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Abstract

Segmentation of brain tissue types from diffusion MRI (dMRI) is an impor-

tant task, required for quantification of brain microstructure and for improving

tractography. Current dMRI segmentation is mostly based on anatomical MRI

(e.g., T1- and T2-weighted) segmentation that is registered to the dMRI space.

However, such inter-modality registration is challenging due to more image dis-

tortions and lower image resolution in the dMRI data as compared with the

anatomical MRI data. In this study, we present a deep learning method that

learns tissue segmentation from high-quality imaging datasets from the Human

Connectome Project (HCP), where registration of anatomical data to dMRI is

more precise. The method is then able to predict a tissue segmentation directly

from new dMRI data, including data collected with a different acquisition pro-

tocol, without requiring anatomical data and inter-modality registration. We

train a convolutional neural network (CNN) to learn a tissue segmentation model

using a novel augmented target loss function designed to improve accuracy in

regions of tissue boundary. To further improve accuracy, our method adds dif-

fusion kurtosis imaging (DKI) parameters that characterize non-Gaussian water

molecule diffusion to the conventional diffusion tensor imaging parameters. The

DKI parameters are calculated from the recently proposed mean-kurtosis-curve

method that corrects implausible DKI parameter values and provides additional

features that discriminate between tissue types. We demonstrate high tissue
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segmentation accuracy on HCP data, and also when applying the HCP-trained

model on dMRI data from a clinical acquisition with lower resolution and fewer

gradient directions.

1. Introduction

Segmentation of brain tissue types, e.g., the labeling of gray matter (GM),

white matter (WM), and cerebrospinal fluid (CSF), is a critical step in many

diffusion MRI (dMRI) visualization and quantification tasks. Most current tis-

sue segmentation approaches are based on T1-weighted (T1w) or T2-weighted

(T2w) anatomical MRI data (Ashburner and Friston, 2005; Fischl, 2012; Smith

et al., 2004), which has high image resolution and image contrast that differ-

entiates between tissue types. However, application of anatomical-MRI-based

segmentation to dMRI requires inter-modality registration, which is challenging

since dMRI often has echo-planar imaging (EPI) distortions (Wu et al., 2008;

Albi et al., 2018; Jones and Cercignani, 2010) and low image resolution (Ma-

linsky et al., 2013). Improved dMRI acquisitions can mitigate these challenges.

For instance, the Human Connectome Project (HCP) acquired high-resolution

dMRI data with alternating phase encoding to correct EPI distortions, mak-

ing it easier to register between the anatomical MRI data and the dMRI data

(Glasser et al., 2013). However, advanced HCP-like acquisitions are not always

available and are not yet feasible for many clinical settings where scan time is

limited. Therefore, there is a need for segmentation approaches that can be

applied on the dMRI data directly. Such approaches would be useful for MRI

protocols that are missing high quality anatomical data, or when it is difficult

to achieve high quality registration of the anatomical-MRI-based segmentation

to the dMRI space.

Most dMRI-based brain tissue segmentation methods use features derived

from the diffusion tensor imaging (DTI) model, such as mean diffusivity (MD)

and fractional anisotropy (FA) (Liu et al., 2007; Schnell et al., 2009; Wen et al.,

2013; Kumazawa et al., 2013; Yap et al., 2015; Ciritsis et al., 2018; Zhang
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et al., 2015; Nie et al., 2018). These DTI-based studies have achieved limited

accuracy partly because DTI is known to be non-specific in characterization

of water diffusion in the complex intracellular and extracellular in vivo envi-

ronment (O’Donnell and Pasternak, 2015). Diffusion kurtosis imaging (DKI)

(Jensen and Helpern, 2010), a clinically feasible extension of DTI that char-

acterizes non-Gaussian water molecule diffusion, enhances DTI by providing

information about molecular restrictions and tissue heterogeneity in the brain.

DKI parametrizes the dMRI data with a diffusion tensor and a kurtosis tensor

(Tabesh et al., 2011). From the kurtosis tensor, additional parameters are de-

rived, including mean kurtosis (MK), axial kurtosis (AK) and radial kurtosis

(RK), that can quantify the complexity of the microstructural environment of

different brain tissues (Steven et al., 2014).

Segmentation methods that include DKI parameters show improved brain

tissue segmentation compared to DTI (Beejesh et al., 2019; Hui et al., 2015;

Steven et al., 2014). However, one important challenge is that DKI parame-

ters can be affected by signal alterations caused by imaging artifacts such as

noise, motion and Gibbs ringing (Veraart et al., 2016; Shaw and Jensen, 2017;

Zhang et al., 2019). Consequently, DKI often yields output parameter values

that are implausible (e.g. see MK in Fig. 1(a2)), which affects DKI-based

analyses including tissue segmentation (Veraart et al., 2016; Shaw and Jensen,

2017). However, correction methods such as the mean-kurtosis-curve (MK-

Curve) method (Zhang et al., 2019) are now available to robustly identify and

correct implausible kurtosis tensor parameter values (Zhang et al., 2019).

