review Board #12107; University of Iowa Human Subjects Office/Institutional Review 

Board #200912764 and #200710721).  

 

Sample and Phenotyping  

The study cohort comprised 2,329 unrelated, healthy individuals of European ancestry 

aged 3 to 40 years. Participants were eligible if they had not experienced facial trauma, 

major surgery, congenital facial anomalies that could potentially affect their natural facial 

structure. 3D images of each participant’s resting face were captured via digital 

stereophotogrammetry using the 3dMD face camera system. The data-driven phenotyping 

approached has been described in detail previously [5]. Briefly, approximately 10,000 

points—“quasi-landmarks”—were automatically placed across the facial surface, by a non-

rigid registration of a standard facial template onto each surface. The result is that each 

quasi-landmark represents the same facial position across all participants [17]. The 

configurations were the co-aligned to their mean with generalized Procrustes analysis 

(GPA). The quasi-landmarks were then clustered into two groups of co-varying points in 

order to partition the full face into two segments. GPA was repeated within each segment 

such that the segments were further and further partitioned.  This process was continued 

for a total of four iterations to generate a hierarchy of 31 facial segments comprising 

overlapping groups of quasi-landmarks. The hierarchical structure is illustrated in Fig 1, 

where the segments within each layer collectively constitute the whole face, and the 

successive layers represent the shift from more globally integrated to more locally focused 

morphology. In this way a total of 31 partially-overlapping segments, which we called 

modules, were generated. The shape variation characterizing a module is represented by 

the 3D coordinates of all quasi-landmarks contained therein. To reduce the dimensionality 

of the shape variation within each module, principal components analysis and parallel 

analysis were performed on the quasi-landmarks to form multi-dimensional phenotypes in 

which shape variation is represented by principal component scores (PCs). This procedure 

resulted in a total of 31 modules, each of which is made up of 8 to 50 PCs that jointly 

captured near complete shape variance. The effects of sex, age, height, weight, facial size 
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and genetic ancestry were corrected for at the phenotyping stage. These facial module 

phenotypes were successfully used in our previous GWAS of common variants [5] which 

demonstrated advantages of this data-driven multivariate modeling of multipartite traits in 

the context of gene mapping studies compared to a priori [8] and univariate [7]  

phenotypes in this sample.  

 

 

 

Fig 1. Hierarchical clustering of facial shape. 

Global-to-local facial segmentation obtained using hierarchical spectral clustering. 

Segments are colored in blue. The highest-level segment representing the full face is split 

into two distinct sub-segments, and this bifurcation process is repeated until a five-level 

hierarchy comprising 31 segments has been reached.  

 

 

In addition to the phenotype quality control process described in [5], we further examined 

the phenotypic distribution of each module for extreme outlier faces, as phenotypic outliers 

may adversely impact rare variant tests [18]. To accomplish this, we looked at both the 

joint and pairwise distribution of all PCs underlying each module. We visualized quantile-

quantile (Q-Q) plots of chi-squared quantiles versus robust squared Mahalanobis distances 

to identify outliers that fell far apart from the rest of the sample. Mahalanobis distance is a 

metric measuring how far each observation is to the center of the joint distribution, which 
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can be thought of as the centroid in multivariate space. Facial images associated with 

outlier observations were revisited to confirm the data validity and sample eligibility. 

Finally, one outlier face was excluded for analysis involving module 27 representing 

variation of the chin. 

 

Genotyping 

The cohort was genotyped for the Illumina OmniExpress + Exome v1.2 array, which 

included approximately 245,000 coding variants in the exome panel. Standard data 

cleaning and imputation procedures were implemented. Imputed genotypes with a 

certainty above 0.9 were used to fill in any sporadic missingness among genotype calls of 

the directly genotyped variants. We did not include any wholly unobserved, imputed SNPs 

in this analysis. Ancestry PCs based on common LD-pruned SNPs were constructed and 

regressed out from the modular traits to adjust for population structure. 

