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Abstract

Early administration of effective antimicrobial treatments is critical for the outcome of infections. Antimicrobial

resistance testing enables the selection of optimal antibiotic treatments, but current culture-based techniques take up

to 72 hours. We have developed a novel machine learning approach to predict antimicrobial resistance directly from

MALDI-TOF mass spectra profiles of clinical samples. We trained calibrated classifiers on a newly-created publicly

available database of mass spectra profiles from clinically most relevant isolates with linked antimicrobial

susceptibility phenotypes. The dataset combines more than 300,000 mass spectra with more than 750,000

antimicrobial resistance phenotypes from four medical institutions. Validation against a panel of clinically important

pathogens, including Staphylococcus aureus, Escherichia coli, and Klebsiella pneumoniae, resulting in AUROC

values of 0.8, 0.74, and 0.74 respectively, demonstrated the potential of using machine learning to substantially

accelerate antimicrobial resistance determination and change of clinical management. Furthermore, a retrospective

clinical case study found that implementation of this approach would have resulted in a beneficial change in the

clinical treatment in 88% (8/9) of cases. MALDI-TOF mass spectra based machine learning may thus be an important

new tool for antibiotic stewardship.
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Antimicrobial resistant bacteria and fungi pose a serious and increasing threat to the achievements of modern

medicine1,2. Infections with antimicrobial resistant pathogens are associated with substantial morbidity, mortality, and

healthcare costs3. Rapid treatment with an effective antimicrobial is critical for the outcome of an infection4,5.

However, antimicrobial therapy and dosage need to account for the resistance profiles of presumed pathogens, and

also have to consider host-specific factors such as patient age, kidney function, and previous medical history. Early

identification of the microbial species causing an infection can allow potential therapeutic options to become more

targeted based on e.g. intrinsic resistance mechanisms and local epidemiology of resistance6,7. However, only a

detailed resistance profile permits treatments to be fully optimised. With current culture-based methods, the time from

sample collection to resistance reporting can take up to 72 hours, meaning that for a substantial period, a patient may

be receiving a too narrow- or too broad-spectrum antimicrobial drug8,9. To limit the infection-related risk to a patient,

broad-spectrum antibiotics are very often used. The concept of an optimal selection of an antibiotic drug is an

important pillar of antibiotic stewardship and has gained significant attention owing to the global emergence and

spread of antibiotic resistant pathogens. A reduction in the time required for a resistance profile to become available

will not only substantially improve patient outcomes, but would also align well with other goals of antibiotic

stewardship10, including reducing reliance on precious broad-spectrum antibiotic treatments, reducing unnecessary

broad antibiotic use, and thereby combating the development of antibiotic resistance. In addition, rapid information on

antimicrobial resistance may help to speed up infection prevention measures such as the isolation or cohorting of

patients infected with presumed multidrug resistant pathogens. PCR-based molecular diagnostics may be able to

detect single resistance genes directly from patient specimens more rapidly than any culture-based diagnostics.

However, such molecular assays are generally narrow-spectrum assays of single gene targets and also suffer from

problems with specificity of resistance genes, resistance that is not genetically-mediated (e.g. upregulation of efflux

pumps), and the associated costs11–13.

Matrix-Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-TOF) mass spectrometry (MS) has proven to be a

rapid technology for microbial species identification. In just a few minutes, MALDI-TOF MS can be used to

characterise the protein composition of single bacterial or fungal colonies14–16, which are usually available within 24

hours after sample collection.  MALDI-TOF MS enables precise and low-cost microbial identification, which has led to

the technology becoming the most commonly-used method for microbial identification at species level in clinical

microbiology laboratories7,17,18. MALDI-TOF MS has the potential to move beyond simply identifying an infecting

pathogen. Extracting additional information directly from acquired MALDI-TOF mass spectra data may also enable

antimicrobial susceptibility testing. Indeed, a recent study used MALDI-TOF mass spectra to detect markers
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associated with methicillin resistance in clinical samples of Staphylococcus aureus19. However, the absence of a

comprehensive catalogue of marker masses for all potential pathogen and drug combinations has made translating

such efforts to clinical practice impossible. In this study, we harnessed  the full potential of MALDI-TOF MS to predict

antimicrobial resistance through machine learning methods. In this context, previous efforts are rare20,21 and stymied

by the lack of large, publicly-available, high-quality benchmark datasets22,23.

To develop clinically-applicable mass spectra-based antimicrobial resistance prediction approaches, we created the

Database of ResIstance against Antimicrobials with MALDI-TOF Mass Spectrometry (DRIAMS). DRIAMS is a

large-scale, publicly-available, high quality collection of bacterial and fungal MALDI-TOF mass spectra derived from

routinely-acquired clinical isolates, coupled with the respective laboratory-confirmed antibiotic resistance profile. We

used DRIAMS to undertake the first large-scale study of the utility of such spectra for antimicrobial resistance

prediction. We demonstrated the efficacy of this approach for determining the resistance for three priority pathogens,

reporting AUROC values of 0.74, 0.74, and 0.80. Furthermore, we validated the ability of DRIAMS to increase

resistance profiling performance at other hospitals, where less data is available to build an antimicrobial resistance

classifier. We demonstrate the clinical usefulness through a retrospective clinical case study, in which we observe that

in 88% of cases, our prediction would have resulted in a beneficial change in the clinical treatment. As mass spectra

can be generated rapidly from colonies following overnight culture, our approach can provide guidance for early

antimicrobial patient treatment decisions and antibiotic stewardship, substantially sooner than any classical

culture-based phenotypic testing.

Results

DRIAMS: Clinical routine database combining MALDI-TOF mass spectra and antimicrobial resistance profiles

From 2016 to 2018, we assembled a very large dataset of MALDI-TOF mass spectra from more than 300,000 clinical

isolates from four different diagnostic laboratories in Switzerland. The raw dataset comprises a total of 303,195 mass

spectra and 768,300 antimicrobial resistance labels and represents 803 different species of bacterial and fungal

pathogens. The dataset was processed and organised in four sub-collections (DRIAMS-A to -D; Fig. 1). DRIAMS-A,

the largest collection with 145,341 mass spectra), was collected at the University Hospital Basel (Switzerland) and is

used for the main analysis presented in this study. DRIAMS-A contains resistance labels associated with 71 different

antimicrobial drugs, the number of spectra and antimicrobial resistance ratios for which can be found in Suppl. Tab. 1

and 2. Importantly, the MALDI-TOF mass spectra in DRIAMS-A could be obtained from clinical samples within 24

hours of collection, enabling species identification on a rapid scale as compared to standard phenotypic resistance

testing (Suppl. Fig. 1).
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Machine learning for MALDI-TOF MS based antimicrobial susceptibility prediction

To move beyond simple species identification, we preprocessed and binned mass spectra measurement points into

fixed bins of 3 Daltons (Da), ranging from 2,000 Da to 20,000 Da, thus obtaining a 6000-dimensional vector

representation for each sample. The selected bin size is sufficiently large to adequately represent each spectrum

while still remaining computationally tractable (for details see Methods). Next, we converted the antimicrobial

resistance categories, which are either recorded as susceptible, intermediate, or resistant in the laboratory reports

associated with each sample, into a binary label (susceptible vs. intermediate/resistant)(for details see Methods).

Specifically, we assigned intermediate or resistant samples to the positive class, and susceptible samples to the

negative class (in most of the scenarios we consider, the positive class will be the minority class). We then split the

samples into training and testing datasets, ensuring that all data associated with a specific case was either part of the

train dataset, or the test dataset, but not both, while keeping a similar antimicrobial class ratio in both train and test

dataset. We used three machine learning approaches for classification, i.e. logistic regression (LR), gradient-boosted

decision trees (LightGBM), and a deep neural network classifier (multi-layer perceptron, MLP), to predict resistance to

each individual antimicrobial. The three models were selected because they represent different complexity classes of

classifiers (for a more in-depth description of these approaches, please see Methods). Subsequently, we report the

common machine learning metrics ‘area under the receiver operator characteristic curve’ (AUROC) and ‘area under

the precision-recall curve’ (AUPRC) as performance metrics. AUROC can be understood as the probability of

correctly classifying a pair of samples, i.e. a resistant/intermediate one and a susceptible one; AUPRC quantifies the

ability to correctly detect samples from the smaller of the two classes (resistant/intermediate), while minimising false

discoveries. Overall, we observed that LightGBM and MLP were the best-performing classifiers in terms of AUROC.

Fig. 1 depicts the workflow from data collection and filtering, spectra processing, and antimicrobial resistance

prediction results.
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Figure 1: MALDI-TOF MS based AMR prediction workflow. Workflow of MALDI-TOF MS data preprocessing and
antibiotic resistance prediction using machine learning. A. (i) Data collection: Samples are taken from infected
patients, pathogens are cultured, and their mass spectra and resistance profiles are determined. Spectra and
resistance are extracted from the MALDI-TOF MS and laboratory information system; corresponding entries are
matched and added to a dataset. Samples are filtered according to workstation. (ii) Quality control (QC) filtered
datasets: After several quality control steps, the datasets are added to DRIAMS. (iii) Antimicrobial resistance (AMR)
binarisation: antimicrobial resistance is defined as a binary classification scenario, with the positive class represented
by all labels leading to the antimicrobial not being administered, i.e. intermediate or resistant, and positive, while the
negative class represents susceptible or negative samples. B. (i) Pre-processing: Cleaning of mass spectra. (ii)
Binning: Binning spectra into equal-sized feature vectors for machine learning. C. (i) Data splitting: For the
experiments the samples are subset to only one species. Data is split into 80% training and 20% test, stratified by
both antimicrobial class and patient case number. (ii) Classification: Antimicrobial resistance classifiers are trained
using a 5-fold cross-validation for hyperparameter search, using the classification algorithms logistic regression,
LightGBM, and a deep neural network classifier (MLP). (iii) Evaluation: Predictive performance is measured in metrics
commonly used in machine learning (AUROC and AUPRC) and the medical community (specificity and sensitivity).
(iv) Interpretation: Interpretation of individual feature contribution to antimicrobial resistance prediction through
Shapley values and clinical impact through a retrospective case study on samples from the latest four months of
collected data.
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Species-specific AMR prediction yields high performance for clinically-relevant pathogens

We first sought to determine whether the use of species-specific mass spectra in DRIAMS-A would result in high

predictive performance. To this end, we performed a focused analysis for three clinically important pathogens:

Staphylococcus aureus, Escherichia coli, and Klebsiella pneumoniae, all of which are on the World Health

Organization ‘priority pathogens’ list24. For each of the three species, we selected relevant antibiotics to test based on

their clinical usage. We then created a DRIAMS-A subset for each antibiotic, which we further divided into stratified

training and testing data as described above. For each of the three species we chose one antibiotic resistance as the

major scenario of interest; namely oxacillin as a marker for Methicillin-resistant S. aureus (MRSA)25, and ceftriaxone

resistance in E. coli and K. pneumoniae as marker for extended spectrum or other beta-lactamases (ESBL). We then

trained a classifier using each model for each of the three major species-antibiotic pairs (see Fig. 2A). We analysed

to what extent the respective best model was capable of predicting resistance to other antibiotics (see Fig. 2B-D),

observing high overall performance in both AUROC and AUPRC values; the classifier is therefore capable of

providing precise antimicrobial resistance predictions. For S. aureus, the prediction of oxacillin resistance reached a

high performance with AUROC of 0.80 and AUPRC of 0.49 at a positive (i.e. resistant/intermediate) class ratio of

