Abstract
Light field microscopy (LFM) has emerged as a powerful tool for fast volumetric image acquisition in biology, but its effective throughput and widespread use has been hampered by a computationally demanding and artefact-prone image reconstruction process. Here, we present a novel framework consisting of a hybrid light-field light-sheet microscope and deep learning-based volume reconstruction, where single light-sheet acquisitions continuously serve as training data and validation for the convolutional neural network reconstructing the LFM volume. Our network delivers high-quality reconstructions at video-rate throughput and we demonstrate the capabilities of our approach by imaging medaka heart dynamics and zebrafish neural activity.
Competing Interest Statement
The authors declare competing financial interests. L.H. is scientific co-founder and employee of Luxendo GmbH (part of Bruker), which makes light sheet-based microscopes commercially available.