Recent advances in deep learning methods have shown significant improve-

ment for solving image segmentation problems (e.g., see reviews in Akkus et al.

(2017); Bernal et al. (2019); Garcia-Garcia et al. (2017). The most widely used

deep learning model is the convolutional neural network (CNN) that is designed

to automatically and adaptively learn spatial hierarchies of image features from

low- to high-level patterns (LeCun et al., 1998; Krizhevsky et al., 2012). So far

CNN for brain segmentation have been considered as part of multi-modal seg-

mentation that includes dMRI, showing highly promising tissue segmentation
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performance (Zhang et al., 2015; Nie et al., 2018). However, this sort of use still

highly depends on the accuracy of cross-modality registration that is required

to form the multi-modal input used for the segmentation.

In this paper, we propose a deep learning approach that utilizes a CNN

to learn the segmentation of WM, GM, and CSF directly from dMRI features

while obviating the need for inter-modality registration. The CNN is trained

using high quality and coregistered anatomical and dMRI data (from the HCP),

and then predicts tissue segmentation of new subjects directly from dMRI data,

without the need for anatomical MRI data nor inter-modality registration. To

further improve accuracy we trained the CNN using a novel augmented tar-

get loss function (Breger et al., 2020) that penalizes segmentation errors in

tissue boundary regions. The dMRI input includes seven DKI and DTI param-

eter maps that have been corrected for implausible values using MK-Curve and

three additional MK-Curve-derived maps (Zhang et al., 2019). We trained, val-

idated and tested the proposed method using 100 high-quality and co-registered

anatomical and dMRI datasets from HCP, and then demonstrated generalizabil-

ity to dMRI data from a clinical acquisition with lower resolution and fewer gra-

dient directions. Overall, quantitative and qualitative comparisons with several

state-of-the-art segmentation methods show that our method provides highly

accurate and reliable dMRI tissue segmentation performance.

2. Methods

The proposed method includes 3 main steps (overviewed in Fig. 1): (a)

extracting DKI- and MK-Curve-based tissue feature descriptor (Section 2.1), (b)

training a CNN model for tissue segmentation (Section 2.2), and (c) predicting

subject-specific tissue segmentation from new dMRI data (Section 2.3).

2.1. Extraction of a tissue feature descriptor

Feature extraction from the DWI data was performed using a DKI model

fit (Tabesh et al., 2011), in combination with generating the MK-Curve for
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Figure 1: Method overview. Given input DWI data (a1), an MK-Curve is computed for each

voxel (a2, showing three example voxels). The MK-Curve is used to correct implausible DKI

and DTI parameters, and to derive three additional image contrasts that are useful to identify

tissue types: ZeroMK-b0, MaxMK-b0 and MaxMK (a3). A total of 10 features are computed:

the 3 MK-Curve contrasts (a3), 3 DKI maps (a4) and 4 DTI maps (a5). The corrected images

no longer have implausible values (e.g., original MK map (a2) versus corrected MK map

(a4); in a red frame). The 3D volumes of the 10 features along with the segmentation labels

computed from co-registered T2w data (b1) are used to train a CNN with a Unet architecture

and with a novel augmented target loss function (b2). For new DWI data (c1), the trained

CNN is applied on the computed 3D volume of the 10 features in the dMRI space directly (c2),

not requiring inter-modality registration. The final prediction output includes a probabilistic

segmentation map for each tissue type (c3) and a segmentation label per voxel (c4).
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each voxel (Zhang et al., 2019), to correct implausible DKI and DTI parameter

values, and to provide three additional image contrasts that are useful for tissue

segmentation.

MK-Curve is a continuous plot that shows the dependence of MK on varia-

tion in the b0 signal (Zhang et al., 2019). In brief, an MK-Curve is generated

for each voxel by replacing the original b0 value with a range of synthetic val-

ues, and calculating MK (Tabesh et al., 2011) for each signal realization. The

resulting curve is characterized by three features for each voxel (Fig. 1(a2)):

ZeroMK-b0 – the largest b0 value where MK crosses 0; MaxMK-b0 – a b0

value larger than ZeroMK-b0 where MK reaches maximum; and MaxMK – the

MK value at MaxMK-b0. These three features define ranges of b0 values that

generate implausible MK values. Implausible values can then be corrected by

projecting out-of-range b0 values to the plausible range (Zhang et al., 2019),

and refitting the DKI model (Tabesh et al., 2011) using the projected b0 value.