10.0%. According to laboratory protocols used in DRIAMS-A, for S. aureus strains, the reported susceptibility of

beta-lactam antibiotics are inferred from the oxacillin susceptibility test results. We also observed high performance

for E. coli and K. pneumoniae, where the prediction of ceftriaxone resistance reached AUROC values of 0.74 in both

species, and AUPRC values of 0.30 and 0.33, at a positive class ratio of 10.0% and 8.2%, respectively. We would

expect the generation of such resistance information within 24 hours to have a substantial impact in treatment

adaptation and infection prevention management. Overall, this experiment demonstrated that a species-specific

classifier can achieve clinically useful prediction performance with significantly faster determination of antibiotic

resistance compared to the laboratory standard of phenotypic resistance determination (Suppl. Fig. 1). We also

analysed to what extent the combination of species identity and mass spectrometry information outperforms

predictions based on species identity alone. We analysed AUROC predictive performance for the 42 studied

antibiotics (see Suppl. Fig. 2). For 31 of them, AUROC values above 0.80 were reached, implying highly accurate

predictions. Moreover, for 22 antibiotics, we observed statistically significant improvements in prediction performance

using the combined mass spectra in DRIAMS-A as compared to using only species information for resistance

prediction. The results clearly demonstrate the predictive power of mass spectra based antimicrobial resistance

prediction.
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A. species antibiotic scenario abbreviation model AUROC AUPRC

S. aureus oxacillin S-OXA LightGBM 0.80 ± 0.03 0.49 ± 0.06

LR 0.75 ± 0.04 0.37 ± 0.07

MLP 0.79 ± 0.03 0.46 ± 0.10

E. coli ceftriaxone E-CEF LightGBM 0.74 ± 0.02 0.30 ± 0.03

LR 0.70 ± 0.03 0.24 ± 0.02

MLP 0.68 ± 0.03 0.22 ± 0.03

K. pneumoniae ceftriaxone K-CEF LightGBM 0.67 ± 0.03 0.24 ± 0.05

LR 0.68 ± 0.04 0.26 ± 0.07

MLP 0.74 ± 0.04 0.33 ± 0.07

B. E. coli (LightGBM) C. K. pneumoniae (MLP) D. S. aureus (LightGBM)

Figure 2: Best performance antimicrobial resistance prediction models on DRIAMS-A A. Comparison of
performance of three machine learning models. Metrics are reporting the mean ± standard deviation for 10
different shuffled stratified train–test splits. For S. aureus (oxacillin) and E. coli (ceftriaxone), the best predictive
performance is reached with LightGBM; for K. pneumoniae (ceftriaxone) with the multi-layer perceptron (MLP).
Additionally, the abbreviations for species-antibiotic scenarios are introduced. B.-D. ROC and PR curves for
different antimicrobials using the best models. The curves were created by appending the scores while the
displayed values stem from reporting the mean for 10 different shuffled stratified train–test splits, matching values
to the tables. B. For E. coli, the best-performing predictor was that for ciprofloxacin, followed by ceftriaxone, critical
antibiotics indicating an extended beta-lactamase (ESBL) if resistant. C. For K. pneumoniae, cefepime exhibited
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the highest performance of 0.76 AUROC, also indicating an ESBL if resistant. Compared to the other scenarios, its
ROC curve has a larger step size, but with over 500 test samples, the sample size is comparable to the other
antibiotics. D. Finally, for S. aureus, our model performed best for oxacillin, with an AUROC of 0.78. This is
particularly relevant, as for S. aureus, the resistance to other beta-lactam antibiotics (including
amoxicillin/clavulanic acid and ceftriaxone) is directly derived from oxacillin resistance, indicating a methicillin
resistant S. aureus (MRSA).

Large external datasets improve local antimicrobial resistance prediction

The use of pre-trained machine learning models could expedite uptake of this approach in clinical laboratories

already using MALDI-TOF MS for species identification. As such, we assessed whether predictive performances

reached using data from one site (e.g. one specific hospital) are transferable to other sample collection sites. For the

datasets DRIAMS-A to -D, each representing one of our four sites, we divided data associated with each case into

train and test datasets as described above, and then trained a predictor before testing on each site. We also

compared this site-specific training with predictors trained across all sites. The results indicate that site-specific

training reaches better predictive performance compared to across-site validation. Within the site-specific training, the

large DRIAMS-A dataset is the or among the best-performing sites (Fig. 3A).

We further investigated whether we could improve prediction for sites where a large dataset is unavailable by

leveraging existing large external datasets such as DRIAMS-A. We therefore trained on combinations of training

datasets from different sites, including different combinations of the four sites DRIAMS-A to -D, and tested on a single

external site DRIAMS-B to -D. While the transferability of predictive performance from one site to another is an active

area of research in the machine learning field of domain adaptation, a recent study26 has shown that using empirical

risk minimization by learning a single model on pooled data across all training environments often outperforms more

complex domain adaptation approaches. The results indicated that the addition of training datasets from other sites to

the external site train data was beneficial for validation sites DRIAMS-B and -C (Fig. 3B and Suppl. Tab. 3). For

external validation site DRIAMS-D, the best predictive performance was still reached when training exclusively on the

site-specific training data. For external validation sites DRIAMS-B, the addition of the large DRIAMS-A dataset proved

most beneficial for scenarios E. coli (ceftriaxone) and K. pneumoniae (ceftriaxone), while adding more data from

DRIAMS-C to the training data was beneficial for S. aureus (oxacillin).
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A.

B.
Test site: DRIAMS-B (class 1 ratio 20.9%) Train site:

DRIAMS-A
Train site:
DRIAMS-B

Train sites:
DRIAMS-A
DRIAMS-B

Train sites:
DRIAMS-A
DRIAMS-C
DRIAMS-D*

Train sites:
DRIAMS-A
DRIAMS-B
DRIAMS-C
DRIAMS-D*species antibiotic model

E. coli ceftriaxone LightGBM 0.60 ± 0.13 0.55 ± 0.20 0.66 ± 0.12 0.63 ± 0.14 0.62 ± 0.11

K. pneumoniae ceftriaxone MLP 0.23 ± 0.12 0.29 ± 0.14 0.37 ± 0.17 0.20 ± 0.11 0.33 ± 0.18

S.aureus oxacillin LightGBM 0.24 ± 0.12 0.30 ± 0.20 0.45 ± 0.24 0.25 ± 0.11 0.48 ± 0.18

Figure 3: Combining datasets is necessary to reach accurate antimicrobial prediction on external
validation sites A. Validation predictive performance of each scenario trained and tested on DRIAMS-A to
-D (AUROC). The results show the mean AUROC performance of 10 random train-test splits. For comparability,
the train-test splits are kept the same for each of the respective four DRIAMS datasets. The values reported on the
top-right (both training and testing DRIAMS-A) correspond to the values reported in Fig. 2A. With the exception of
DRIAMS-B E.coli (ceftriaxone), the highest performance is reached when training is performed on the same site as
testing. DRIAMS-A and DRIAMS-D exhibit the highest transferability with respect to predictive performance, and
overall, transferability seems higher in E. coli as compared to K. pneumoniae and S. aureus. Due to the different
class ratios between test datasets on different sites, AUROC was chosen to permit comparability. The scenario
abbreviations follow Fig. 2A. For S-OXA no DRIAMS-D data is available. B. Performance trained on union
datasets of multiple sites and tested on DRIAMS-B (AUPRC). For each site the dataset was split into training
and test; only the training sets are combined in the union training sets. Neither the large external dataset
DRIAMS-A nor the internal datasets at the target site alone reach the best performance on the target site test data.
A union of the target training data and large external datasets is able to reach significant improvements over the
target site performance. (*) For S-OXA no DRIAMS-D data is available. The results for test sites DRIAMS-C and
DRIAMS-D are listed in Suppl. Tab. 3.
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Learning on a single species yields superior predictions compared to learning on multiple species

Next, we analysed whether classifiers can improve the predictive performance by training on a large number of

samples from multiple species (as opposed to training on samples from a single species). It is known that different

species of bacteria can be resistant to a specific antimicrobial through different mechanisms. For example, resistance

against beta-lactam antibiotics in Gram-negative bacteria, such as E. coli, may be caused by the production of

beta-lactamases such as CTX-M27, TEM, and SHV28,29 or carbapenemases e.g. OXA-4830. Resistance against

beta-lactam antibiotics in Gram-positive bacteria, such as S. aureus, can be caused by a penicillinase (blaZ),

resulting in a resistance only against penicillin31, or by an alteration within the penicillin-binding protein (PBP2a),

resulting e.g. in the MRSA phenotype with resistance against multiple beta-lactam antibiotics32. Hence, pooling

spectra across species and predicting antimicrobial resistance using the same model regardless of the species poses

a more complex learning task than predicting antimicrobial resistance within one specific species. However,

stratification by species reduces the number of samples available for training and might therefore lower predictive

performance. We assessed the trade-off between the number of available samples and predictive performance by

comparing the performance of (i) a model trained to predict antimicrobial resistance using samples from across all

species (ensemble) with (ii) a collection of models trained separately for single bacterial species (Fig. 4A). Each point

of the depicted curves corresponds to one classifier, trained with the number of samples specified on the x-axis. The

last, i.e. rightmost, point of each curve hence corresponds to the scenario in which all available samples are being

used. We observed that training a model for individual species separately led to improved performance for all

species, despite the reduction in sample size. Notably, all training samples used to reach the last single-species

classification results were also included in the training samples for the last ensemble classifier. The last ensemble

classifier therefore had access to at least the same amount of information about the respective species as the last

single-species classifier. Nevertheless, it never outperformed the single-species classifiers except for oxacillin

resistance in S. aureus. Furthermore, a few curves reached a plateau, with the single-species classifier increasing

more sharply with the last addition of more training samples. This demonstrates the higher complexity of the

ensemble prediction task and the benefit of a larger training dataset, which are critical for capturing different

resistance mechanisms.
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Current samples are advantageous for accurate antimicrobial resistance prediction

Mass spectra profiles are subject to variations and differences over time, caused by biological differences through the

ongoing evolution of the local microbial populations (with new strains being introduced by e.g. travelling), or by

technical differences, such as changes after MALDI-TOF MS machine maintenance (e.g. laser replacement and

adjustment of internal spectra processing parameters through machine calibration). To guide and encourage further

method development, we wanted to illustrate challenges and limits of mass spectra based antimicrobial resistance

prediction. Hence, we studied whether recent samples are necessary, and whether adding more samples collected at

older timepoints would increase predictive performance. We fixed the latest four months of data from DRIAMS-A as a

test dataset, and trained classifiers on data collected within 8-month training windows with increasing temporal

distance to the test collection window, simulating the availability of older samples. The training data within the training

window was oversampled to match the class ratio in the test data; however, sample sizes could still vary between

training windows. We observed a slight decrease in performance with increasing temporal distance between training

and testing data (Fig. 4B) for E. coli and S. aureus; with a larger decrease for K. pneumoniae. We explain this drop

by the aforementioned differences that accumulate over time, highlighting the positive effect of having access to

recent training samples.
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A.

B.