 

MultiSKAT 

MultiSKAT [16] is a recently developed statistical approach for testing sets of variants, in 

this case coding variants within genes, for association with a multivariate trait. The 

strategy of testing low-frequency variants in aggregate improves power compared to 

individual tests of each variant. The tool is flexible in relating multiple variants collectively 

to multivariate phenotypes through the use of several choices of kernels, and includes an 

omnibus test to obtain optimal association p-values by integrating results across different 

kernels via Copula. This multivariate nature fits well in our facial module setting here, 

given that each module is composed of many independent components. MultiSKAT does 

not restrict the frequency of variants to be tested, but our analysis considers low-frequency 

variants exclusively. 

 

MultiSKAT uses a phenotype kernel to model how one variant affects multiple traits and 

uses a genotype kernel to specify how multiple variants influence one trait. In reality, these 

effects are often not known as a priori, and the true relationship can be a mixture of effects. 

We used the heterogeneous and homogeneous phenotype kernels, which are appropriate 

when the set of traits analyzed are orthogonal PCs. We specified both the Sequence Kernel 

Association Test (SKAT) and burden test for the genotype kernel, and then let the tool 

aggregate results across these 2 × 2 kernel combinations to obtain the omnibus p-value.  

 

Gene-level analysis 

Genome-wide coding variants with MAF less than 1% were aggregated into genes. We 

filtered out any variants with three or fewer minor alleles in the sample, and excluded 

genes with less than two qualified variants. This led to 31347 variants in 8091 genes being 
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tested. While aggregating across variants within a gene, MultiSKAT assigns larger weights 

to rarer variants. Due to the burden of multiple comparisons, we applied a Bonferroni 

threshold to declare significance. To account for the apparent correlation among partially 

overlapping facial modules, we used the procedure based on eigenvalues proposed by Li 

and Ji [19] to determine that the effective number of independent modules was 19. The 

threshold for significance was therefore set to p < 3.3 × 10-7 (i.e., 0.05 divided by the 

product of 8091 and 19). The phenotypic effects of identified genes on face were visualized 

by creating and comparing the average facial morphs in people carrying variants and 

people who do not carry variants.  

 

We interrogated genes showing significant effects using GREAT [20], FUMA [21] and 

ToppFun [22] for gene set enrichment, and we looked up their expression in GTEx [23]. 

Following our hypothesis that genes influencing typical facial presentation may also be 

involved in facial anomalies, we examined whether any genes nominated in this study were 

associated with non-syndromic cleft palate with or without cleft lip (NSCL/P) by retrieving 

summary statistics from a past study of our group where we performed a gene-based low-

frequency variant association scan on NSCL/P [24].  

 

Variant-level analysis 

For genes highlighted by MultiSKAT, we scrutinized the quality of genotype calling by 

inspecting clustering in allele intensity plots, and further performed association tests of 

SNPs individually. We use the MultiPhen approach [25], which finds the linear combination 

of PCs from a facial segment most associated with the genotypes at each SNP, and has the 

advantage of being robust when variants with low frequency are tested against non-normal 

phenotypes, as is the case in our study. Variant level functional prediction was done using 

CADD [26]. CADD is a comprehensive metric that weights and integrates diverse sources of 

annotation, by contrasting variants that survived natural selection with simulated. The 

scaled CADD score expresses the deleteriousness rank in terms of order of magnitude. A 

score of 10, for instance, is interpreted as ranking in the top 10% in terms of the damaging 

degree amongst reference genome SNPs, and a score of 20 refers to 1%, 30 to 0.1%, and so 

on. Variant identifiers and chromosomal locations are indicated in the hg19 genome build. 

Single exonic variants were looked up in literature and PhenoScanner [27] existing 

associations.   