This process results with corrected DKI and DTI maps that no longer have

physically implausible values and fewer visually implausible voxels (e.g., com-

paring dark voxels in the original MK in Fig. 1(a2) with the corrected MK in

Fig. 1(a4); in a red frame).

As a result of this process, for each subject, we calculate a tissue feature

descriptor that is a 4D image with 10 features per voxel (Figs. 1(a3 to a5)):

3 MK-Curve features (ZeroMK-b0, MaxMK-b0, and MaxMK), 3 MK-Curve-

corrected DKI parameters (MK, AK and RK) and 4 MK-Curve-corrected DTI

parameters (FA, and the three eigenvalues, e1, e2, e3). Each parameter was

rescaled using a z-transform across all voxels within a brain mask.

For comparison (see Section 3.2.1) we also considered the following descrip-

tors: 1) a DKI-based descriptor that included only the DKI and DTI features

obtained by fitting the DKI model to the original, uncorrected data. 2) a DTI-

based descriptor, which was computed by nonlinear fit of the b=0 and b=1000

s/mm2 data to a diffusion tensor.
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2.2. CNN tissue segmentation model training

We applied CNNs to train models that segment WM, GM and CSF from

different sets of dMRI input parameters. In brief, the CNN had the typical

three layers (LeCun et al., 1998; Krizhevsky et al., 2012): a convolution layer

and a pooling layer to perform feature extraction, and a fully connected layer to

map the extracted features into the final tissue segmentation maps. There were

two main CNN design choices: 1) choice of CNN architecture, and 2) design of

loss function. These two choices are described below.

2.2.1. Multi-view 2D Unet CNNs

For the CNN architecture, we selected a Unet architecture (Ronneberger

et al., 2015), which has been successfully applied for neuroimage analysis (Dong

et al., 2017; Wasserthal et al., 2018; Hwang et al., 2019). While in principle

the Unet architecture allows extensions to 3D image segmentation, we used 2D

image slices as network input to boost memory efficiency and to enable process-

ing of the high-resolution HCP data used for model training (see Section 3.1 for

data details). However, to leverage the 3D neighborhood information in the 3D

feature volume, we trained three 2D CNNs using 2D slices from three different

orientations: axial, coronal and sagittal. This is similar to the model training

process proposed in Wasserthal et al. (2018). The final tissue segmentation

prediction was computed based on the average of the prediction probabilities

across the three views (See Supplementary Material 1 for a comparison using

the three views and using each individual view).

2.2.2. Augmented target loss function

A loss function, which evaluates how well the CNN models the training data,

is needed to optimize the weights of the CNN. To further improve the CNN

training, we designed a new loss function according to the recently proposed

framework of augmented target loss functions (Breger et al., 2020). Augmented

target loss functions modify a given loss function by including prior knowledge of

a particular task. The prior knowledge is introduced by using transformations to
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project the prediction (output y) and the ground truth (target t) into alternative

spaces (Breger et al., 2020). In its general form, the augmented target loss

function, LAT , can be written as

LAT =
∑d

j=1
αj · Lj(Tj(y), Tj(t)) (1)

where Tj is a transformation, Lj is a loss function, and αj > 0 is a weight for

each of the d loss functions j ∈ {1, · · · , d}.

To improve the segmentation of GM, WM and CSF, we add two kinds of prior

information: 1) misclassified voxels are more common on the boundaries of the

different regions, and 2) CSF has essentially different diffusion properties (free

diffusion) from GM and WM (hindered and restricted diffusion). Therefore, we

added two penalty elements to the CNN’s loss function:

LAT (y, t) = LCE (y, t) + α1LCE (yΩ, tΩ) + α2LMSE (T (y), T (t)) (2)

Here, the first term, LCE , is the conventional categorical cross-entropy loss func-

tion (Goodfellow et al., 2016). The second term penalizes misclassification in

voxels included in the boundary region, Ω, which was computed by applying a

Laplacian of Gaussian (LoG) edge filter (Parker, 2010) to the target segmen-

tation, t. The third term penalizes misclassification between CSF and either

GM or WM by applying the transformation T (·) = 〈·, (1, 1, 0)T 〉 on y and t,

where 〈·, ·〉 denotes the inner product and the three channels correspond to

WM, GM and CSF, respectively. LMSE is the mean-squared error loss function,

i.e., (T (y) − T (t))2 over all samples. The added information/penalization is

weighted by the parameters α1 and α2.

