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Abstract 5 

The RNase II family of 3′-5′ exoribonucleases are present in all domains of life, and 6 

eukaryotic family members Dis3 and Dis3L2 play essential roles in RNA degradation. 7 

Ascomycete yeasts contain both Dis3 and inactive RNase II-like “pseudonucleases”. 8 

These function as RNA-binding proteins that affect cell growth, cytokinesis, and fungal 9 

pathogenicity. Here, we show how these pseudonuclease homologs, including 10 

Saccharomyces cerevisiae Ssd1, are descended from active Dis3L2 enzymes. During 11 

fungal evolution, active site mutations in Dis3L2 homologs have arisen at least four 12 

times, in some cases following gene duplication. The N-terminal cold-shock domains 13 

and regulatory features are conserved across diverse dikarya and mucoromycota, 14 

suggesting that the non-nuclease function require this region. In the basidiomycete 15 

pathogenic yeast Cryptococcus neoformans, the single Ssd1/Dis3L2 homolog is 16 

required for cytokinesis from polyploid “titan” growth stages and yet retains an active 17 

site sequence signature. We propose that that a nuclease-independent function for 18 

Dis3L2 arose in an ancestral hyphae-forming fungus. This second function has been 19 

conserved across hundreds of millions of years, while the RNase activity was lost 20 

repeatedly in independent lineages. 21 
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Introduction 22 

Protein function evolves such that some descendants of an enzyme become 23 

“pseudoenzymes” with conserved structure but no catalytic activity (Murphy, Farhan, 24 

and Eyers 2017; Ribeiro et al. 2019). Distinct families of RNase enzymes regulate gene 25 

expression by catalytically degrading RNA (Houseley and Tollervey 2009), as part of a 26 

wider set of RNA-binding proteins (RBPs) that regulate all stages of the mRNA life cycle 27 

(Singh et al. 2015). Some functional RNA-binding proteins are pseudonucleases, in 28 

which inactivation of the nuclease active site was accompanied by, or preceeded by, 29 

gain of function in other domains. Pseudonucleases in animals include EXD1 (Yang et 30 

al. 2016), SMG5 (Glavan et al. 2006), Maelstrom (Chen et al. 2015), and Exuperantia 31 

(Lazzaretti et al. 2016). How could such changes in function have evolved? One 32 

possibility is that, first, the ability of a nuclease to bind RNA substrates was enhanced in 33 

other domains, as a secondary “moonlighting” function. Subsequently, the ancestral 34 

enzymatic activity was lost while the moonlighting activity was retained (Jeffery 2019). 35 

Understanding this order of events can help identify conserved activities underlying 36 

pleiotropic phenotypes. 37 

RNase-II family exoribonucleases 38 

Members of the RNase II / Dis3 family of 3′-5′ exoribonucleases play important roles 39 

across the tree of life, including the founding member of the family, E. coli RNase II, and 40 

the essential Dis3/Rrp44 nuclease component of the eukaryotic RNA exosome (Dos 41 

Santos et al. 2018). Dis3L2 is a relative of Dis3 that specifically degrades poly(U)-tailed 42 

mRNAs, such as products of the terminal-U-transferases (Malecki et al. 2013), in 43 

Schizosaccharomyces pombe, a role conserved in mammalian Dis3L2 (Ustianenko et 44 

al. 2013). Dis3-family nucleases consist of two N-terminal cold-shock / OB-fold domains 45 

(CSDs), a central funnel-shaped domain that we refer to as RNII (also called RNB), and 46 

a C-terminal S1/K-homology domain. The nuclease activity is conferred by a 47 

magnesium ion at the centre of the RNII domain’s “funnel”. Four conserved aspartic 48 

acid (D) residues form a motif, DxxxxxDxDD (using single amino acid code, where x is 49 

any residue), that is conserved in all known active RNase II-family nucleases. The first, 50 

third and fourth D (equivalent to D201, D209 and D210 in E. coli RNAse II) are thought 51 
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to be required for coordinating the magnesium ion (Zuo et al. 2006), while the second D 52 

hydrogen bonds to the 3′OH of the terminal base in the active site (Frazão et al. 2006). 53 