 

We quantified the magnitude of phenotypic effect of individual low-frequency variants by 

the difference between averaged faces of variant carriers and non-carries, which was 

further compared with the effects of significant common variants identified in the prior 

GWAS of these multidimensional traits [5]. Specifically, the centroids of the 
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multidimensional space defined by PCs in a certain module were computed separately for 

people carrying the variant and people who do not carry the variant. Then the Euclidean 

distance between the two centroids was calculated as a measure of variant effect size.  

 

Expression screen of candidate genes in zebrafish: 

The whole-mount RNA in situ hybridization (WISH) for ar, cars2, ftsj1, hfe, itb4r, telo2, 

nectin1a and nectin1b was performed on wild type zebrafish embryos at 24 hpf and 48 hpf 

as described by Thisse et al. [28]. All wild type embryos were collected synchronously at 

the corresponding stages and fixed in 4% paraformaldehyde (PFA) overnight. T7 RNA 

polymerase promoter was added to the reverse primers and was synthesized with 

antisense DIG-labeled probe in order to generate antisense RNA probe. The probe primers 

for ar are: forward 5’- GTCCTACAAGAACGCCAACG-3’ and reverse 5’- 

GGTCACAGACTTGGAAAGGG-3’ at 59°C. The cars2 probe primers are: forward 5’-

ATCTGGGTCATGCGTGTTCA-3’ and reverse 5’- GGATTCCTGTGGTGCTTGGT at 59°C. The 

ftsj1 probe primers are: forward 5’- GGCGAGAAGTGCCTTCAAAC-3’ and reverse 5’- 

AGTCGTGCTTGTGTCTGGTT-3’ and hfe probe primers are: forward 5’-

GGGGATGGATGCTTCTACGA-3’ and reverse 5’- CGCGCACACAAAATCATCAC-3’ at 59°C. The 

itb4r probe primers are: forward 5’-GACGGTGCATTACCTGTGC-3’ and reverse 5’-

AGTCTTGTCCGCCAAGGTC-3’ at 58°C. The primers for telo2 are: forward 5’-

GCTCCACTGGTGAGAGTGAG-3’ and reverse 5’-GTCAGCTGAGGAGAGTCTGCG-3’. The 

primers for nectin1a probe are: forward 5’-AACACCCAGGAGATCAGCAA-3’ and reverse 5’-

CCTCCACCTCAGATCCGTAC-3’ at 57°C and the nectin1b probe primers are: forward 5’-

TGCTAACCCAGCATTGGGAG-3’ and reverse 5’-GGTTCTTGGGCATTGGAGGA-3’ at 59°C. 

Embryos were mounted using glycerol and imaged using Nikon AZ100 multizoom 

microscope. 

 

Phenotype of mutant zebrafish: 

As described by Kimmel et al. [29], zebrafish adults and embryos were obtained and 

maintained. Zebrafish nectin1a mutants were generated by transgene insertion Tg(Nlacz-

GTvirus) in Chr 21: 21731876 - 21731886 (Zv9), and obtained from Zebrafish 

International Resource Center, allele Ia021885Tg (ZIRC catalog ID: ZL6899.07). The 

retroviral-mediated insertional mutagenesis inserts a molecular tag in the DNA and isolates 

the allele of interest. Therefore, this will induce a frameshift and probably causing either 

nonsense-mediated mRNA decay or a truncated protein [30,31]. The PCR genotyping 

primers for nectin1a are: forward 5’-TTAGACCAGCCCACCTCA-3’ and reverse 5’-

AATATGAAATAGCGCCGTTGTG-3’ at 62°C.  
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Alcian blue staining was performed as described by Walker et al. [32]. The craniofacial 

cartilages were dissected and flat-mounted and then imaged using Nikon AZ100 multizoom 

microscope. After imaging, each embryo tail was placed in a PCR tube for genotyping. The 

protocol was used as described by [33] with modification of using fresh embryos without 

fixation. 