We trained three Unet CNN models, corresponding to the axial, coronal

and sagittal views of the input volume, using the Deep Learning ToolboxTM

in Matlab (version 2018). Adaptive moment estimation (ADAM) was used for

optimization, with a learning rate of 0.0005, a batch size of 8, and a total of 50

epochs.
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2.3. Tissue segmentation prediction of new dMRI data

To perform tissue segmentation on new subjects that were not included in the

training, we applied the trained CNN model to the dMRI data of these subjects

(Fig. 1(c)). First, tissue feature descriptor was extracted from the new dMRI

data (as described in Section 2.1), resulting in a 4D volume of the 10 features

(Fig. 1(c2)). Zero padding was performed to maintain the same matrix size

as the training images. Then, the 4D volume was separated to axial, sagittal

and coronal slices, and each slice was fed to the trained CNN model of the

corresponding view to output segmentation probability maps with a probability

score for each tissue type. For each voxel, these scores were averaged across the

output of the three views. These prediction outputs were then re-constructed

into 4D maps (Fig. 1(c3)). From the 4D probabilistic segmentation maps, we

computed a 3D tissue segmentation map (Fig. 1(c4)), where each voxel was

assigned with the tissue type that had maximal probability.

3. Experiments

3.1. Datasets

We included two kinds of MRI datasets. The first kind was high-quality

MRI data from the HCP (Glasser et al., 2013). This data was used to train the

CNNs, as well as for model validation and testing. The second kind was MRI

data with a clinical acquisition protocol (CAP). The CAP data was used to test

how the trained CNNs generalized to data from a different acquisition. For each

dataset, we used both dMRI data and anatomical T2w data. The dMRI data

was used to extract the MK-Curve-based feature descriptor. The T2w data

was used to generate tissue segmentation that will be considered as “ground

truth”. As mentioned above, the high quality of the HCP data allows accurate

registration of the T2w-based segmentation to the dMRI space, resulting with

a high quality segmentation in the dMRI space that can be considered close to

ground truth. For the CAP datasets, the co-registered T2w-based segmentation

may not be optimal, but we use it here as a comparison to maintain a consistent
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reference point. Below, we introduce the MRI acquisition, data preprocessing,

and T2w-based tissue segmentation for each dataset.

3.1.1. Human Connectome Project (HCP) dataset

We included MRI data from a total of 100 HCP subjects (age: 29.1 ± 3.7

years; gender: 54 females and 46 males), where 70 subjects were assigned for

model training, 20 subjects were assigned for validation, and 10 subjects were

assigned for testing.

The HCP MRI data was acquired with a high quality image acquisition pro-

tocol using a customized Connectome Siemens Skyra scanner. The acquisition

parameters used for the dMRI data were TE = 89.5 ms, TR = 5520 ms, phase

partial Fourier = 6/8, and voxel size = 1.25 × 1.25 × 1.25 mm3. A total of

288 images were acquired for each subject (acquired in both LR and RL phase

encoding to correct for EPI distortions), including 18 baseline images with a

low diffusion weighting b = 5 s/mm2 and 270 diffusion weighted images evenly

distributed at three shells of b = 1000/2000/3000 s/mm2. The acquisition pa-

rameters for the T2w data were TE = 565 ms, TR = 3200 ms, and voxel size

= 0.7 × 0.7 × 0.7 mm3. The dMRI data has been processed following the

well-designed HCP minimum processing pipeline (Glasser et al., 2013), which

includes brain masking, motion correction, eddy current correction, EPI distor-

tion correction, and coregistation with the anatomical T2w data.

To obtain input tissue type labels for training and testing, we applied Statis-

tical Parametric Mapping (SPM, version SPM12) (Ashburner and Friston, 2005)

on the T2w images, resulting in a CSF, WM or GM label for each voxel. The

labels were projected into the co-registered dMRI data using nearest neighbor

interpolation. We note that SPM is often the method of choice in generating

high quality reference brain segmentation to compare with dMRI-based tissue

segmentation (Schnell et al., 2009; Ciritsis et al., 2018; Cheng et al., 2020), al-

though other segmentation tools, e.g., FMRIB’s Automated Segmentation Tool

(FSL FAST) (Jenkinson et al., 2012) could also be used instead.
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3.1.2. Clinical Acquisition Protocol (CAP) dataset

The CAP dataset contained MRI data from 10 healthy subjects (age: 22.7

± 5.4 years; gender: 5 females and 5 males) for testing the training CNN tissue

segmentation model. This dataset was acquired with approval of the local ethics

board.

The CAP MRI data was acquired using a Siemens Verio 3T scanner (Mag-

netom Verio; Siemens Healthcare, Erlangen, Germany). The acquisition param-

eters used for the dMRI data were TE = 109 ms, TR = 15800 ms, phase partial

Fourier = 6/8, and voxel size = 2 × 2 × 2 mm3. A total of 125 images were

acquired for each subject, including 5 baseline images with b = 0 s/mm2 and

60 diffusion weighted images evenly distributed at two shells of b = 1000/3000

s/mm2. The acquisition parameters for the T2w data were TE = 422ms, TR =

3200 ms, and voxel size = 1 × 1 × 1 mm3 using a 3D T2-SPACE sequence The

dMRI data was processed using our in-house data processing pipeline, including

brain masking using the SlicerDMRI extension (dmri.slicer.org) (Norton et al.,

2017; Zhang et al., 2020) in 3D Slicer (www.slicer.org), eddy current-induced

distortion correction and motion correction using FSL (Jenkinson et al., 2012),

and EPI distortion correction and coregistation with the anatomical T2w data

using the Advanced Normalization Tools (ANTS) (Avants et al., 2009). Manual

quality check was performed to confirm good registration performance.