Figure 4: Stability of results with different dataset perturbations The scenario abbreviations follow Fig. 2A. A.
Predictive performance with increasing sample size AUROC and AUPRC as a function of sample size for
complete and species-stratified DRIAMS-A datasets. Experiments were repeated for ten different shuffled
train–test splits. The solid curve represents the mean of these repetitions, with the envelope depicting the standard
deviation of repetitions. Results are shown for the three major scenarios of interest. With equal sample size,
training only on samples from a single species is outperforming training in all scenarios. Even for the datasets
containing all available samples from the target species (the rightmost points of each curve), the single-species
scenario outperforms the ensemble in both E. coli and K. pneumoniae (ceftriaxone), while the curves reach a
similar predictive performance for S. aureus (oxacillin). B. Temporal validation in DRIAMS-A reporting AUROC
(upper) and AUPRC (lower) of sliding 8-month training window on fixed test set. The test dataset is the data
collected in the last four months May to the end of August 2018. For E. coli (ceftriaxone) (E-CEF) and S. aureus
(oxacillin) (S-OXA) the predictive performance decreases with increasing temporal distance to the test set, but the
fluctuations in the curve are of the same size as the drop over time. The predictive performance for ceftriaxone in
K. pneumoniae (K-CEF) decreases more continuously and drastically with increasing temporal distance to the test
set.
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Retrospective clinical case study

In order to evaluate the clinical benefit of our classifier, we evaluated the antibiotic therapy of patients represented in

DRIAMS-A, with invasive serious bacterial infections treated between April and August 2018. We reviewed 416

clinical cases that included positive cultures with E. coli, K. pneumoniae, or S. aureus from either blood culture or

deep tissue samples. For 63 of these cases, an infectious diseases specialist (hereafter referred to as clinician) was

consulted regarding the antibiotic treatment. Consultation occurred between the species being identified and before

the phenotypic antibiotic resistance testing was available (Suppl. Fig. 3). For each case, we retrospectively reviewed

the recommendations and assessed whether an alternative antibiotic therapy would have been suggested if our

classifier had been employed at the time at which the MALDI-TOF mass spectrum was acquired.

In 54 clinical cases, the employment of the algorithm would not have changed the suggested antibiotic treatment: in

22 cases the clinician suggested de-escalation of the antibiotic regimen to a more-narrow spectrum antibiotic, in 25

cases to continue the current antibiotic regimen, and in seven cases to escalate the antibiotic treatment to a broader

spectrum antibiotic. The classifier reported an accurate prediction of the antibiotic resistance in 51 of these 54 cases,

but as the decision on antibiotic treatment can be influenced by multiple factors other than the antibiotic resistance of

one bacterial species against one antibiotic agent, such as allergy, these did not change the suggested therapy (Fig.

5).  In three cases, our algorithm predicted susceptibility, where phenotypic testing revealed resistance to antibiotics.

In none of these three cases however, would this incorrect prediction have led to a less effective treatment than

suggested without the algorithm: In two of these cases a known MRSA colonization of the patient would have been

considered by the clinician, regardless of the prediction of the algorithm. In the third case, K. pneumoniae and E. coli

were both identified in blood culture samples. Here, the clinician would have suggested to keep the current antibiotic

treatment against E. coli with or without the use of the algorithm, and escalation to a broader spectrum antibiotic was

only implemented after phenotypic testing.

For nine cases an alternative antibiotic therapy would have been suggested by the clinician with the employment of

the classifier at the time of species identification: in seven cases, the classifier would have led to a de-escalation of

the antibiotic therapy, while in one case, the employment of the algorithm would have led to an escalation of the

antibiotic therapy, and finally, in one case the employment of the algorithm would have changed the suggested

treatment to continue the current antibiotic therapy, where the clinician suggested to escalate to an antibiotic agent

with a broader spectrum (Fig. 5). In summary, for eight out of these nine cases (88%) where the employment of the

algorithm would have changed the empiric antibiotic regimen, this change would have been beneficial and would

have promoted antibiotic stewardship.
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Figure 5: Retrospective clinical case study including 63 cases with invasive bacterial infection. (A) schematic

representation of the current standard of care (top row) and the possible employment of our classifiers in the clinical

workflow (bottom row). (B) We evaluated the antibiotic regime suggested by a clinician without the employment of the

classifier (column 2), which antibiotic resistance the classifier predicted (column 3), the antibiotic treatment suggested

considering the predicted antibiotic resistance (column 4) and the phenotypically tested antibiotic resistance. The

dashed boxes highlight where the employment of  the classifiers would have led to an alternative antibiotic treatment

suggestion.  ‘de-escalation’: change antibiotic regimen to a more narrow spectrum antibiotic agent, ‘keep’: continue

the current antibiotic regimen, ‘escalate’: change antibiotic regime to a broader antibiotic regimen.
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Analysis of feature contributions through Shapley values
Only very few studies have considered full mass spectrum information instead of single peaks for antimicrobial

phenotype prediction20. We therefore wanted to assess whether predictive performance is primarily driven by only a

subset of the peaks, or whether the full spectrum is employed. While this question is partially addressed by the use of

feature importance values, their use without additional information can be misleading as their interpretation is highly

contingent on the classifier that was employed. Hence, for further analysis, we also calculate the Shapley values, a

concept originating from coalitional game theory, which enable the interpretation of model output contributions on

both the dataset and per-sample level for each feature33. Fig. 6 visualizes the average and per-datapoint Shapley

values for the 30 features with the highest average contribution. It is evident that three to ten mass-to-charge bins

contribute more than the remaining features. As the tails of the distribution plots for each feature are coloured with

either the highest or lowest feature value, we see that the predictor is using either the presence of a high intensity

value (red) or the absence of any measured intensity (blue) for a positive (resistant/intermediate) class prediction.  In

case of S. aureus (oxacillin) for the top four mass-to-charge bins the presence of a peak indicates the positive

(resistant/intermediate) class, while for E. coli (ceftriaxone) also the absence of a peak can strongly contribute to a

positive class prediction. We further observe that most of the top 30 contributing features lie in the lower

mass-to-charge ratio regime (lower than 10,000 Da), where more mass particles are measured in MALDI-TOF MS.

The feature importance distributions over all 6,000 features (Suppl. Fig. 4) stemming directly from the classification

models indicate that the classifiers utilize the entire range of features.
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A. E-CEF (LightGBM) B. K-CEF (MLP) C. S-OXA (LightGBM)

Figure 6: Quantification of feature impact on prediction through analysis of SHapley Additive exPlanations
(SHAP) values of the 30 most impactful features. For each scenario, a barplot on the left indicates the mean Shapley
value, i.e. the average impact of each feature on the model output magnitude. The scatterplot on the right indicates
the distribution of Shapley values, and their impact on the model output, over all test samples. The colours of each
test spectrum (according to the colorbar: blue for low feature values and red for high feature values) indicates the
feature value, i.e. the intensity value of the respective feature in the spectrum. The scenario abbreviations follow Fig.
2A. The asterisks marked feature bins containing a previously identified protein peak listed in Suppl. Tab. 4.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 12, 2021. ; https://doi.org/10.1101/2020.07.30.228411doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.30.228411


Discussion

We have demonstrated that MALDI-TOF mass spectra based antimicrobial resistance prediction from routine

diagnostic clinical samples is capable of providing accurate predictions with unmatched speed within 24 hours of

sample collection. This analysis was made possible by collecting the largest real-world clinical dataset containing

303,195 MALDI-TOF mass spectra and 768,300 corresponding antimicrobial resistance phenotypes. Overall, we

observed high predictive performance using calibrated LightGBM and MLP classifiers for multiple pathogen species

with classifiers trained on individual species–antibiotic combinations, such as ceftriaxone resistance in E. coli and K.

pneumoniae and oxacillin resistance in S. aureus, obtaining AUROC values larger than 0.70 for several

antibiotic–species scenarios (Fig.2).

We found that antimicrobial resistance classifiers trained on mass spectra of species from one site are not directly

applicable to mass spectra measured at other sites (see Fig. 3A). This is influenced by many sources, including (i)

different phylogenetic strains, (ii) different prevalence of resistance (i.e. different class ratios), which can impact

predictive performance, or (iii) technical variability34, owing to different machine-specific parameters and settings (i.e.

‘batch effects’). In a similar vein, the closer the time of collecting the training samples is to the time of prediction, the

better the predictive power of the trained classifier (see Fig. 4B), likely owing to the same aforementioned reasons.

Hence, we would recommend that a clinically-applied classifier should be updated and retrained with the most recent

data, originating from its deployment site, at regular time intervals. In clinical practice such an algorithm may require

regular re-certification. At the same time, for individual specific species–antibiotic scenarios, even small sample sizes

can lead to high predictive performance (see Fig. 4A and the subsequent discussion), making it possible to train

hybrid models based on e.g. DRIAMS-A with few site-specific examples.

We demonstrate that in order to obtain a classifier at a site with a smaller training dataset, combining the available

data with an external dataset, such as DRIAMS-A, can increase the training performance (Fig. 3B and Suppl. Tab.

3A). Combining training datasets from different sites increases the sample size, and potentially the coverage of rarer

bacterial strains, which improves the predictive performance. However, combining training data originating from

different sites also increases the variance in the data, which has the potential to decrease predictive performance.

Merging training datasets did not lead to an increased performance on the DRIAMS-D test data (Suppl. Tab. 3B).

This could indicate that DRIAMS-D’s outpatient sample pool creates a dataset dissimilar to the dataset collected at

hospitals (DRIAMS-A to -C). These results motivate the potential of large-scale MALDI-TOF MS clinical routine

dataset acquisition for antimicrobial resistance prediction—combining large datasets could increase the predictive
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performance on either prediction site. Furthermore, it is worth noticing that all collection sites contributing data to this

study are located in relatively close geographic proximity in a low endemic area for ESBL producing bacteria. Future

analysis should assess how data from healthcare centers with a higher burden of antibiotic resistant bacteria

influence the performance of our classifiers.

Surprisingly, we found the predictive performance of classifiers trained on a single species to be higher than that of

classifiers trained on multiple species, indicating the higher complexity of predicting multiple resistance mechanisms.