 

 

Results 

 

Gene-based tests detected seven genes significantly associated with one or more facial 

modules (Fig 2; Table 1): HFE, NECTIN1, CARS2, LTB4R, TELO2, AR, and FTSJ1. Three of 

them showed associations with more than one module. Fig 3 and S1 Table show the results 

of these genes across multiple phenotypes. Fig 3 shows the association signals propagating 

along the branching paths from the more global segments to the more local segments. Four 

genes (HFE, CARS2, LTB4R, and TELO2) were associated with nose-related modules, and the 

others were associated with modules of the chin, mouth, and cheek.  FTSJ1 had broad 

signals in the whole face as well as local regions, while effects of other genes were more 

confined to local modules. We observed well-calibrated test statistics and little evidence of 

inflation as shown in the Q-Q plots (Fig S1).  
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Fig 2. Composite Manhattan plot showing results across 31 facial modules. 

Manhattan plot showing the position of genes on the x axis and MultiSKAT p-values on the

y axis. A total of 31 points are plotted for each gene, representing p-values obtained by

testing their association with 31 modules respectively. The red horizontal line indicates the

study-wide significance threshold. The associated facial modules and the corresponding p-

value for each gene that surpassed the threshold are shown above the Manhattan plot. The

number to the left bottom of the facial image represents the module number from Fig 1. 
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Table 1. Single variant association and functional prediction for variants contributing to the gene-level significance 

Chr Gene Gene Info 

Number 

of 

Variants 

SNP Pos (hg19) Ref/Alta Functionb 
CADD 

scorec 
MAF  Moduled 

MultiPhen 

P-valued 

6 HFE 

Homeostatic iron regulator, 

binds to transferrin receptor 

(TFR) and reduces its affinity 

for iron-loaded transferrin 

2 

rs149342416 26087686 G/C Arg6Ser 15.3 0.087% 22 0.07 

rs143662783 26087718 C/G Thr17Ile 13.4 0.086% 5 0.87 

11 NECTIN1 
Nectin 1, cell adhesion 

molecule 
2 

rs142863092 119548369 G/A Arg210His 25.2 0.086% 27 1.08E-03 

rs137991779 119549425 G/A Gly44Ser 29.2 0.108% 27 0.15 

13 CARS2 
Cysteinyl-tRNA synthetase 2, 

mitochondrial 
2 

rs151097801 111296817 C/T Pro138Leu 22.4 0.086% 20 0.12 

rs117788141 111357899 G/A Val69Ile 28.0 0.086% 10 0.01 

14 LTB4R 

Leukotriene B4 receptor 1, 

receptor for extracellular ATP 

> UTP and ADP 

2 
rs143666989 24780865 A/G Gln332Arg 16.6 0.108% 20 0.11 

rs148153989 24780915 A/T Met349Leu 12.5 0.086% 20 0.59 

16 TELO2 

Telomere length regulation 

protein homolog, regulate 

DNA damage response 

3 

rs140903666 1544313 G/A Ala11Thr 6.3 0.215% 10 8.21E-04 

rs144863771 1544314 C/A Ala11Asp 10.7 0.215% 10 8.21E-04 

rs147858841 1555541 C/T Ala132Val 9.4 0.108% 10 0.43 

23 AR 
Androgen receptor, steroid 

hormone receptors 
2 

rs142280455 66905875 A/G Ser598Gly 22.4 0.133% 18 0.81 

rs137852591 66941751 C/G Gln267Glu 25.0 0.133% 18 3.91E-03 

23 FTSJ1 

Putative tRNA 

(cytidine(32)/guanosine(34)-

2’-O)-methyltransferase 

2 
rs142932029 48341118 G/A Ser161Asn 7.4 0.080% 28 1.59E-14 

rs201095751 48341414 C/T Splice site 0.1 0.107% 12 0.10 

a Alleles are listed as alternative/reference alleles on the forward strand of the reference genome.  
b For missense variant, amino acid substitution is given 
c Bioinformatic prediction of variant effect, higher score indicates greater damaging effect 
d Variants were tested against the significant module(s) corresponding to the gene-based test, and for genes associated with multiple modules, the 

module yielding the smallest p-value is shown here. 
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Fig 3. Module-wide association results for significant genes. 