Experimental mutation of these conserved aspartic acids abolished the nuclease activity 54 

of RNII domains, including E. coli RNase II (Frazão et al. 2006; Zuo et al. 2006), S. 55 

cerevisiae Dis3/Rrp44 (Dziembowski et al. 2007; Schneider, Anderson, and Tollervey 56 

2007), Human Dis3 (Tomecki et al. 2010), Human Dis3L1 (Staals et al. 2010; Tomecki 57 

et al. 2010), Arabidopsis thaliana Dis3/Rrp44 (Kumakura et al. 2016), and S. pombe 58 

Dis3L2 (Malecki et al. 2013). Thus, any RNase II homolog lacking some or all of these 59 

catalytic residues is likely to lack the conventional nuclease activity and may be 60 

assumed to be a pseudonuclease. 61 

The ascomycete Ssd1/Sts5 family of inactive RNase II-like 62 

proteins 63 

Ascomycete yeasts contain additional conserved RNase II-like pseudonucleases: Ssd1 64 

(S.cerevisiae; ScSsd1) and Sts5 (S.pombe; SpSts5) lack the conserved catalytic 65 

residues of the RNII domain and act as RNA-binding proteins that repress translation 66 

(Uesono, Toh-e, and Kikuchi 1997; Jansen et al. 2009). ScSsd1 was discovered due to 67 

synthetic lethality in combination with cell cycle mutants (Sutton, Immanuel, and Arndt 68 

1991; Wilson et al. 1991). Deletion or truncation of ScSsd1 has pleiotropic effects, 69 

including reduced tolerance of stresses arising from ethanol (Avrahami-Moyal, Braun, 70 

and Engelberg 2012), heat (Mir, Fiedler, and Cashikar 2009), calcium (Tsuchiya et al. 71 

1996), the kinase inhibitor caffeine (Parsons et al. 2004), and multiple chemicals that 72 

stress the cell wall (Kaeberlein and Guarente 2002; Mir, Fiedler, and Cashikar 2009; 73 

López-García et al. 2010). Ssd1 homologs are required for virulence in ascomycete 74 

fungal pathogens of humans and plants, including Aspergillus fumigatus (Thammahong 75 

et al. 2019), Candida albicans (Gank et al. 2008), Colletotrichum lagenarium and 76 

Magnaporthe grisea (Tanaka et al. 2007). Finally, ScSsd1 was recently shown to be 77 

required to support the survival of aneuploid yeast, although the mechanism remains 78 

unclear (Hose et al. 2020). Since full-length ScSsd1 binds RNA without detectable 79 

degradation (Uesono, Toh-e, and Kikuchi 1997), these pleiotropic effects of Ssd1 loss 80 

presumably reflect the loss of RNA-binding, rather than nuclease activity. 81 
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ScSsd1 and SpSts5 were reported to act as translational repressors of specific mRNAs 82 

involved in cell growth and cytokinesis (Jansen et al. 2009; Nuñez et al. 2016). 83 

Moreover, a conserved motif was identified in the RNAs targeted by ScSsd1 and 84 

SpSts5 (Hogan et al. 2008; Nuñez et al. 2016), strongly indicating that the RNA-binding 85 

surface is also highly conserved. ScSsd1-mediated mRNA repression connects to the 86 

Regulation of Ace2 and Morphogenesis (RAM) network via the NDR-family protein 87 

kinase Cbk1 (Du and Novick 2002; Jorgensen et al. 2002): Ssd1 deletion suppresses 88 

the lethality of Cbk1 deletion. ScSsd1 is phosphorylated by Cbk1 at its N-terminus 89 

(Jansen et al. 2009), and Cbk1 regulation is conserved to C. albicans Ssd1 (Lee et al. 90 