The T2w-based tissue segmentation of the CAP dMRI data was computed

in the same way as the HCP data. SPM12 was used to compute the T2w-based

tissue labels, which were projected to the co-registered diffusion space using a

nearest neighbor interpolation sampling.

3.2. Experimental comparison

We evaluated the performance of our proposed CNN based segmentation

against: 1) other machine learning classifiers, and when using different dMRI

feature descriptors, and 2) three state-of-the-art dMRI-based tissue segmenta-

tion methods.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 31, 2020. ; https://doi.org/10.1101/2020.07.30.228809doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.30.228809


12

3.2.1. Comparison of tissue feature descriptors and machine learning classifiers

We compared 9 approaches that used different tissue feature descriptors and

machine learning classifiers. The compared feature descriptors were: 1) FDTI

- containing the 4 DTI parameters computed from DTI modeling (as in (Ku-

mazawa et al., 2010)); 2) FOrigDKI - containing the 3 DKI and 4 DTI parameters

from DKI modeling (without any correction for implausible parameter values)

(as in (Beejesh et al., 2019)); and 3) FProposed - containing all 10 MK-Curve-

based parameters. For each of these feature descriptors, we performed tissue

segmentation using three different classifiers: 1) SVM - a support vector ma-

chine classifier with a radial basis function (RBF) kernel function, as used in

Ciritsis et al. (2018); Schnell et al. (2009), 2) CNN - a Unet architecture CNN

with the conventional categorical cross-entropy loss function, 3) CNN AT - a

Unet architecture CNN with our augmented target loss function. For each com-

pared classifier, hyperparameters were well-tuned following a cross-validation

process on the validation dataset. Specifically, in the proposed CNN AT , the

weighting parameters α1 and α2 were set to 0.05 and 0.5, respectively, as deter-

mined during the cross-validation. In total, there were 9 comparison methods

in this experiment.

For each of the compared methods, we computed a tissue segmentation

model using the 70 HCP datasets assigned for training, where the hyperparame-

ters of the model were tuned using the 20 HCP datasets assigned for validation.

To evaluate the tissue segmentation prediction performance, we applied each

trained model on the 10 HCP and the 10 CAP datasets designated for test-

ing, and we calculated the segmentation prediction accuracy, ACC , against the

T2w-based labels for each dataset, as:

ACC =
Ncorrectly predicted voxels

Nall voxels
(3)

We computed ACC across voxels from the entire brain, and also separately

across voxels from the tissue boundary and from non-boundary voxels (detected

using a LoG filter). For each of the regions (entire brain, boundary and non-

boundary), the mean and the standard deviation of the segmentation prediction
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accuracy across the 10 HCP and the 10 CAP datasets, respectively, were com-

puted for each compared method.

3.2.2. Comparison with other state-of-the-art dMRI tissue segmentation meth-

ods

We evaluated the proposed method with comparison to three other state-of-

the-art dMRI-based tissue segmentation methods: 1) segmentation based on the

estimation of a dMRI-based tissue response function (Dhollander et al., 2016,

2018) in the constrained spherical deconvolution (CSD) framework (Tournier

et al., 2007), 2) application of the SPM tissue segmentation algorithm (Ash-

burner and Friston, 2005) directly to the diffusion baseline (b0) image, 3) a

method that uses the direction-averaged diffusion weighted imaging (daDWI)

signal as input to SPM tissue segmentation (Cheng et al., 2020). In the rest

of the paper, we refer to these methods as the CSD method, the SPM+b0

method, and the daDWI method, respectively. Briefly, the CSD method is an

unsupervised algorithm that leverages the relative diffusion properties to esti-

mate response functions1 of GM, WM and CSF (Dhollander et al., 2016). Sub-

sequently, the response functions are used in the multi-shell multi-tissue CSD

(MSMT-CSD) algorithm (Tournier et al., 2007) to calculate volume fraction

maps for the three tissue types (Jeurissen et al., 2014), which are analogous

to the probabilistic maps that our proposed method outputs. The SPM+b0

method leverages the fact that the b0 has a T2w contrast and thus applies the

SPM tissue segmentation method (Ashburner and Friston, 2005) directly on the

b0 image without inter-MR-modulity registration. The SPM+b0 method was

previously used, for example, to assist brain tissue segmentation (Mah et al.,

2014). The daDWI method fits a power-law based model to the direction-

averaged signal of the DWI images to obtain two parametric maps named alpha

and beta (McKinnon et al., 2017). The alpha and beta images are used for

1In the CSD framework, a response function is used as the kernel during the deconvolution