For each gene, the –log10 p-value is shown as color shades ranging from min to max, for 31

facial segments arranged the same way as Fig 1. The global-to-local phenotyping enabled

the discovery of genetic effects at different scales. 
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To visualize gene effects on facial shape, we created the average module shape in non-

carriers of the low-frequency variants for each gene, and the respective morph showing the 

change in shape from non-carriers to carriers (Fig 4). Blue and red indicate a local shape 

depression and protrusion, respectively, due to the low-frequency variants. For example, 

panel B in Fig 4 shows that NECTIN1 variants shape the chin into a sharper and more 

protruding structure.  

 

Fig 4. Phenotypic effect of the seven identified genes on their top associated module. 

Blue and red indicate a local shape depression and protrusion, respectively, due to the low-

A B 
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frequency variants in the gene. A) First column shows gene effect on a representative 

module placing on the full face; middle column shows the lateral view of the average shape 

of the corresponding module among people who do not carry any variant in a gene; right  

column shows shape change of the same module, from non-carrier to carrier, multiplied by 

7, to make the changes more clearly visible. B) For NECTIN1 gene, we show both lateral 

(top) and frontal (bottom) view of its effect on chin shape. NECTIN1 variants display a 

sharper, more protruding chin. 

 

We employed various bioinformatics tools to explore the functions associated with the set 

of identified genes. Enrichment was detected for a variety of biological processes (Fig S2), 

especially ion-, metabolism-, transport- and regulation-related processes. Enriched gene 

ontology (GO) molecular functions tended to be housekeeping and general processes, e.g. 

signaling receptor and protein binding activity. Two genes with relatively well 

characterized functions, i.e. HFE and AR contributed a lot to these enrichment results. In 

GTEx database, these seven genes showed measurable expression level in adipose, skin and 

muscle-skeletal tissue (Fig S3), among which the strongest expression was seen for 

NECTIN1 in skin.  

 

To explore whether facial genes also affect the risk of orofacial clefts, results of gene-based 

associations of low-frequency (MAF<1%) variants with NSCL/P were retrieved from Leslie 

et al. 2017. Two out of the seven highlighted genes were not available from that study. S2 

Table showed the SKAT and CMC test results for the other five genes, in the European, 

Asian, South American and total population. Two associations passed a Bonferroni 

corrected threshold for 40 tests (5 genes times 4 populations times 2 type of tests)— 

TELO2 with a CMC p-value = 6.5 x 10-4, and HFE with a CMC p-value = 1.1 x 10-3, both in 

combined population of all ancestry groups. 

 

Single variants were further tested individually with the corresponding facial module from 

the MultiPhen results (Table 1). Six SNPs showed nominal associations (p-value < 0.05) and 

the top association involved SNP rs142932029 in FTSJ1 with module 28 (p-value = 1.59 × 

10-14). As shown in S4 Fig, these low-frequency variants had large effects compared to 

previously reported common variants [5]. 

 

Most of the individual variants appeared at frequencies much rarer than 1%, and all encode 

nonsynonymous substitutions except one splice site SNP in FTSJ1. Variants in NECTIN1, 

CARS2 and AR are predicted to be deleterious based on CADD score (details in S3 Table). 

SNP rs137991779 in NECTIN1 has a CADD score of 29.2, which ranks in the top 0.12% in 

deleteriousness among variants across the whole genome. PhenoScanner linked these 
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variants with a variety of human traits/disorders in previous studies (S4 Table, mostly 

from UK Biobank), including height, vascular diseases, osteoporosis, neoplasms etc., 

suggesting that coding variants influencing facial shape may be pleiotropic and play roles in 

other biological processes. 