2015). Similarly, S. pombe Sts5 is regulated by the Cbk1 homolog Orb6, and deletion of 91 

the RNA-binding protein suppresses defects arising from an inactive kinase (Nuñez et 92 

al. 2016). 93 

Here we ask, how are pseudonucleases such as Ssd1 and Sts5 related to Dis3-family 94 

enzymes, and when did the common ancestor to Ssd1 and Sts5 lose its nuclease 95 

activity? Our phylogenetic analysis establishes that Ssd1 is the least diverged homolog 96 

of Dis3L2 in Saccharomycete yeasts, despite its lack of an active site. We show that the 97 

active site was lost on at least four separate occasions in fungi, while the cold-shock 98 

domains are highly conserved across both active and inactive homologs, in most 99 

branches of dikarya and mucoromycota. We predicted that the non-nuclease function of 100 

Ssd1 is conserved beyond ascomycota, and verified this by demonstrating a 101 

requirement for Ssd1 in cytokinesis in polyploid “titan” but not euploid yeast of the 102 

basidiomycete yeast Cryptococcus neoformans. 103 

Results and Discussion 104 

Ascomycete RNase-II-family pseudonucleases descend from 105 

Dis3L2 106 

To understand the evolution of ScSsd1 and SpSts5, we first checked pre-computed 107 

databases of protein homology. The PANTHER protein homology database includes 108 

ScSsd1 and SpSts5 within a single Dis3L2 phylogeny (PTHR23355:SF9; (Mi et al. 109 

2010)). The most parsimonious interpretation is that modern Ssd1 and Dis3L2 proteins 110 
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are the descendants of a single eukaryotic ancestor. The OrthoDB hierarchical 111 

homology database clusters ScSsd1 with Dis3L2 and Dis3 proteins in both eukarya and 112 

and fungi (groups 1104619at2759 and 67258at4751; (Kriventseva et al. 2019)). The 113 

OrthoDB group containing ScSsd1 and SpSts5 in ascomycota (group 109571at4890) 114 

also includes a group of homologs in ascomycete filamentous fungi, such as 115 

Histoplasma capsulatum, with an active site sequence signature. However, the active 116 

site has been lost in all the least diverged homologs in the saccharomycotina (OrthoDB 117 

group 8134at4891). This implies that the ancestral ascomycete (~650MYA (Lücking et 118 

al. 2009)) had an active Dis3L2-like RNase and that the active site was lost in its 119 

descendant in the ancestral saccharomycete (~500 MYA (Prieto and Wedin 2013)). 120 

Reconstructing RNase II families in opisthokonts and 121 

amoebozoa 122 

To map Dis3L2 evolution beyond fungi, we next performed a BLASTP search (Sayers et 123 

al. 2020) against ScSsd1, SpDis3L2, and HsDis3L2 from 76 phylogenetically 124 

representative species. We focused on representative fungi with sequenced genomes 125 

including major model organisms, edibles, and pathogens, along with some 126 

animals/metazoa, other holozoa and holomycota (Torruella et al. 2015). We included 127 

amoebozoa as an outgroup. We filtered the list of BLASTP homologs to have E-value 1 128 

or less, and alignment length 200aa or more, and removed truncated sequences. We 129 

then aligned the curated full-length sequences with MAFFT (Katoh and Standley 2013), 130 

trimmed gaps at gap threshold 0.1 with trimAl (Capella-Gutiérrez, Silla-Martínez, and 131 

Gabaldón 2009), created a Bayesian maximum likelihood tree using IQ-TREE 2 (Minh 132 

et al. 2020) running on the CIPRES science gateway (Miller et al. 2015), and plotted the 133 

tree using ggtree (Yu 2020), using ggplot2 (Wickham 2016) and tidyverse packages 134 