However, we also observed the general trend of improved performance if more samples are available. This indicates

the potential benefits of having access to a large database of MALDI-TOF mass spectra (Fig.4). Suppl. Fig. 5 also

indicates that the reduction in performance training on older datasets could in fact stem from a lower sample size, as

the MALDI-TOF MS technology usage at the DRIAMS-A collection site increased over time. Fig. 4A demonstrates

that classifiers perform best for a specific species–antibiotic scenario if the training dataset includes only samples

from that scenario, and that adding samples from other species lowers the predictive performance. We distinguish

two potential situations: (i) the mechanism causing antimicrobial resistance varies between species or (ii) the

resistance mechanism is the same in several species. If situation (i) were true, the results in Fig. 4A can be

expected, as the classifier has to predict several objectives at once (predicting resistance caused by mechanism A in

species A, while also being able to predict resistance caused by mechanism B in species B, etc.). In situation (ii), one

could expect that combining samples of several species to predict resistance caused by the same mechanism

increases performance. For most scenarios, we are confronted with situation (ii), such as beta-lactam resistance in E.

coli in Fig. 4A. However, many proteins causing resistance are beyond the effective mass range of MALDI-TOF mass

spectra. For example, the penicillin-binding protein in S. aureus has a mass of approximately 76,400 Da35,

beta-lactamases in E. coli and K. pneumoniae weigh approximately 30,000 Da36–39, and the E. coli outer membrane

porin OmpC weighs approx. 40,300 Da40. Therefore, we hypothesise that our predictor cannot detect the resistance

mechanism (due to physical limitations), but rather species-specific and resistance-associated changes in the

proteome as well as phylogenetic similarity between resistant vs. susceptible samples. The number of samples

depicted in Fig. 4A also gives an indication at what sample size most information/variance of samples originating

from the DRIAMS-A collection site are covered by the training data. The sample sizes required to reach the ‘plateau’

visible for single-species predictive performance range from 2,500 to 5,000. We therefore suggest collecting a

dataset of at least 2,500 samples when working on MALDI-TOF MS based antimicrobial resistance prediction.
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While the antimicrobial resistance classifiers are trained and predict resistance labels as a black-box system,

analysing the contribution of each feature bin to the predictive outcome is of utmost importance to explain the

antimicrobial resistance predictor decision-making process in a manner that can be interpreted by the user. We

therefore determined the feature importance (given by the respective algorithms LightGBM and the MLP) and the

Shapley values of each feature bin and compared the results of the highest-weighted bins to known resistance

associated peaks from the literature. We first note that most of the feature bins with the highest average impact are

feature bins with a mass-to-charge of less than 10,000 Da (79 out of 90 features bins in Fig. 6) and the Shapley

values indicate that very high or very low feature bin values (corresponding to the presence or absence of a

MALDI-TOF mass peak within the feature bin range) contribute to the prediction outcome, rather than variations in

the feature bin magnitude. This is in line with prior knowledge on MALDI-TOF MS; most proteins that are reproducibly

detected in MALDI-TOF MS have a weight less than 10,000 Da41 and the signal indicates their presence or absence.

This confirms that the detection of proteins is responsible for the predictive power, rather than confounding signals or

noise.

Multiple feature bins that contributed substantially to our classifiers can be annotated with resistance-associated

proteins identified in previous studies (Suppl. Tab. 4). Most studies aiming to identify resistant bacterial strains from

routinely acquired MALDI-TOF mass spectra have focused on oxacillin resistance in S. aureus and have identified

peaks that were either used to distinguish between methicillin susceptible S. aureus (MSSA) and MRSA or to

distinguish between MRSA sub-lineages42–50. A subset of these discriminatory peaks were identified to correspond to

either (i) constitutively conserved housekeeping genes or (ii) other peptides such as stress proteins or low molecular

weight toxins44. The mass of three of the identified proteins, 3007 Da (Delta-toxin), 3891 Da (uncharacterised protein

SA2420.1), and 4511 Da (uncharacterised protein SAR1012) can be attributed to highly contributing feature bins;

specifically 3005-3008 m/z, 3890-3893 m/z, and 4508-4511 m/z receiving the 7th, 3rd, and 14th Shapley value (Fig.

6, Suppl. Tab. 4) respectively. A peak at 2415 m/z has previously been identified as MRSA specific43. This peak

corresponds to the peptide PSM-mec46, which is encoded on a subset of SCCmec cassettes (types II, III and VIII) in

close proximity to mecA5152, which encodes resistance to oxacillin. Among the feature importances within the oxacillin

resistance predictor in S. aureus, this peak corresponds to the 83rd highest-ranked feature bin of 2414-2417 m/z (out

of 6000 feature bins overall).

The increased occurrence of multidrug resistant E. coli has been attributed to the spread of a few clonal lineages, in

particular to sequence type (ST) 13153. Previous studies54 have identified ST131 characteristic peaks, which can be

attributed to feature bins receiving high feature importances and Shapley values by the ceftriaxone of E. coli
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(8447-8450m/z, 8498-8501m/z and 11780-11783m/z; receiving the 5th, 38th, 1st highest feature importance

respectively). These references confirm the discriminatory potential of single feature bins, contributing substantially to

our classifiers and also highlight their generalisability, as the spectra for these studies were acquired from

independent strain collections and on different MALDI-TOF MS devices. Moreover, our classifiers use many more

feature bins, for which the discriminatory potential has not previously been identified. An investigation of the protein

identity of these yet unknown discriminatory feature bins and their occurrence throughout the respective species

would be desirable in the future.

Our retrospective clinical case study shows that our classifier can have a beneficial impact on patient treatment and

promote antibiotic stewardship. In 51 out of 63 cases, employing the algorithm at the time of the species identification

would have supported the treatment regimen suggested by the clinician (Fig. 5). In three cases, the inaccurate

prediction by our classifier would not have changed the suggested antibiotic regime, since the decision is influenced

by multiple other factors in addition to the resistance profile towards one antibiotic such as (i) allergies of the patient,

(ii) other bacterial species involved in the infection, (iii) patient history including the antibiotic profile of previous

isolates, (iv) type of administration of the antibiotic agent. In eight out of 63 cases the accurate prediction by our

algorithm would have led to an earlier streamlining of the antibiotic regimen to a more narrow spectrum antibiotic

agent, which would have been an important improvement considering the urgent threat to public health posed by the

spread of antibiotic resistant bacteria. Similar trends in antibiotic stewardship have been observed when using

genotypic assays such as rapid PCR assays55. These findings exemplify the potential of classifiers to optimize

antibiotic treatment and assist antibiotic stewardship efforts using real clinical cases. The evaluation of our classifier

in prospective clinical studies, on multiple sites with different prevalence of antimicrobial resistant bacteria, will be

necessary to fully evaluate its clinical impact. Clearly, the prediction of resistance alone would not be used, but the

prediction may support clinical decision-making that also considers additional patient-related factors.

In summary, our work demonstrates that MALDI-TOF MS based machine learning can provide novel ways to predict

antimicrobial resistance in clinically highly-relevant scenarios. The results demonstrate the benefit of large sample

sizes on predictive performance. Further work could build upon these findings and leverage unlabeled (no

antimicrobial resistance profile available) MALDI-TOF mass spectra in DRIAMS for pre-training a classifier in a

semi-supervised fashion before fine-tuning the model on the labeled dataset. In addition to potentially improving the

prediction performance, such a training setup could result in a transfer learning scenario to mitigate batch-effects
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between different collection sites. While these idiosyncratic challenges need to be overcome, there is also a large

potential to improve patient treatment.
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Online Methods

Reproducibility of Results and Data availability

All R and Python scripts can be found in https://github.com/BorgwardtLab/maldi_amr.

MALDI-TOF mass spectra acquisition and antimicrobial resistance testing

We collected data from daily clinical routine at ISO/IEC 17025 accredited diagnostic routine laboratories. The study

was evaluated by the local ethical committee (IEC 2019-00729). Specifically, all MALDI-TOF mass spectra contained

in DRIAMS-A to -F were acquired at four microbiological laboratories in Switzerland providing routine diagnostic

services for hospitals and private practices. All laboratories use the Microflex Biotyper System by Bruker Daltonics

(Bremen, Germany), which is a widely-employed MALDI-TOF MS system in microbiological routine diagnostics both

in North America16 and in Europe17,18. The four diagnostic laboratories included in this study are (1) University

Hospital Basel-Stadt (providing DRIAMS-A), (2) Canton Hospital Basel-Land (providing DRIAMS-B), (3) Canton

Hospital Aarau (providing DRIAMS-C), and (4) laboratory service provider Viollier (providing DRIAMS-D). While

Canton Hospitals Basel-Land and Aarau employ the Microflex Biotyper LT/SH System, Viollier uses the Microflex

smart LS System. Although these two systems differ in their respective laser gas, they use the same reference

spectra database, so we included spectra of both Microflex Biotyper systems. University Hospital Basel-Stadt uses

the two Microflex Biotyper systems in parallel. The species of each mass spectrum was identified using the Microflex

Biotyper Database (MBT 7854 MSP Library, BDAL V8.0.0.0_7311-7854 (RUO)) included in the flexControl Software

(Bruker Daltonics flexControl v.3.4). Similar to the mass spectra, antimicrobial resistance profiles were routinely

acquired in the same four microbiological laboratories within the same time frames of the dataset. Resistance

categories for bacteria values were determined either using microdilution assays (VITEK® 2, BioMérieux,

Marcy-l’Étoile, France), or by minimal inhibitory concentration (MIC) stripe tests (Liofilchem, Roseto degli Abruzzi,

Italy), or disc diffusion tests (ThermoFisher Scientific, Waltham, USA). Resistance categories for yeast were

determined by using Sensititre Yeast One (Thermofisher). All breakpoint measurements were interpreted to be either

susceptible, intermediate, or resistant according to EUCAST 56 and CLSI (2015 M45; 2017 M60) recommendations.

The EUCAST versions used were updated with every EUCAST Breakpoints table update and include v6-v8.

Quality control

Empty spectra and calibration spectra were excluded from further analysis. This serves to ensure a similar level of

data quality for the different sites.
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Matching of MALDI-TOF mass spectra and antimicrobial resistance profiles

MALDI-TOF MS based antimicrobial resistance prediction requires a dataset containing mass spectra and their

corresponding resistance labels, in the form of antimicrobial resistance profiles. In order to construct such a dataset,

MALDI-TOF MS and resistance profile measurements belonging to the same microbial isolate have to be matched.

Since each site in DRIAMS stores the mass spectra and their corresponding antimicrobial resistance profiles in

separate databases, a matching procedure has to be developed for each site.

We use the term ‘laboratory report’ for the document used to report laboratory measurement results, including

antimicrobial resistance profiles, for each patient within the clinical care. The species of the specimen is obtained

through Bruker Microflex MALDI-TOF MS and added to the laboratory report. This decouples laboratory report entry

and the mass spectrum; there is no link required between the spectrum file and the laboratory entry after the species

is entered. The antimicrobial resistance profiles obtained in their individual experiments are also added to the

laboratory report. The laboratory report entries are commonly identified by codes linking them to a patient, or a

unique sample taken from a patient, to which we refer as ‘sample ID’. Multiple entries with the same sample ID can

exist if several probes were taken from the same patient or several colonies tested from the same probe.

In general, the spectra recorded by the Bruker Microflex systems were labelled with an ambiguous, i.e. non-unique,

code corresponding to the non-unique sample ID in the laboratory report. MALDI-TOF mass spectra and their

corresponding antimicrobial resistance profiles were stored in separate files. In the clinic, MALDI-TOF MS spectra are

never intended to be matched up with the laboratory report entries; therefore no proper protocols for matching exist.

Matching protocols had to be developed uniquely and in an ad-hoc fashion for each labelling system at each

institution.

In order to link mass spectra to their antimicrobial resistance profiles, we constructed a unique identifier, using the

sample ID and the determined genus of a sample. The rationale behind this strategy is that if multiple sample ID

entries exist, this is most likely due to multiple genera being present in the patient samples, leading to several

measurements. We omitted samples for which we were unable to construct a unique sample ID–genus pair.

Mass spectra were stored without information on the determined species. Hence, for each spectrum, the species and

genus label is determined by re-analysing the spectra with the University Hospital Basel-Stadt Bruker library and then

matching the spectrum to  its corresponding antimicrobial resistance profile using the assigned sample ID and the

determined genus. All MALDI-TOF MS systems used in this study were maintained according to the manufacturer’s

standard and spectra were routinely acquired using the ‘AutoXecute’ acquisition mode. The genus is used (instead of
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species), as it allows for some flexibility between the species assigned to a sample in the laboratory report and the

Microflex Biotyper. The species label given in the laboratory report can differ from the species assigned to the

corresponding MALDI-TOF mass spectrum by the Microflex Biotyper System as additional microbiological tests can

give a more accurate label. In what follows, we provide additional details regarding the matching procedure which are

specific to each site.