 

Zebrafish WISH was used to identify ar, cars2, ftsj1, hfe, itb4r, telo2, nectin1a and nectin1b 

expression pattern in craniofacial region across key developmental stages (Fig 5).  At 24 

hours post fertilization (hpf), ftsj1 was expressed in the hindbrain, and hfe and itb4r were 

expressed in the forebrain. We detected nectin1a and nectin1b transcripts in the eyes, 

diencephalon, midbrain and hindbrain at 24 hpf.  At 48 hpf, ar expression was detected in 

the epiphysis, and cars2, nectin1a and nectin1b were expressed in the palate (Fig 5 solid 

arrow). Moreover, nectin1a is also expressed in the lower jaw (Fig 5 hollow arrow).  
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Fig 5. Whole-mount RNA in situ hybridization demonstrating genes expression in 

zebrafish. 

Genes expression pattern in lateral and ventral views at the indicated embryonic stages as 

hours per fertilization (hpf). cars2, nectin1a and nectin1b are expressed in zebrafish palate 

(solid arrow). nectin1a is expressed in the lower jaw at 48 hpf (hollow arrow).  cb: 

cerebellum, e: epiphysis, ey: eye, h: heart, hb: hindbrain, op: olfactory placode, pq: palate 

quadrate, tel: telencephalon.  

 

To determine genetic requirement of nectin1a in craniofacial development, we analyzed 

the nectin1a mutant allele Ia021885Tg.  Breeding of nectin1a+/- intercross generated 

embryos with Mendelian ratio (3 individuals with at least one wild type allele: 1 individual 
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homozygous for the mutant allele) demonstrating a mutant craniofacial phenotype, 

characterized by small head structures (Fig 6). Using Alcain blue staining at 120 hpf, 

nectin1a mutants displayed dysmorphic craniofacial development with smaller and 

distorted palate and abnormal Meckel’s cartilage compared to age-matched wild type 

zebrafish embryos from the same intercross.  These results show that nectin1a is expressed 

in the palate and is genetically required for normal palate and mandible morphogenesis.  

 

 

Fig 6. Alcian blue images for nectin1a zebrafish mutant comparted to wild type at day 

5. 

Wild type alcian blue lateral view, palate and Meckel’s cartilage are the top images. 

Heterozygous nectin1a embryo alcian blue are the middle images. nectin1a mutant lateral 

images are below the heterozygous images. The length of the palate is measured from the 

anterior midpoint to the posterior midpoint of the palate. The width is measured as the 

maximum distance between the 2 lateral borders at the anterior area. However, the length 

of the Meckel’s cartilage is measured from the midline of the Meckel’s cartilage to the 
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midline of an imaginary line drawn joining the joints between the Meckel’s cartilage and 

the palatoquadrate. The width is measured from the junction of the Meckel’s cartilage and 

the palatoquadrate of one side to the other side. nectin1a mutant have smaller and shorter 

palate, whereas shorter and wider Meckel’s cartilage compared to wild type. L: length, W: 

width. Scale bar: 10 μm 

 

Discussion 

 

This study presented a discovery effort to identify low-frequency coding variants 

associated with normal-range human facial morphology by undertaking gene-based 

association tests and subsequent analyses on a carefully phenotyped cohort genotyped on 

the Illumina Exome chip. Overall, we demonstrated that part of the morphological variation 

of facial shape is attributable to low-frequency coding variants, and pinpointed putative 

functional genes involved. AR, CARS2, FTSJ1, HFE/LOC108783645, LTB4R, TELO2 and 

NECTIN1 were implicated, with phenotypic effects in the area of cheek, chin, nose and 

philtrum. Notably, NECTIN1 is known to cause orofacial clefts, a craniofacial malformation 

that can be associated with alterations in facial shape. Using a zebrafish model, we 

confirmed the expression of nectin1a and nectin1b in the developing head and the 

abnormal craniofacial phenotype in nectin1a mutant. Taken together, these findings 

support the contribution of low-frequency coding variants to the morphogenesis of facial 

structures and the genetic architecture of normal-range facial shape. 