step to estimate the fiber orientation distribution (FOD) function.
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creating a pseudo T1w image (Cheng et al., 2020), which is subsequently in-

putted to SPM to obtain the GM, WM and CSF segmentation. For each of

the compared methods, the output of the prediction includes the overall tissue

segmentation map where each voxel has a predicted label (GM, WM, CSF or

background) and three probabilistic segmentation maps (for GM, WM and CSF,

respectively) where each voxel has a probability belonging to a certain tissue

type.

We evaluated our proposed method against the CSD, the SPM+b0, and

the daDWI methods by comparing the overall ACC . We also assessed spatial

overlap with the co-registered T2w-based “ground truth” segmentation for each

individual tissue type, T=(WM, GM, CSF), by computing the Dice score (Dice

1945) of the predicted segmentation, SegPD , and the ground truth segmentation,

SegGT , as:

Dice(T ) =
2× |SegPD(T ) ∩ SegGT (T )|
|SegPD(T )|+ |SegGT (T )|

(4)

where |SegPD ∩SegGT | indicates the number of voxels in the intersection of the

predicted and the ground truth segmentations, and |SegPD | and |SegGT | indi-

cate the number of voxels of the predicted and the ground truth segmentations.

The values of the Dice scores are between 0 and 1, where a high value represents

better prediction corresponding to the ground truth segmentation. We also as-

sessed probabilistic tissue segmentation prediction performance for each tissue

type, T , by computing the probabilistic similarity index (PSI) (Anbeek et al.,

2005), as:

PSI (T ) =
2× |ProbSegPD(T ) ∩ ProbSegGT (T )|
|ProbSegPD(T )|+ |ProbSegGT (T )|

(5)

where |ProbSegPD ∩ ProbSegGT | indicates the sum of the probability values

over the intersection of the predicted and the ground truth segmentations, and

|ProbSegPD(T )| and |ProbSegGT (T )| indicate the sum of the probability values

of the predicted and the ground truth segmentations. Similar to the Dice score,

the PSI is in the range between 0 and 1, where a higher value represents a better

agreement with the ground truth. The mean and the standard deviation of the

Dice score and PSI across the 10 testing HCP subjects and the 10 testing CAP

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 31, 2020. ; https://doi.org/10.1101/2020.07.30.228809doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.30.228809


15

Table 1: Quantitative comparison of the segmentation prediction accuracy across different

tissue feature descriptors and machine learning classifiers on test HCP data. The prediction

accuracy across the entire brain, and separately across tissue boundary and non-boundary

regions are reported.

region SVM CNN CNN AT

entire brain 76.80±1.39% 89.35±0.69% 89.85±0.61%

FDTI boundary 63.60±1.25% 79.74±1.75% 81.78±1.56%

non-boundary 88.54±1.49% 99.11±0.24% 99.09±0.22%

entire brain 81.69±1.62% 89.23±0.60% 89.82±0.54%

FOrigDKI boundary 68.49±1.64% 80.64±1.61% 82.81±1.46%

non-boundary 93.43±1.83% 99.08±0.28% 99.12±0.27%

entire brain 82.92±1.53% 89.95±0.53% 90.48±0.51%

FProposed boundary 69.72±1.50% 81.03±1.54% 83.09±1.48%

non-boundary 94.66±1.73% 99.17±0.25% 99.17±0.26%

datasets, respectively, were computed for a quantitative comparison.

4. Results

4.1. Comparison of tissue feature descriptors and machine learning classifiers

The comparison of ACC across the 9 combinations of 3 feature descriptors

and 3 machine learning classifiers are presented in Tables 1 and 2 for the HCP

and CAP data, respectively. The proposed classifier with augmented target

loss function, CNN AT , obtained higher accuracy than both SVM and conven-

tional CNN classifiers for each feature descriptor. The improvement in accuracy

comparing to the conventional CNN was mostly in the tissue boundary region.