University Hospital Basel-Stadt. Starting in 2015, the spectra were labelled with a 36-position code by the Bruker

machine (e.g. 022b130c-6c8c-49b5-814d-c1ea8b2e7f93), which we term ‘Bruker ID’. This code is guaranteed to be

unique for all spectra labelled from one machine. Each AMR profile is labelled with a 6-digit sample ID, which is

unique for samples in one year.  Antimicrobial resistance profiles were collected using the laboratory information

system. The laboratory information system includes all entries made for a sample, also entries which have later been

corrected and have not been reported nor considered for patient treatment. As such manual corrections are very rare,

the uncertainty in antimicrobial resistance labels is limited. For each year (2015, 2016, 2017, and 2018) there are

separate antimicrobial resistance profile tables and folders containing all spectrum samples collected during the

corresponding year. We lost 40,569 spectra out of 186,098 by following the aforementioned pre-processing routines

(DRIAMS-A).

Canton Hospital Basel-Land. The antimicrobial resistance profiles and mass spectra are each labelled with a 6-digit

sample ID. The genus depicted in each mass spectrum was determined through comparison to the Microflex Biotyper

Database (Bruker Daltonics flexControl v.3.4); the genus of each antimicrobial resistance profile was stated in the

laboratory report. Mass spectra and antimicrobial resistance profiles were merged using the 6-digit sample ID and the

genus information.

Canton Hospital Aarau. Here, the laboratory report contains the 10-digit sample ID, species label, and antimicrobial

resistance profiles of measured samples. This software version did not provide a unique 36-character code for each

spectrum, but only a 10-digit sample ID that had to be used to match spectra to the antimicrobial resistance profiles

from the laboratory. Since the sample ID can be shared by different spectra, it cannot be used to  uniquely match a

species label to an input spectrum. To circumvent this problem, we divided the spectra in 15 batches, each one only

containing unique 10-digit sample IDs. Repeated sample IDs were distributed over the batches. These 15 batches

were re-analysed and labelled by the Bruker software, and 15 output files with the given species labelled were

created. Through the separation in batches, the certain species label was determined for each spectrum. The label
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for each spectrum in the batches can be determined, as we only included spectra that already had a label in the lab

file. Now, each spectrum file has a combined label made up of its 10-digit sample ID and its species label. If this

combined label was found to have a unique match within the lab results file, the AMR profile was assigned to the

spectrum, otherwise its antimicrobial resistance profile position remained empty and only the spectrum with its

species label was added to the dataset. We ignore all spectra that could not be matched to an entry in the lab results

file (such spectra arise from measurements that do not provide AMR information).

Viollier. While all other sites reported AMR labels with either ‘R’, ‘S’, ‘I’, ‘positive’ or ‘negative’ values, samples

provided by Viollier are labelled with precursory measurements, namely the MIC of each antibiotic. We therefore use

the breakpoints given the up-to-date EUCAST guidelines (v.9) to convert the MIC values to ‘RSI’ values.

80,796 spectra in the fid file format are present, identified again through a unique 36-character ‘Bruker ID’. The

antimicrobial resistance results are identified by a 10-digit sample ID, which are linked to the Bruker IDs in an

additional file, the ‘linking file’. The main reasons for loss of data in preprocessing are (1) the antimicrobial resistance

results and ID ‘linking files’ contained significantly fewer entries than fid files present (40,571 and 51,177

respectively) and (2) following advice by the lab personnel, only the 10-digit sample ID could be used for matching to

the BrukerID (which contained a longer version of the LabID). Through exclusion of all entries without a unique

10-digit sample ID in both the antimicrobial resistance results and Iinking files, another significant portion of data was

lost. Specifically, there is an overlap of 10,852 filtered entries from the laboratory report file and the linking file. After

matching these entries with spectra, 7,771 spectra with 7,720 antimicrobial resistance profiles remained. Spectra

without an antimicrobial resistance profile are not used for any supervised learning tasks (such as prediction).

Conversion to DRIAMS

We require a DRIAMS dataset entry to contain (1) a spectra code linking unambiguously to a spectra file, (2) a

readable mass spectra fid file (as all of our mass spectra are measured on Bruker Microflex machines), (3) the

corresponding species (species reported as ‘Organism best match’ by the flexControl Software was assigned), and, if

available, (4) AMR profiles stating antimicrobial susceptibility results.

Workstations

Patient samples processed at the USB microbiological diagnostic laboratory samples are analysed at nine different

workstations, split by patient isolation material or procedure. The workstations comprise (i) urine samples, (ii) blood

culture samples, (iii) stool samples, (iv) genital tract samples, (v) samples for which a PCR-based test were ordered,
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(vi) respiratory tract samples, (vii) samples from deep, usually sterile material (viii) samples that were collected for the

hospital hygiene department, and (ix) samples that cannot be assigned to any of the other categories. Each

workstation employs a predefined set of  growth media, optimised to culture the agents of infection with high

sensitivity.

The hospital hygiene department specifically screens for multidrug-resistant pathogens in order to take actions which

prevent nosocomial transmission of these. These samples are cultured primarily on selective media containing

antibiotics, enabling the growth of resistant strains only.

Growth media have an impact on the bacteria’s proteome and thereby on the MALDI-TOF MS spectrum57. In order to

avoid that our classifiers recognise media specific characteristics in the MALDI-TOF mass spectra from the selective

media instead of media independent signatures of non-susceptible bacterial strains, we excluded samples that were

collected for the hospital hygiene department from DRIAMS-A for further analysis. The individual sample sizes per

workstation and their predictive performance from MALDI-TOF mass spectra is given in Suppl. Tab. 5.

Patient case identification

For DRIAMS-A, a clinical case was defined as a unique hospital stay, i.e. the timeframe between the hospital entry

and exit of a patient. If a patient was treated at the hospital in 2015 and again in 2018, these were defined as two

separate cases. For the retrospective clinical analysis, infections with different bacterial species and different patient

isolation materials during the same hospital stay were regarded as different entities, as different species might require

different antibiotic therapies.

For DRIAMS-B, DRIAMS-C and DRIAMS-D, no information regarding clinical cases was provided and therefore not

considered during analysis.

Antimicrobial nomenclature

Since the naming scheme of antimicrobial drugs was not consistent between sites, due to different spelling variants

or the use of several names for the same drug (e.g. cotrimoxazol and trimethoprim/sulfamethoxazole describe the

same drug), we unified them during preprocessing. Specifically, we anglicised the names of antimicrobial drugs from

their original German version in the DRIAMS ID files as a preprocessing step for our machine learning analysis.

Antimicrobial names were specified by adding suffixes to their names. In the following, we explain our suffix

nomenclature for DRIAMS-A: (i) ‘high level’: According to EUCAST, MIC breakpoints vary with the dosage of

Gentamycin (standard: 5mg / kg and high level: 7 mg / kg for intravenous administration); (ii) ‘meningitis’,

‘pneumoniae’, ’endocarditis’, ‘uncomplicated urinary tract infection (UTI)’: EUCAST includes infection specific
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breakpoints for these infections (see suffixes for amoxicillin-clavulanic acid, penicillin and meropenem); (iii) ‘screen’:

cefoxitin is used to screen for MRSA in clinical routine diagnostic at University Hospital Basel, using the

respectively-defined breakpoints by EUCAST; (iv) ‘GRD’: GRD (glycopeptide resistance detection) is a MIC Strip Test

used at University Hospital Basel in very rare cases to detect glycopeptide intermediate S. aureus; (v) ‘1mg_l’

indicates the concentration of rifampicin, when MIC are measured in liquid culture as it is routinely done for

Mycobacterium tuberculosis (MTB). These entries of non-MTB species were entered incorrectly into the laboratory

information system.

Dataset characteristics

All medical institutions are located in Switzerland. Microbial samples in the University Hospital Basel-Stadt database

(i.e. DRIAMS-A) mostly originate from patients located in the city of Basel and its surroundings. Such patients visit the

hospital for either out- or inpatient treatment. Samples in the Canton Hospital Basel-Land dataset (i.e. DRIAMS-B)

primarily originate from the town surrounding the City of Basel. Patients from the Swiss Canton Aargau seek medical

care at the Canton Hospital Aarau (DRIAMS-C). Viollier (DRIAMS-D) is a service provider that performs species

identification for microbial samples collected in medical practices and hospitals. Samples originate from private

practices and hospitals all over Switzerland.

DRIAMS-A to -D are datasets that contain data collected in the daily clinical routine. All mass spectra measured in a

certain time frame are included. The time frame during which each dataset was collected are as follows:

DRIAMS-A: 34 months (11/2015–08/2018)

DRIAMS-B: 6 months (01/2018–06/2018)

DRIAMS-C: 8 months (01/2018–08/2018)

DRIAMS-D: 6 months (01/2018–06/2018)

Spectral representation

In the DRIAMS dataset, we include mass spectra in their raw version without any preprocessing, and binned with

several bin sizes. After an initial review of results, a bin size of 3 Da was used for all machine learning analyses in

this study. This bin size is small enough to allow for separation of mass peaks (for which the exact mass-to-charge

position can vary slightly due to measurement noise), while large enough not to impede computational tractability.

The spectra are extracted from the Bruker Flex machine in the Bruker Flex data format. The following preprocessing

steps are performed using the R package MaldiQuant58 version 1.19: (1) the measured intensity is transformed with
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a square-root method to stabilize the variance, (2) smoothing using the Savitzky-Golay algorithm with

half-window-size 10 is applied, (3) an estimate of the baseline is removed in 20 iterations of the SNIP algorithm, (4)

the intensity is calibrated using the total-ion-current (TIC), and (5) the spectra are trimmed to values in a 2,000 to

20,000 Da range. For exact parameter values, please refer to the code.

After preprocessing, each spectrum is represented by a set of measurements, each of them described by its

corresponding mass-to-charge ratio and intensity. However, this representation results in each sample having

potentially a different dimensionality (i.e. cardinality) and different measurements being generally irregularly-spaced.

Since the machine learning methods used in this manuscript require their input to be a feature vector of fixed

dimensionality, intensity measurements are binned using the bin size of 3 Da. To perform the binning, we partition the

m/z axis in the range of 2,000 to 20,000 Da into disjoint, equal-sized bins and sum the intensity of all measurements

in the sample (i.e. a spectrum) falling into the same bin. Thus, each sample is represented by a vector of fixed

dimensionality, i.e. a vector containing 6,000 features, which is the number of bins the m/z axis is partitioned into. We

use this feature vector representation for all downstream machine learning tasks.

Antimicrobial resistance phenotype binarization

For the machine learning analysis, the values of antimicrobial resistance profiles were binarised during data input to

have a binary classification scenario. The categories are based on EUCAST and CLSI recommendations. For tests

that report RSI values, resistant (R) and intermediate (I) samples were labelled as class 1, while susceptible (S)

samples were labelled as class 0. We grouped samples in the intermediate class together with resistant samples, as

both types of samples prevent the application of the antibiotic. In EUCAST v6-v8, the intermediate category shows

higher MIC values but due to safety reasons in clinical practice this was usually counted to resistance in order to have

a safety buffer in reaching sufficiently high antibiotic drug concentrations.