 

The seven genes identified by the multivariate approach are implicated in normal facial 

morphology for the first time to our knowledge. Their related-cellular processes/functions 

include metal ion transport (HFE), signaling (AR, LTB4R), tRNA metabolism (CARS2, FTSJ1), 

DNA repair (TELO2) and cell adhesion (NECTIN1). This diversity in functions led to a 

variety of functional pathways/categories showing up in our enrichment analysis, yet 

without strong signal in any particular one, probably due to the small number of genes as 

input and the nature of genetic architecture of morphological traits. With the exception 

NECTIN1, the role of these genes in patterning craniofacial tissue is largely unknown, and 

further investigation may yield more insights into normal and abnormal facial development.  

 

Previous GWASs and studies of facial dysmorphology have demonstrated that there are 

common genetic factors underlying both normal-range facial variation and orofacial 

clefting [5,11,34]. Our findings suggest that low-frequency coding variants may also help 

explain this relationship. Although none of the other genes implicated here have been 

shown to have a direct involvement in craniofacial development, NECTIN1 is an established 

player that has been linked both syndromic and isolated forms of orofacial clefting [35-37]. 
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Individuals with cleft lip/palate-ectodermal dysplasia syndrome (OMIM:225060) have 

distinctive facial features including an underdeveloped lower jaw [38], which is consistent 

with the facial segment (chin) where NECTIN1 association was observed. NECTIN1 protein 

belongs to the subfamily of immunoglobulin-like adhesion molecules that are key 

components of cell adhesion junctions, playing important roles in the fusion of palatal 

shelves during palatogenesis [39]. A handful of NECTIN1 mutations that can potentially 

disrupt gene function have also been documented in non-syndromic cleft patients [40-42]. 

In our cohort, two coding variants NECTIN1 were implicated, and both are predicted to be 

deleterious to protein function. We did lookups of the face-associated genes in a previous 

exome scan of NSCL/P cohort [24], and NECTIN1 yielded a p-value of 0.004, although not 

passing the Bonferroni significance threshold. Two other genes, TELO2 and HFE, did pass 

that threshold. These results are in line with previous evidence suggesting a role for same 

genes in normal and abnormal facial development.  

 

The detected expression of all genes identified except cars2 in the zebrafish embryonic 

head demonstrated their potential involvement in craniofacial development. Furthermore, 

our nectin1a knockout displayed altered shape and size of Meckel’s cartilage. This affected 

structure is in accordance with the human anatomical region (mandible, lower jaw), which 

was associated with NECTIN1 in our MultiSKAT test. We highlight the approach of 

interrogating human candidate genes in a biological context using the zebrafish model, 

where dynamic gene expression can be assayed in a high throughput fashion. Those 

candidate genes with spatiotemporal gene expression in the craniofacial domains then can 

be evaluated in functional studies, were mutants may already be available from large scale 

mutagenesis projects, or can be generated by CRISPR mediated gene editing.    

 

With the hierarchical facial modules, we were able to pinpoint genetic effects at different 

scales. For example, the effect of FTSJ1 was observed globally on the whole face, and also 

locally in specific modules on the side of the face. By contrast, the effect of NECTIN1 was 

confined to localized facial parts only. These patterns may help with understanding the 

mechanisms by which genes take effect along the growth of facial structure. Our 

multivariate data-driven phenotyping approach eliminates the need of preselecting traits, 

captures more variation in the facial shape and thus displayed high efficiency for gene 

mapping.  

 

The current study is an important extension and complement of our prior work [5]. Here 

we exclusively focus on coding variants with MAF below 1%, which have been omitted 

based on MAF filter from previous facial GWAS attempts. Importantly, our results 

generated distinct, non-overlapping knowledge about facial genetics. When we compared 
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our new results to those from a prior GWAS of this cohort [5], common variants in or near 

(within 500kb) the seven associated genes showed no evidence of association (p > 0.001 

for all) at the same facial modules. Nonetheless, it is possible that there are trans-acting 

common GWAS SNPs that regulate the expression of the seven newly identified genes 

during facial morphogenesis. Low-frequency variants showed large magnitude of effects 

compared to common variants in [5]. It is necessary, however, to point out that this 

difference could partially or completely be a result of the drastically smaller group of 

variant carriers, and we therefore refrain from overinterpreting the comparison. 