Applying the proposed feature descriptor, FProposed , which includes the 10 MK-

Curve-based features, generated higher ACC than the other feature descriptors
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Table 2: Quantitative comparison of the segmentation prediction accuracy across different

tissue feature descriptors and machine learning classifiers on the CAP data. The prediction

accuracy across the entire brain, and separately across tissue boundary and non-boundary

regions are reported.

region SVM CNN CNN AT

entire brain 56.65±6.61% 76.25±3.66% 76.68±4.35%

FDTI boundary 55.82±6.62% 66.22±4.21% 69.49±4.64%

non-boundary 57.58±6.62% 88.78±3.56% 90.32±2.79%

entire brain 59.55±3.53% 77.78±3.10% 78.35±3.02%

FOrigDKI boundary 58.73±3.54% 66.19±3.67% 70.36±3.67%

non-boundary 60.48±3.52% 91.53±2.14% 91.57±2.30%

entire brain 62.28±3.49% 79.39±2.25% 80.30±2.02%

FProposed boundary 61.46±3.48% 68.70±3.05% 73.00±2.78%

non-boundary 63.21±3.48% 92.05±2.45% 92.62±2.55%

for each of the classifiers studied. Overall, applying our proposed classifier,

CNN AT , on the proposed descriptor, FProposed , achieved the highest tissue seg-

mentation accuracy across the entire brain, with an ACC of 90.48% in the

HCP data and 80.30% in the CAP data. Notably, the proposed CNN AT also

achieved reasonable accuracy using only the DTI features, FDTI (Table 1 and

Supplementary Fig. S1).

4.2. Comparison with state-of-the-art tissue segmentation methods

Quantitative comparison (Fig. 2) shows that our method consistently out-

performs the three state-of-the-art methods (CSD, SPM+b0 and daDWI), across

the three evaluation measures (ACC , Dice, and PSI ) and across the three tissue

types (WM, GM and CSF).

Visual assessment of the predicted tissue segmentation and probabilistic
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maps for the HCP (see an example case in Fig. 3) and CAP (see an example

case in Fig. 4) datasets shows that our method generates tissue segmentation

maps that are highly visually similar to the T2w-based tissue segmentation. The

daDWI method also obtains visually similar results to the T2w-based method,

while the SPM+b0 and CSD methods are relatively less similar. For example,

in Fig. 3, the SPM-b0 and the CSD methods mislabeled parts of the caudate as

WM, and in Fig. 4, the SPM-b0 method mispredicted the putamen to be WM.

Visual inspection also demonstrates that there are apparent tissue segmen-

tation errors in the T2w-based method, in particular in the CAP data, whereas

our method achieves a more anatomically correct tissue segmentation. For ex-

ample, in the T2w-based tissue segmentation in Fig. 4(b), several WM voxels

belonging to the external capsule between the putamen and the insula cortex

are mislabeled to be GM. Our method generates a tissue segmentation map that

is smoother and more closely resembles the expected shape of the putamen and

the insula cortex, better corresponding with the anatomy as appearing on the

T2w image.

5. Discussion

In this work, we proposed a novel deep learning brain tissue segmentation

method that can be applied directly on dMRI data. We trained a CNN tis-

sue segmentation model from high quality HCP data, using MK-Curve-based

DKI features and a new augmented target loss function. On the testing HCP

data, our method achieved highly comparable results to anatomical T2w-based

“ground truth” tissue segmentation, while avoiding inter-modality registration.

We also demonstrated that our method provided a good ability to generalize to

dMRI data from a different acquisition with lower spatial and angular resolu-

tions than those of the training HCP data. Quantitative and visual comparisons

showed that our method outperformed several state-of-the-art dMRI-based tis-

sue segmentation methods.

The two CNN-based classifiers (i.e., with the conventional categorical cross-
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Figure 2: Quantitative comparison of the overall segmentation prediction accuracy, the Dice

overlap, and the probabilistic similarity index (PSI) across the CSD, the SPM+b0, the daDWI,

and the proposed tissue segmentation methods. The daDWI method only outputs a binary

mask for the CSF, without providing a probabilistic prediction, thus the PSI for the CSF in

this method is not applicable.

entropy loss function and with the augmented target loss function) obtained

much higher prediction accuracies than the SVM classifier. The improvement

might be because CNN involves application of spatial operators that in each

voxel take into account information from neighboring voxels, while the SVM

classifier performs prediction based only on features derived from each indi-

vidual voxel. Therefore, the CNN classifier can identify textures, shapes and

relative locations of the voxels in the input feature volume that could contribute

to the segmentation task. Comparing between the two CNN-based classifiers,

incorporating the augmented target loss function generated a higher prediction

accuracy, in particular on the tissue boundary region, which suggests that addi-

tional penalizations on misclassification of voxels at the tissue boundaries and

the CSF tissue type was important for better segmentation.

The proposed CNN AT achieved the highest prediction accuracy when using

the 10 MK-Curve-based feature descriptor. However, the feature descriptor with

only the DTI parameters also showed a large improvement compared with the
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Figure 3: Visual comparison across the proposed method, the daDWI method, the SPM+b0

method and the CSD method on one example HCP subject, with respect to the T2w-based

segmentation. (a) gives the T2w and the b0 images of the example HCP subject. (b) shows

the comparison of the overall GM/WM/CSF segmentation. An inset image, enlarging part

of the segmentation of the region near the caudate, is provided. (c) shows the comparison of

the segmentation prediction probability map for each tissue type.