(Wickham et al. 2019) in R markdown (Xie, Allaire, and Grolemund 2018). Full data and 135 

code for these analyses are available (doi:10.5281/zenodo.3950856). 136 

The maximum likelihood tree shows clear clusters for Dis3, Dis3L1, Dis3L2, 137 

mitochondrial homolog Dss1, and a branch of amoebozoan RNII-Like proteins (aRNIIL) 138 

that we do not pursue further (Figure 1A). This reproduces previous results on 139 

clustering of Dis3/Dis3L1/Dis3L2 homologs (Ustianenko et al. 2013), and is consistent 140 
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with the reported domain structures of these proteins. For example, all Dis3 homologs 141 

have a N-terminal PIN endonuclease domain with conserved catalytic residues, and 142 

Dis3L1 homologs have a PIN domain lacking essential catalytic resides, as reported in 143 

human Dis3L1 (Staals et al. 2010; Tomecki et al. 2010). We note that Dis3 and Dis3L1 144 

are each mostly single-copy, and Dis3L1 is found only in metazoa in both this analysis 145 

and in the PANTHER database (PTHR23355:SF35/SF30; (Mi et al. 2010)). Dss1 is 146 

absent from metazoa. 147 

Related RNase II families have conserved nuclease active 148 

site signatures 149 

We next computed consensus amino acid sequences for the active site of the larger 150 

clusters (Figure 1B), using the ggseqlogo package. This revealed a distinct active site 151 

signature for each subfamily. There is perfect conservation of the magnesium co-152 

ordinating aspartic acids (D) in Dis3 (DPPgCxDIDD, where essential catalytic residues 153 

are bold, capital letters highly conserved, lower case letters indicate commonly 154 

occurring and x indicates any residue) and in Dis3L1 (DPxxxxDIDD). However, both 155 

signatures for Dis3L2 (DPxxxxDLDD) and Dss1 indicate that alternative residues 156 

appear in the conserved positions within this dataset. This indicates that both Dis3L2 157 

and Dss1 lineages include some family members that are probable pseudonucleases, 158 

beyond ScSsd1. Furthermore, Dss1 shows a highly conserved E residue within the 159 

active site signature (DxxxxxELDD), indicating that this conservative change can be 160 

tolerated in some active RNase II nucleases. 161 

We sketch key features of the Dis3L2/Ssd1 family, including the position of the active 162 

site, in Figure 2A. 163 

The Dis3L2 tree largely matches fungal species phylogenies 164 

To examine the evolution of Dis3L2 homologs more closely, we generated a new 165 

multiple sequence alignment on the Dis3L2 cluster identified above, using the more 166 

accurate local pair option in MAFFT (Katoh and Standley 2013). We then computed the 167 

tree as previously, after removing the poorly-aligned N-terminus corresponding to 168 

ScSsd1 1-337, that is predicted to be unstructured (Figure 2B). As expected, the 169 
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phylogeny of Dis3L2 homologs mostly follows species-level phylogenies as assembled 170 

from multiple genes (Ren et al. 2016). Most species in metazoa, saccharomycotina, 171 

pezizomycotina, basidiomycota, and chytridiomycota, have one homolog each, while 172 

mucoromycota have multiple homologs, reflecting repeated whole-genome duplications 173 

in this clade (Corrochano et al. 2016). We did not find any Dis3L2 homologs in 174 

microsporidia or cryptomycota, which are early-diverged fungi with reduced genomes 175 

and an intracellular parasitic lifestyle (James et al. 2013). Surprisingly, homologs in 176 

taphrinomycota are placed in two widely separated groups: SpDis3L2 seems to have 177 

diverged slowly with respect to basal opisthokonts, while SpSts5 clusters with other 178 

ascomycete homologs, but with a longer branch length that indicates faster sequence 179 

divergence. Repeated analyses with different gene lists and alignment parameters 180 

confirmed this wide separation (data not shown), although the exact placing of the 181 