Machine learning methods

For AMR classification, we used a set of state-of-the-art classification algorithms with different capabilities. It included

(1) logistic regression, (2) LightGBM59, a modern variant of gradient-boosted decision trees, and (3) a multi-layer

perceptron deep neural network (MLP). For LightGBM, we use the official implementation in the lightgbm package,

while we use the scikit-learn package for all other models60. These models cover a large spectrum of modern

machine learning techniques, with logistic regression representing a well-understood algorithm from statistical

learning theory, whose training process can be regularised. LightGBM, by contrast, represents a modern variant of

tree-based (i.e. ensemble) learning algorithms, focussing specifically on good scalability properties while maintaining
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high accuracy. Finally, MLPs constitute a simple example of deep learning algorithms. While they have the highest

complexity in terms of compute resources and data requirements than the aforementioned models, deep learning

methods can be effective in uncovering complex relationships between input variables, and their capability to be

trained end-to-end can prove beneficial in other tasks beyond mere classification.

For each antibiotic, all samples with a missing AMR profile were removed and the machine learning pipeline was

applied to the reduced dataset. Samples were randomly split into a training dataset comprising 80% of the samples

and a test dataset with the remaining 20%, while stratifying for (1) the class, (2) the species, and (3) the patient case

number of the samples. The latter ensures that a sample with a specific clinical case is either part of the train dataset,

or the test dataset, but not both. This step ensures that sample measurements of the same infection (that are likely

very similar to each other) are causing information leakage from train to test. This is slightly unusual in standard

machine learning setups, which typically only require stratification by a single class label, but crucial for our scenarios

to guarantee similar prevalence values. To select an appropriate model configuration for a specific task, we employ

5-fold cross-validation; in case an insufficient number of samples is available, our implementation falls back to a

3-fold cross-validation on the training dataset to optimise the respective hyperparameters. The hyperparameters are

model-specific (see below for more details), but always include the choice of an optional standardisation step (in

which feature vectors are transformed to have zero mean and unit variance). To determine the best-performing

hyperparameter set, we optimised the area under the ROC curve (AUROC). This metric is advantageous in our

scenario, as it is not influenced by the class ratio and summarises the performance of correct and incorrect

susceptibility predictions over varying classification score thresholds. Having selected the best hyperparameters, we

retrain each model on the full training dataset, and use the resulting classifier for all subsequent predictions. Our

hyperparameter grid is extensive, comprising, for example, the choice of different logistic regression penalties (L1,

L2, no penalty), the choice of scaling method (standardisation or none), and regularisation parameters (

). For more details, please refer to our code (models.py).𝐶 ∈ {10−3,  10−2,  ··· 102,  103}

We implemented all models in Python and published them in a single package, which we modelled after scikit-learn,

a powerful library for machine learning in Python.

Evaluation metrics

We report AUROC as the main metric of performance evaluation. The datasets of most antibiotics under

consideration exhibit a high class imbalance (20 out of 42 antibiotics show a resistant/intermediate class ratio <20%

or >80%). AUROC is invariant to the class ratio of the dataset and therefore permits a certain level of comparability
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between antibiotics with different class ratios. A pitfall of reporting AUROC in the case of unbalanced datasets,

however, is that it does not reflect the performance with respect to precision (or positive predictive value). Therefore,

the AUROC can be high while precision is low, and it is tempting to be overly optimistic about the AUROC values. To

account for this bias, we additionally report the area under the precision-recall curve (AUPRC); this metric is not used

during the training process, though.

Two other metrics commonly used in clinical research are sensitivity and specificity. Sensitivity measures to what

extent positives are recognized and specificity measures how well negatives are detected as such. Analogous to the

ROC curves, we show sensitivity vs. specificity curves to illustrate the tradeoff between both metrics. Please note

commonalities to other metrics: sensitivity, recall and true positive rate are synonyms and all correspond to the same

metric; specificity is a counterpart to the false positive rate, we have .𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =  1 −  𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

Connection to confusion matrix All of the metrics we employ here can be derived from the counts within a confusion

matrix. The number of true positives (TP) is the number of test data points that are classified as resistant or

intermediate by the classifier and confirmed resistant or intermediate in a phenotypic antimicrobial susceptibility test.

True negatives (TN) is the number of test data points correctly classified as belonging to the susceptibility class. The

false positive count (FP) refers to the number of susceptible test data points classified to be resistant/intermediate,

whereas false negatives (FN) are the number of resistant/intermediate test data points classified to be susceptible.

The area under the receiver operating characteristic (AUROC) shows the true positive rate (TP/TP+FN) against the

false positive rate (FP/FP+TN). The AUPRC, as well as the AUROC, is traditionally reported on the minority class. In

our scenario, however, while the minority class is the resistant class in most cases, this is not consistent and for some

antibiotics more samples of the resistant will be present. The precision-recall curve shows the recall (TP/TP+FN)

against the precision (TP/TP+FP). A perfect classifier would show a performance of 1.0 for each AUROC and

AUPRC. The performance of a random classifier would be 0.5 for AUROC and percentage of samples of the positive

(susceptible) class for AUPRC. As mentioned above, sensitivity and susceptibility are synonyms for recall and

precision, respectively.

Shapley values for interpretability analysis

Next to the overall predictive performance of an algorithm, a crucial aspect of statistical learning is the understanding

of why a certain class was predicted for a given sample. This necessitates more information about a classifier, such

as confidence scores or feature importance values. The Shapley values provide a ‘one-size-fits-all’ solution to this

problem: following concepts from game theory, each feature used to obtain a specific prediction can be assigned its
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overall contribution to said prediction (or ‘payout’ in the parlance of game theory). This makes it possible to assess to

what extent certain bins—peaks in the mass spectrum—influence the prediction. Moreover, the Shapley values are

capable of assessing directed contributions, i.e. the contribution of a low or high value in a specific feature can be

incorporated into the calculation of its overall contribution. Thus, Shapley values represent one cornerstone of the

growing field of ‘explainable artificial intelligence’, which endeavours to include the human user in the

decision-making loop of a machine learning algorithm.

In order to improve the interpretability of our classifiers, we calculated Shapley values using the shap package. This

package directly supports the explanation of many common machine learning techniques. We used the standard

algorithms of the shap package to explain the outputs of our logistic regression and LightGBM models. For the MLP,

the use of gradient-based explanation techniques turned out to be impossible because of the large memory

requirements of the algorithms. We therefore opted to follow common practice and subsample the input data set,

reducing it to 50 barycentres, i.e. samples that express most of the variability in the data, via k-means clustering. This

enabled us to obtain per-sample Shapley values that contain the relevance of individual features with respect to the

overall output of the model.
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SUPPLEMENT

Supplemental Figure 1: Time from the entry of a patient sample at the diagnostic laboratory at the DRIAMS-A
collection site to species identification by MALDI-TOF MS and phenotypic resistance testing for three clinical relevant
species: E. coli (n=54), K. pneumoniae (n=66), and S. aureus (n=57). Boxplot shows median and interquartile time
ranges in hours, whiskers indicate adjacent values61.

Supplemental Figure 2: Improved antimicrobial resistance prediction based on MALDI-TOF mass spectra
combining all species compared to species information alone. AUROC values of logistic regression classifiers
trained on data combining all samples with labels available for each antimicrobial prediction task in DRIAMS-A. The
blue bars depict predictive performance using spectral data as features. The red bars show the predictive
performance when using species label information only. The fractions of resistant/intermediate samples in the training
data are indicated in brackets after the antibiotic name. Reported metrics and error bars are the mean and standard
deviation of 10 repetitions with different random train-test-splits.
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Supplemental Figure 3: Flowchart inclusion of cases into the retrospective clinical study. We reviewed 416
clinical cases which had a severe bacterial infection with K. pneumoniae, E. coli or S. aureus between April and
August 2018. Cases were excluded if (i) cases were treated external to the DRIAMS-A collection site, (ii) no
consultation note by a infectious diseases specialist was available within 5 days (for cases with a positive blood
culture) or 1 day (for cases with a positive deep tissue sample), (iii) the general research consent was rejected, (iv)
the species identified by the Bruker database did not match the species in the laboratory report, (v) the antibiotic
resistance profile was already present at the at the time of the infectious diseases consultation and (vi) if the
consultation note was written without the knowledge of the species identity. 63 clinical cases were included.

Supplemental Figure 4: Barplot of feature importances of LightGBM and MLP model. Importance values larger

than two times absolute standard deviation are colored in either blue (LightGBM) or orange (MLP). The sign of each

feature importance value of the MLP model indicates the association with the positive (positive sign) or negative

class. The LightGBM values indicate the contribution to the prediction without direction of association. All three

models indicate that a large number of features are relevant for an accurate antimicrobial resistance prediction. The

scenario abbreviations follow Fig. 2A.
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Supplemental Figure 5: Temporal validation including sample size of training window. The timepoints
correspond to points in Fig. 4 and arrow directions indicate time progression. With time progression both the trends in
sample size per 8-month time window and the predictive performance increase. The scenario abbreviations follow
Fig. 2A.
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antimicrobial class

number of

samples in class

average positive

sample ratio antimicrobials

OTHER BETA-LACTAM

ANTIBACTERIALS 174826 0.23

cefuroxime, cefepime, ceftriaxone, cefazolin,

meropenem_without_meningitis, cefpodoxime, ertapenem,

meropenem_with_pneumonia, meropenem, ceftazidime, cefixime,

imipenem, meropenem_with_meningitis, cefoxitin_screen, aztreonam

BETA-LACTAM

ANTIBACTERIALS,

PENICILLINS 107128 0.5

penicillin_with_meningitis, penicillin_with_endokarditis, penicillin,

ampicillin-amoxicillin, amoxicillin-clavulanic acid_uncomplicated_hwi,

penicillin_with_other_infections, penicillin_without_endokarditis,

amoxicillin, oxacillin, penicillin_with_pneumonia, amoxicillin-clavulanic

acid, piperacillin-tazobactam

OTHER ANTIBACTERIALS 83998 0.102

fusidic acid, nitrofurantoin, colistin, metronidazole, fosfomycin-trometamol,

vancomycin_grd*, daptomycin, linezolid, vancomycin, teicoplanin,

teicoplanin_grd*, fosfomycin

QUINOLONE

ANTIBACTERIALS 58054 0.214 moxifloxacin, levofloxacin, ciprofloxacin, norfloxacin, quinolones

AMINOGLYCOSIDE

ANTIBACTERIALS 46799 0.109 tobramycin, gentamicin, amikacin, gentamicin_high_level, aminoglycosides

SULFONAMIDES AND

TRIMETHOPRIM 26640 0.183 cotrimoxazole

MACROLIDES,

LINCOSAMIDES AND

STREPTOGRAMINS 23099 0.357 clarithromycin, azithromycin, erythromycin, clindamycin