 

Our study demonstrated the power of applying gene-based tests of low-frequency variants 

that are usually untestable individually. While some significant genes harbor variants with 

a small p-value in our single-variant association test, others would have been missed if not 

tested in aggregate. With a moderate sample size of 2329, it is highly desirable to collapse 

low-frequency variants into putative functional units and perform burden-style tests. One 

explanation for the observed weak enrichment signals could be insufficient power, and we 

expect future well-powered studies to discover more biological pathways emerging from 

analyses of low-frequency coding variants. 

 

For variants occurring at a low frequency in the population, attempting to replicate the 

signal is difficult. The prominent barrier is the limited sample size. The low numbers or 

even absence of the carriers in independent populations hindered the replication efforts of 

our findings. We found that six out of the seven genes were not testable in a separate 

cohort of 664 Whites participants due to low copy number of the variants. Despite all the 

benefits of targeting low-frequency variants, those in the lower extreme of the MAF 

spectrum were still missed from the current analysis. Given the limited sample size and the 

ExomeChip design, this study was not adequately powered to identify genes harboring very 

rare variants that may also contribute to facial traits. By our filtering criteria, variants with 

a MAF < 0.08% were out of the scope of the analyses. Although complex traits are not 

expected to have a large fraction of the heritability explained by rare and private variants, 

such variants may be influential, predictive, and actionable at the individual level. In this 

regard, whole exome or whole genome sequencing of large samples holds promise.  

 

Like many other complex traits, research focused on uncovering the genetic architecture of 

facial morphology  is confronted with the challenge of missing heritability [43,44]. Our 

study has extended the paradigm of genetic involvement in facial development from 

common to low frequency variants, and highlighted novel candidate genes that may lead to 

encouraging follow-ups. Given that rare and low-frequency genetic variation might be 

highly specific to certain populations, and facial shapes have distinctive ancestry features, 
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future studies may benefit from extending the discovery of influential low-frequency 

variants to other ethnic groups.  
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Supporting Information 

 

S1 Fig. Q-Q plot of gene-based MultiSKAT tests by facial module 

S2 Fig. FUMA enrichment results 

S3 Fig. GTEx expression of MultiSKAT significant genes in tissues relevant to facial 

morphology. Dendrogram denotes similarity in expression level. TPM, transcripts per 

million 

S4 Fig. Magnitude of variant effect on facial modules, quantified by the Euclidean 

distance between averaged faces of different genotype groups. The 95% confidence 
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interval was obtained by 5000 bootstraps. The farther away the blue (common) or red 

(low-freq) rectangular boxes fall from line x=0, the larger the group distances and the 

greater the magnitude of effects.  Common variants that yielded significant GWAS 

association in the same cohort with the same modules are used as a comparison to low-

frequency variants. Genotype groups column indicates the two groups of people of whom 

the faces were averaged and distance was computed. For example, 0 vs 1/2 means minor 

allele homozygotes vs the remaining. The following two columns indicate sizes of the two 

groups in comparison. Low-frequency variants had large effects compared to previously 

reported common variants, although this could be a result from the much smaller size of 

carrier group and may not reflect genuine greater effects of low-frequency variants.  

S1 Table. Module-wide association results of genes identified by MultiSKAT. Show 

modules with a p-value < 10E-4. 

S2 Table. SKAT and CMC test results of the association between the seven facial genes 

and NSCL/P, retreived from a previous exome-wide gene-based association study of 

NSCL/P 

S3 Table. Functional prediction of individual variants in significant genes by CADD 

GRCh37-v1.4 

S4 Table. PhenoScanner lookups for variants in seven significant genes. Show existing 

associations involving these variants with a p value < 10e-4. 
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