SpDis3L2 group is poorly resolved, as indicated by the low bootstrap values. 182 

To shed light on the evolution of Ssd1/Dis3L2 function, we next computed features of 183 

the (untrimmed) aligned protein sequences and displayed them alongside homologs in 184 

the tree (Figure 2C). An “active site signature” is identified where the three magnesium-185 

co-ordinating Ds are in place in the RNII domain (Figure 2A). A classical nuclear 186 

localization signal was previously characterized in a loop in CSD1 of ScSsd1 (Kurischko 187 

et al. 2011); equivalently placed conserved sequences are identified. We identified 188 

regulatory Cbk1 kinase phosphorylation sites in the N-terminal region from the 189 

consensus Hxxxx[ST], including at least one positive amino acid (K or R) in the central 190 

xx residues, and the Cbk1 phosphorylation-enhancing docking site from its consensus 191 

sequence [YF]x[FP] (Gógl et al. 2015). The distribution of these features is not uniform 192 

across the Dis3L2 family (Figure 2C). 193 

The Dis3L2 active site signature is lost in at least four 194 

independent fungal lineages. 195 

All Dis3L2 homologs examined from amoebozoa, metazoa, and early-diverging 196 

chytridiomycota have the active site signature, indicating that the ancestral Dis3L2 was 197 

a nuclease (Figure 2C). The distribution of active site signatures on the phylogenetic 198 

tree indicates at least four independent losses of the active site in fungal Dis3L2s. First, 199 
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the entire budding yeast Saccharomycotina clade has inactive Ssd1/Dis3L2 homologs, 200 

indicating a loss of the active site in an ancestor of the entire clade. Second, 201 

filamentous fungi in the pezizomycotina have a mix of active- and inactive-signature 202 

homologs, indicating a loss of the active site in the ancestor of Aspergillus and 203 

potentially also independently in the ancestor of Tuber melanosporum. Third, the 204 

dandruff-causing dermatophyte Malassezia globosa has an inactive homolog, despite 205 

clustering within the active homologs of its basidiomycete relatives. The active site is 206 

also lost in all sequenced members of genus Malassezia (data not shown). Fourth, in 207 

some groups of post-genome-duplication mucoromycota homologs the active site has 208 

been lost, e.g. Rhizopus delemar 5/6/7, despite closely related homologs with an intact 209 

active site signature, e.g. Rhizopus delemar 3. Indeed, our phylogenetic tree shows with 210 

high confidence that the active site has been lost on multiple branches diverging from 211 

the extant active-signature Rhizopus delemar 3. 212 

Most Dis3L2 homologs contain a positively-charged nuclear localisation sequence in a 213 

loop in CSD1, similar to ScSsd1, suggesting that nuclear localisation is common in this 214 

family regardless of nuclease activity. One exception is SpDis3L2 and its active 215 

homologs in taphrinomycotina, which have lost the NLS signature in this location. 216 

Regulation of Dis3L2 by kinases is conserved beyond 217 

dikarya 218 

Phosphorylation sites and docking sites recognised by the cell wall biogenesis kinase 219 

Cbk1 in ScSsd1 are conserved in almost all dikarya and many mucoromycota Dis3L2 220 

homologs (Figure 2C). Cbk1 phosphorylation sites are a paradigmatic example of short 221 

linear motifs that are conserved in otherwise fast-diverging disordered regions (Zarin et 222 

al. 2019). Indeed, in the poorly aligned N-terminal domain of Dis3L2, multiple Hxxxx[ST] 223 

phosphorylation motifs stand out as strikingly conserved, e.g. 7 motif instances in S. 224 

cerevisiae, 8 instances in C. neoformans. A partial exception are members of the 225 