TETRACYCLINES 22377 0.142 minocycline, tetracycline, doxycycline, tigecycline

DRUGS FOR TREATMENT

OF TUBERCULOSIS 10976 0.049 rifampicin, rifampicin_1mg-l**

ANTIMYCOTICS FOR

SYSTEMIC USE 5594 0.17

amphotericin b, micafungin, 5-fluorocytosine, caspofungin, voriconazole,

anidulafungin, fluconazole, itraconazole, posaconazole

ANTIBIOTICS FOR TOPICAL

USE 3815 0.007 mupirocin

AMPHENICOLS 203 0.138 chloramphenicol

total 563509 0.244

Supplemental Table 1: Categorisation into antimicrobial class, average number of spectra and average resistance
positive class ratio of 71 antimicrobials contained in DRIAMS-A. The values for each individual antimicrobial can be
found in Suppl. Tab. 2. * vancomycin_grd and teicoplanin_grd is a MIC Strip Test used at University Hospital Basel in
very rare cases to detect glycopeptide intermediate S. aureus; ** ‘1mg_l’ indicates the concentration of rifampicin,
when MIC are measured in liquid culture as it is routinely done for Mycobacterium tuberculosis (MTB). These entries
of non-MTB species were entered incorrectly into the laboratory information system.
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antibiotic
number of
samples

positive sample

ratio most frequent species

ciprofloxacin 30543 0.244
Escherichia coli (4911), Staphylococcus epidermidis (4679), Staphylococcus aureus (3757), Pseudomonas aeruginosa
(3153), Klebsiella pneumoniae (2838)

meropenem 29531 0.174
Escherichia coli (4928), Staphylococcus epidermidis (4261), Staphylococcus aureus (3643), Pseudomonas aeruginosa
(3183), Klebsiella pneumoniae (2855)

imipenem 29391 0.234
Escherichia coli (4923), Staphylococcus epidermidis (4261), Staphylococcus aureus (3640), Klebsiella pneumoniae (2847),
Pseudomonas aeruginosa (2377)

cefepime 28476 0.229
Escherichia coli (4890), Staphylococcus epidermidis (4261), Staphylococcus aureus (3640), Pseudomonas aeruginosa
(3088), Klebsiella pneumoniae (2839)

piperacillin-tazobactam 28398 0.231
Escherichia coli (4799), Staphylococcus epidermidis (4261), Staphylococcus aureus (3640), Pseudomonas aeruginosa
(3152), Klebsiella pneumoniae (2759)

ampicillin-amoxicillin 26871 0.817
Escherichia coli (4866), Staphylococcus epidermidis (4371), Staphylococcus aureus (3556), Klebsiella pneumoniae (2856),
Enterobacter cloacae (1257)

cotrimoxazole 26640 0.183
Escherichia coli (4888), Staphylococcus epidermidis (4545), Staphylococcus aureus (3741), Klebsiella pneumoniae (2854),
Enterobacter cloacae (1257)

ceftriaxone 26545 0.275
Escherichia coli (4961), Staphylococcus epidermidis (4261), Staphylococcus aureus (3640), Klebsiella pneumoniae (2860),
Enterobacter cloacae (1249)

amoxicillin-clavulanic acid 25228 0.393
Escherichia coli (4826), Staphylococcus epidermidis (4262), Staphylococcus aureus (3640), Klebsiella pneumoniae (2840),
Enterobacter cloacae (1260)

levofloxacin 20784 0.191
Escherichia coli (4858), Klebsiella pneumoniae (2830), Pseudomonas aeruginosa (2356), Enterobacter cloacae (1256),
Enterococcus faecium (1133)

colistin 18333 0.155
Escherichia coli (4930), Pseudomonas aeruginosa (3234), Klebsiella pneumoniae (2854), Enterobacter cloacae (1257),
Proteus mirabilis (912)

tobramycin 18190 0.093
Escherichia coli (4876), Pseudomonas aeruginosa (3231), Klebsiella pneumoniae (2846), Enterobacter cloacae (1257),
Proteus mirabilis (912)

ceftazidime 17392 0.141
Escherichia coli (4822), Klebsiella pneumoniae (2832), Pseudomonas aeruginosa (2459), Enterobacter cloacae (1234),
Proteus mirabilis (909)

amikacin 17222 0.057
Escherichia coli (4858), Klebsiella pneumoniae (2830), Pseudomonas aeruginosa (2372), Enterobacter cloacae (1257),
Proteus mirabilis (903)

vancomycin 15076 0.012
Staphylococcus epidermidis (4777), Staphylococcus aureus (3791), Enterococcus faecium (1183), Enterococcus faecalis
(785), Staphylococcus hominis (717)

ertapenem 14753 0.02
Escherichia coli (4983), Klebsiella pneumoniae (2859), Enterobacter cloacae (1249), Proteus mirabilis (915), Serratia
marcescens (860)

penicillin 13406 0.737
Staphylococcus epidermidis (4371), Staphylococcus aureus (3553), Staphylococcus hominis (709), Haemophilus influenzae
(360), Staphylococcus capitis (318)

linezolid 12288 0.001
Staphylococcus epidermidis (4407), Staphylococcus aureus (3639), Enterococcus faecium (1124), Enterococcus faecalis
(763), Staphylococcus hominis (709)

tigecycline 12280 0.004
Staphylococcus epidermidis (4365), Staphylococcus aureus (3640), Enterococcus faecium (1128), Enterococcus faecalis
(765), Staphylococcus hominis (700)

clindamycin 11612 0.313
Staphylococcus epidermidis (4192), Staphylococcus aureus (3575), Staphylococcus hominis (685), Staphylococcus capitis
(318), Staphylococcus lugdunensis (305)

daptomycin 11384 0.009
Staphylococcus epidermidis (4761), Staphylococcus aureus (3780), Staphylococcus hominis (715), Staphylococcus capitis
(365), Enterococcus faecium (357)

erythromycin 11079 0.409
Staphylococcus epidermidis (4232), Staphylococcus aureus (3598), Staphylococcus hominis (685), Staphylococcus capitis
(328), Campylobacter jejuni (299)

oxacillin 10985 0.422
Staphylococcus epidermidis (4664), Staphylococcus aureus (3790), Staphylococcus hominis (685), Staphylococcus capitis
(365), Staphylococcus lugdunensis (313)

rifampicin 10966 0.049
Staphylococcus epidermidis (4758), Staphylococcus aureus (3774), Staphylococcus hominis (717), Staphylococcus capitis
(365), Staphylococcus lugdunensis (311)

fusidic acid 10637 0.321
Staphylococcus epidermidis (4589), Staphylococcus aureus (3766), Staphylococcus hominis (692), Staphylococcus capitis
(365), Staphylococcus lugdunensis (311)

gentamicin 10579 0.218
Staphylococcus epidermidis (4221), Staphylococcus aureus (3629), Staphylococcus hominis (683), Staphylococcus capitis
(319), Staphylococcus lugdunensis (297)

cefuroxime 10578 0.423
Staphylococcus epidermidis (4261), Staphylococcus aureus (3640), Staphylococcus hominis (668), Haemophilus influenzae
(347), Staphylococcus capitis (322)
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samples

positive sample

ratio most frequent species

cefazolin 10036 0.421
Staphylococcus epidermidis (4261), Staphylococcus aureus (3640), Staphylococcus hominis (668), Staphylococcus capitis
(322), Staphylococcus lugdunensis (298)

tetracycline 9918 0.311
Staphylococcus epidermidis (4132), Staphylococcus aureus (3609), Staphylococcus hominis (670), Staphylococcus capitis
(318), Staphylococcus lugdunensis (297)

teicoplanin 7691 0.029
Staphylococcus aureus (3629), Enterococcus faecium (1124), Enterococcus faecalis (757), Staphylococcus epidermidis (488),
Staphylococcus capitis (317)

cefpodoxime 6720 0.348
Escherichia coli (2075), Klebsiella pneumoniae (1826), Proteus mirabilis (470), Enterobacter cloacae (450), Klebsiella
variicola (354)

fosfomycin-trometamol 6129 0.216
Klebsiella pneumoniae (1809), Escherichia coli (1499), Proteus mirabilis (465), Enterobacter cloacae (443), Klebsiella
variicola (356)

norfloxacin 6105 0.143
Klebsiella pneumoniae (1814), Escherichia coli (1488), Proteus mirabilis (461), Enterobacter cloacae (443), Klebsiella
variicola (356)

mupirocin 3815 0.007
Staphylococcus aureus (3633), Staphylococcus epidermidis (84), MIX!Staphylococcus aureus (31), Staphylococcus capitis
(14), Staphylococcus haemolyticus (13)

nitrofurantoin 2108 0.195
Escherichia coli (1498), Enterococcus faecium (464), Enterococcus faecalis (54), Citrobacter freundii (11), MIX!Escherichia
coli (10)

aztreonam 856 0.706
Pseudomonas aeruginosa (763), Pseudomonas stutzeri (22), Escherichia coli (13), Pseudomonas monteilii (9), Klebsiella
pneumoniae (8)

caspofungin 686 0.054 Candida albicans (292), Candida glabrata (171), Candida parapsilosis (65), Candida tropicalis (50), Candida dubliniensis (29)

gentamicin_high_level 686 0.155
Enterococcus faecium (273), Enterococcus faecalis (152), Streptococcus oralis (43), Streptococcus mitis (34), Streptococcus
parasanguinis (33)

5-fluorocytosine 680 0.037 Candida albicans (292), Candida glabrata (174), Candida parapsilosis (65), Candida tropicalis (50), Candida dubliniensis (29)

micafungin 680 0.151 Candida albicans (290), Candida glabrata (174), Candida parapsilosis (65), Candida tropicalis (50), Candida dubliniensis (29)

anidulafungin 675 0.283 Candida albicans (287), Candida glabrata (173), Candida parapsilosis (65), Candida tropicalis (50), Candida dubliniensis (29)

fluconazole 675 0.393 Candida albicans (283), Candida glabrata (174), Candida parapsilosis (65), Candida tropicalis (49), Candida dubliniensis (29)

itraconazole 668 0.377 Candida albicans (283), Candida glabrata (172), Candida parapsilosis (65), Candida tropicalis (43), Candida dubliniensis (29)

amoxicillin 629 0.216
Enterococcus faecium (91), Haemophilus influenzae (56), Enterococcus faecalis (52), Actinotignum schaalii (40),
Haemophilus parainfluenzae (36)

amphotericin b 616 0 Candida albicans (290), Candida glabrata (176), Candida parapsilosis (65), Candida tropicalis (50), Candida krusei (11)

voriconazole 502 0.058
Candida albicans (286), Candida parapsilosis (65), Candida tropicalis (43), Candida dubliniensis (27), Saccharomyces
cerevisiae (25)

posaconazole 412 0.124
Candida albicans (282), Candida parapsilosis (65), Candida tropicalis (43), Candida glabrata (4), Candida albicans_(africana)
(4)

moxifloxacin 411 0.221
Finegoldia magna (23), Bacteroides fragilis (19), Parvimonas micra (15), Streptococcus anginosus (15), Lactobacillus
rhamnosus (15)

penicillin_with_endokardit
is 330 0.539

Streptococcus oralis (65), Streptococcus parasanguinis (56), Streptococcus mitis (39), Streptococcus sanguinis (23),
Streptococcus gordonii (19)

penicillin_without_endoka
rditis 325 0.434

Streptococcus oralis (65), Streptococcus parasanguinis (56), Streptococcus mitis (39), Streptococcus sanguinis (20),
Streptococcus gordonii (19)

clarithromycin 313 0.188
Streptococcus pneumoniae (255), Streptococcus agalactiae (7), Streptococcus dysgalactiae (7), Streptococcus
pseudopneumoniae (7), Streptococcus anginosus (7)

penicillin_with_pneumoni
a 293 0.041

Streptococcus pneumoniae (256), Streptococcus pseudopneumoniae (7), Streptococcus anginosus (7), Streptococcus mitis
(6), Streptococcus constellatus (5)