SVM classifier with a promising prediction accuracy (89.85% on the HCP data

and 76.68% on the CAP data; see Supplementary Fig. S2 for a visualization

of DTI-feature-based tissue segmentation). These results demonstrate that the

proposed CNN-based segmentation is also useful for standard single-shell dMRI

data, where the additional DKI parameters are not available. However, when

multi-shell data is available, adding DKI parameters (before or after MK-Curve

correction) improves the prediction accuracy when compared to using only the
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Figure 4: Visual comparison across the proposed method, the daDWI method, the SPM+b0

method and the CSD method on one example CAP subject, with respect to the T2w-based

tissue segmentation. (a) gives the T2w and the b0 images of the example CAP subject. (b)

shows the comparison of the overall GM/WM/CSF segmentation. An inset image, enlarging

part of the segmentation of the region near the putamen, is provided. (c) shows the comparison

of the segmentation prediction probability map for each tissue type.

DTI parameters. The improvements were potentially due to including informa-

tion about restricted water diffusion properties that could be inferred from DKI

but not DTI, and that better segments white matter from CSF or GM. Cor-

recting implausible parameters and adding the MK-Curve features consistently

obtained a higher prediction accuracy compared to the original DKI parameters,

demonstrating the usefulness of the MK-Curve method for tissue segmentation.

We showed good performance of the proposed method when applied to the
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clinical acquisition data, despite the fact that this data had a lower image res-

olution and a lower number of gradient directions than the training HCP data.

The ability of a tissue segmentation method to generalize to data from different

acquisitions is important. dMRI acquisitions can have widely varying numbers

of gradient directions, b-values, and magnitude of b-values, posing a challenge

for machine learning. In our quantitative evaluation we showed that nearly 80%

of the voxels were in agreement with the SPM segmentation of the coregistered

T2w data, which was higher than the other methods that were evaluated.

Our proposed method performed tissue segmentation prediction directly

from the dMRI data and thus could avoid obvious segmentation errors when

transferring the anatomical T2w-based “ground truth” segmentation to the

dMRI space. In the literature, anatomical-MRI-based segmentation, e.g., the

one obtained by SPM, is usually used as the “ground truth” data (Ciritsis et al.,

2018; Schnell et al., 2009; Cheng et al., 2020), since the segmentation appears in

good agreement with the known anatomy. However, transferring T1w- or T2w-

based segmentation into the dMRI space is challenging due to the image distor-

tions in dMRI data, which affected inter-modality registration significantly (Albi

et al., 2018; Wu et al., 2008; Jones and Cercignani, 2010). In addition, anatom-

ical MRI data often has higher spatial resolution than dMRI data, resulting in

segmentation errors from smoothing and image interpolation when transferring

the tissue segmentation computed from the high-resolution anatomical data to

the low-resolution dMRI data. Segmentation errors in the “ground truth” T2w-

based segmentation were also reflected in our data, especially in the CAP data

where visual inspection of the T2w co-registered segmentation appears to mis-

label some brain areas, in particular at the tissue boundaries. We showed that

our proposed method was able to correctly segment in areas where the T2w co-

registered segmentation were apparently wrong, thus generating a visually more

correct segmentation corresponding to the anatomy as appearing on the T2w

image. Similar to previous studies (Beejesh et al., 2019; Hui et al., 2015; Steven

et al., 2014; Cheng et al., 2020; Yap et al., 2015), we chose to calculate the ac-

curacy against the “ground truth” segmentation from co-registered anatomical
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MRI data. Therefore, regions where our method correctly labeled the tissue

type but the “ground truth” did not would cause a lower accuracy score. This

observation might explain the overall relatively lower accuracy scores of the

CAP data, where acquisition with reversed phase encoding was not available

and image resolution was relatively low compared to the HCP data.

Potential future directions and limitations of the current work are as follows.

First, the current work focused on tissue segmentation of the GM, WM and CSF.

An interesting future investigation could include segmentation of more specific

anatomical structures such as subcortical GM regions, white matter bundles,

and specific cortices. Second, in the current work, we evaluated our method on

healthy adult brains. Future work could include investigation of the proposed

tissue segmentation method in brains with lesions (such as tumors or edema)

and/or from different age ranges (e.g. from children and elderly people). Such

work would require curation of further training data that reflect anatomy of

certain populations. Third, in the present study, we explored a Unet architec-

ture, which provided highly promising performance. Future work could include

an investigation of more advanced network architectures, in combination with

our proposed augmented target loss function to further improve classification

accuracy.
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