penicillin_with_other_infe
ctions 292 0.175

Streptococcus pneumoniae (256), Streptococcus pseudopneumoniae (7), Streptococcus anginosus (7), Streptococcus mitis
(6), Streptococcus constellatus (5)

penicillin_with_meningitis 291 0.199
Streptococcus pneumoniae (255), Streptococcus pseudopneumoniae (7), Streptococcus anginosus (7), Streptococcus mitis
(6), Streptococcus constellatus (5)
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metronidazole 247 0.057
Bacteroides fragilis (37), Clostridium difficile (18), Clostridium perfringens (13), Parvimonas micra (12), Bacteroides faecis
(9)

quinolones 211 0.057
Haemophilus influenzae (55), Staphylococcus aureus (19), Staphylococcus epidermidis (17), Corynebacterium macginleyi
(14), Escherichia coli (14)

meropenem_with_mening
itis 210 0.133

Haemophilus influenzae (70), Streptococcus pneumoniae (56), Haemophilus parainfluenzae (40), MIX!Haemophilus
parainfluenzae (11), MIX!Haemophilus influenzae (9)

chloramphenicol 203 0.138
Haemophilus influenzae (55), Staphylococcus aureus (19), Staphylococcus epidermidis (17), Corynebacterium macginleyi
(14), Escherichia coli (14)

meropenem_without_me
ningitis 142 0.035

Haemophilus influenzae (72), Haemophilus parainfluenzae (40), MIX!Haemophilus parainfluenzae (11), MIX!Haemophilus
influenzae (9), Haemophilus pittmaniae (4)

aminoglycosides 122 0.164
Staphylococcus aureus (19), Staphylococcus epidermidis (15), Corynebacterium macginleyi (14), Escherichia coli (14),
Pseudomonas aeruginosa (11)

doxycycline 105 0.114
Staphylococcus epidermidis (37), Finegoldia magna (6), Campylobacter jejuni (5), Corynebacterium amycolatum (4),
Haemophilus influenzae (4)

azithromycin 95 0.126
Neisseria gonorrhoeae (67), MIX!Neisseria gonorrhoeae (6), Campylobacter fetus (5), Campylobacter coli (5), Salmonella
spp (3)

fosfomycin 81 0.58
Pseudomonas aeruginosa (37), Staphylococcus epidermidis (14), Klebsiella pneumoniae (7), Escherichia coli (4),
Acinetobacter baumannii (3)

amoxicillin-clavulanic
acid_uncomplicated_hwi 80 0.3 Escherichia coli (47), Citrobacter freundii (14), Proteus mirabilis (9), Klebsiella pneumoniae (6), Enterobacter cloacae (2)

minocycline 74 0.297
Staphylococcus epidermidis (25), Burkholderia multivorans (10), Stenotrophomonas maltophilia (7), Acinetobacter
baumannii (6), Burkholderia vietnamiensis (6)

cefixime 74 0.081 Neisseria gonorrhoeae (63), MIX!Neisseria gonorrhoeae (6), Neisseria meningitidis (3), Yersinia enterocolitica (2)

meropenem_with_pneum
onia 70 0

Streptococcus pneumoniae (56), Streptococcus pseudopneumoniae (3), Streptococcus anginosus (3), Streptococcus mitis
(3), Streptococcus constellatus (3)

cefoxitin_screen 52 0.096
Staphylococcus aureus (23), Staphylococcus epidermidis (13), Staphylococcus pseudintermedius (8), Staphylococcus
hominis (3), Staphylococcus lugdunensis (3)

vancomycin_grd 12 0 Staphylococcus aureus (12)

teicoplanin_grd 12 0.167 Staphylococcus aureus (12)

rifampicin_1mg-l 10 0.2
Peptoniphilus harei (3), Corynebacterium jeikeium (2), Staphylococcus aureus (2), Streptococcus oralis (2),
Corynebacterium simulans (1)

Supplemental Table 2: Complete list of antibiotics contained in DRIAMS-A, including (i) the number of MALDI-TOF
mass spectra for which the antimicrobial resistance was determined, (ii) the resistance class ratio among these
samples (positive sample ratio) and (iii) the five most frequent species among these samples with the number of
samples indicated in brackets. * Antibiotic resistance category is inferred from oxacillin resistance. ** Antibiotic
resistance category is inferred from ciprofloxacin resistance. *** Antibiotic resistance category for this species is
automatically set to the resistant category. **** Part of a species complex. ***** Breakpoints different according to
clinical presentation (see EUCAST guidelines). + vancomycin_grd and teicoplanin_grd is a MIC Strip Test used at
University Hospital Basel in very rare cases to detect glycopeptide intermediate S. aureus; ++ ‘1mg_l’ indicates the
concentration of rifampicin, when MIC are measured in liquid culture as it is routinely done for Mycobacterium
tuberculosis (MTB). These entries of non-MTB species were entered incorrectly into the laboratory information
system.
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A. Test site: DRIAMS-C (class 1 ratio 16.3%) Train site:
DRIAMS-A

Train site:
DRIAMS-C

Train sites:
DRIAMS-A
DRIAMS-C

Train sites:
DRIAMS-A
DRIAMS-B
DRIAMS-D*

Train sites:
DRIAMS-A
DRIAMS-B
DRIAMS-C
DRIAMS-D*species antibiotic model

E. coli ceftriaxone LightGBM 0.31 ± 0.06 0.34 ± 0.06 0.39 ± 0.05 0.35 ± 0.06 0.40 ± 0.06

K. pneumoniae ceftriaxone MLP 0.34 ± 0.09 0.42 ± 0.11 0.42 ± 0.11 0.25 ± 0.07 0.44 ± 0.09

S.aureus oxacillin LightGBM 0.21 ± 0.09 0.08 ± 0.02 0.27 ± 0.12 0.21 ± 0.12 0.27 ± 0.14

B. Test site: DRIAMS-D (class 1 ratio 10.0%) Train site:
DRIAMS-A

Train site:
DRIAMS-D

Train sites:
DRIAMS-A
DRIAMS-D

Train sites:
DRIAMS-A
DRIAMS-B
DRIAMS-C

Train sites:
DRIAMS-A
DRIAMS-B
DRIAMS-C
DRIAMS-Dspecies antibiotic model

E. coli ceftriaxone LightGBM 0.29 ± 0.09 0.48 ± 0.05 0.43 ± 0.06 0.34 ± 0.08 0.43 ± 0.07

K. pneumoniae ceftriaxone MLP 0.09 ± 0.03 0.23 ± 0.06 0.21 ± 0.05 0.11 ± 0.04 0.20 ± 0.04

Supplemental Table 3: Union experiment results for DRIAMS-C and DRIAMS-D in AUPRC A. Results for test
site DRIAMS-C. The predictive performance benefits from combining the target site train data from DRIAMS-C with
the large DRIAMS-A datasets, compared to training one either train site alone. For two scenarios adding
DRIAMS-B further improves the performance slightly. B. Results for test site DRIAMS-D. The behaviour differs
from the other test sites in that training exclusively on the test site DRIAMS-D leads to the best predictive
performance. No samples for S. aureus (oxacillin) available for DRIAMS-D.
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species feature bin
[m/z]

rank
(feature

importance)

rank
(Shapley
values)

Ref: exact m/z
value given

Ref: method
discriminatory peak

identification

Ref:
number of

strains

Ref: target

S. aureus 2759-2762 14 12 276250 Genetic algorithm via
ClinProTools

290 Dominant lineages within
MRSA (ST5)

276048 Support Vector Machine 160 Discrimination between
MSSA and MRSA

S. aureus 3005-3008 13 7 300744 NA 401 Main Clonal Lineages (CC1)

S. aureus 3890-3893 4 3 389145 Visual Examination 600 CC5, CC97

389144 NA 401 Main Clonal Lineages (CC5,
CC25)

S. aureus 4508-4511 19 14 451149 Visual examination 85 Major lineages within MRSA
(CC45, CC30)

451144 NA 401 CC30, CC45, CC398, ST88

S. aureus 4514-4517 12 15 451442 Supervised neural
network via ClinProTools

82 MRSA Clonal Complexes
(CC398)

S. aureus 4640-4643 2 2 464149 Visual examination 85 Major lineages within MRSA
(CC8, CC22)

464148 Support Vector Machine 160 Discrimination between
MSSA and MRSA

S. aureus 5003-5006 3 4 500249 Visual examination 85 Major lineages within MRSA
(CC22)

500442 Supervised neural
network via ClinProTools

82 MRSA Clonal Complexes
(CC22)

500245 Visual examination 600 CC22

500244 NA 401 Main Clonal Lineages
(CC22)

S. aureus 5432-5435
5435-5438

6, 7 6, 5 543749 Visual examination 85 Major lineages within MRSA
(CC5, CC45, CC22, CC8.

ST1, ST15. ST80)

544047 Support Vector Machine 626 MSSA CC98

E. coli 8501-8504 10 8 849662 Support Vector Machine 109 ST131

E. coli 8444-8447
8447-8450
8450-8453

9, 5, 3 7, 5, 2 844854 Peak Statistic Calculation
in ClinProTools

197 ST131

E. coli 11780-11783 1 1 1178354 Peak Statistic Calculation
in ClinProTools

197 ST131

Supplemental Table 4: Highly ranked feature bins which have been identified in previous studies. We
performed a thorough literature research including studies which reported peaks falling into feature bins receiving
high weight of our classifier and report relevant peaks. ’NA’: not available as this study did not determine new
discriminatory peaks, but focussed on identifying previously known peaks44. ‘Target’ which subgroups within the
species were aimed to be discriminated against.
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species antibiotic
hospital
hygiene blood deep tissue genital respiratory stool urine varia total

E. coli ceftriaxone n 659 1190 1073 24 364 5 1473 173 4961

% 13.3 24.0 21.6 0.5 7.3 0.1 29.7 3.5 100.0

recall 88.8 ± 0.3 77.8 ± 0.7 57.6 ± 1.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 83.5 ± 0.5 0.0 ± 0.0

K. pneumoniae ceftriaxone n 229 273 204 5 268 15 1790 76 2860

% 8.0 9.6 7.1 0.2 9.4 0.5 62.6 2.7 100.0

recall 79.1 ± 0.5 62.4 ± 0.4 0.0 ± 0.0 0.0 ± 0.0 46.5 ± 0.8 0.0 ± 0.0 99.6 ± 0.1 3.8 ± 2.6

S.aureus oxacillin n 379 708 1356 34 517 0 187 609 3790

% 10.0 18.7 35.8 0.9 13.6 0.0 4.9 16.1 100.0

recall 89.9 ± 0.5 52.3 ± 2.2 90.8 ± 0.7 0.0 ± 0.0 33.4 ± 1.0 NA 1.8 ± 1.5 2.2 ± 2.0

Supplemental Table 5: Overview of sample distribution and distinguishability over the workstations in
DRIAMS-A. For each scenario, the number of samples and the percentage of the total number of samples is stated
for each workstation. Additionally, a multi-class logistic regression classifier was trained to predict the workstation
based on the MALDI-TOF spectrum, and the predictive performance is reported by the average recall. Generally, we
observe a high recall for all workstations if a substantial sample size is present; particularly for hospital hygiene and
blood, substantiating prior knowledge that the growth medium can be detected from the MALDI-TOF mass spectra
(see Methods).
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