SpSts5 group that have 2 phosphorylation motifs but lack the Cbk1 docking site, and 226 

which are regulated by the diverged Orb6 kinase (Nuñez et al. 2016). It was previously 227 

noted that Cbk1 sites are conserved in saccharomycotina and pezizomycotina (Jansen 228 
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et al. 2009), and this analysis argues for even deeper conservation of Dis3L2/Ssd1 229 

regulation. 230 

Ssd1/Dis3L2 regulation could also involve further post-transcriptional modifications. S. 231 

cerevisiae Ssd1 phosphorylation in vivo was reported to require the cyclin dependent 232 

kinase Cdk1 (Holt et al. 2009; Albuquerque et al. 2008). However, this requirement is 233 

likely to be indirect because Cdk1 regulates Cbk1 through a signaling cascade (Mancini 234 

Lombardi et al. 2013). Measurements in cell lysates failed to detect Ssd1 as a direct 235 

Cdk1 target (Ubersax et al. 2003). We did not pursue Cdk1 regulation further here 236 

because the two Cdk1 consensus sites [S/T]Px[K/R] on ScSsd1 are not conserved in 237 

our alignment, and the Cdk1-dependent sites indirectly identified in vivo overlap with 238 

verified and conserved Cbk1 phosphorylation sites. 239 

Ssd1 cold-shock domains are highly conserved in dikarya 240 

and mucoromycota 241 

We next examined the domain conservation patterns of Dis3L2/Ssd1 domains (Figure 242 

3). We computed pairwise percent amino acid identity in the trimmed MAFFT 243 

alignments for CSDs 1 & 2 (ScSsd1 338-659) and the RNII domain (ScSsd1 689-1014), 244 

shown in Figure 3 in the same sequence order as the tree in Figure 2B. The CSDs are 245 

highly conserved within saccharomycota, pezizomycotina, and basidiomycota, and quite 246 

highly conserved between these clades. CSDs are much less well conserved in basal 247 

fungi, metazoa and amoebozoa, contrasting with the higher conservation of RNII 248 

domains in these Dis3L2 nucleases. By contrast, the RNII domains are well-conserved 249 

within active-signature nucleases in the basidiomycota, with the exception of 250 

pseudonucleases in Malassezia. 251 

These results may explain why previous reports focusing on nuclease activity in the 252 

RNII domain have argued that S. cerevisiae lacks a Dis3L2 homolog (Malecki et al. 253 

2013; Lubas et al. 2013), as the active site region of the RNII domain is particularly 254 

diverged. By contrast, phylogenetic analysis and conservation of the CSDs place Ssd1 255 

unambiguously as the least-diverged homolog of Dis3L2 in Saccharomycotina. 256 
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Ssd1 has a conserved role in cytokinesis in the 257 

basidiomycete yeast Cryptococcus neoformans 258 

To examine conservation of function associated with conservation of features between 259 

ascomycota and basidiomycota, we analysed the Ssd1/Dis3L2 homolog in the 260 

basidiomycete yeast C. neoformans. CnSsd1 is of interest because it retains a nuclease 261 

active site signature but also has features related to inactive Ssd1 homologs (nuclear 262 

localization signal, Cbk1 docking and phosphorylation sites). We used the 263 

ssd1∆/CNAG_03345 ORF deletion from the Madhani laboratory deletion collection in 264 

the H99 background (Chun and Madhani 2010). Previous analysis of ssd1∆ found a 265 

slight growth defect, but no impact on yeast-phase morphogenesis (Gerik et al. 2005); 266 

we were able to replicate these findings during yeast phase growth in rich medium (data 267 

not shown). C. neoformans display two different morphologies: a yeast-phase budding 268 

phenotype and a much larger, polyploid “titan” morphology (>10 μm), that is associated 269 

with aneuploidy and virulence (Zaragoza and Nielsen 2013; Zhou and Ballou 2018). In 270 

vitro titan induction of wild type cells (SSD1) yields a mixed population of both yeast-271 

phase and titan cells (Figure 4A) (Dambuza et al. 2018). Under this condition, the ssd1∆ 272 

strain shows defects in cytokinesis specifically in titan cells (Figure 4A). Among ssd1∆ 273 

cells, the average cell diameter was roughly 2 μm greater than SSD1 cells, and the 274 

majority of mother cells >10μm had 2 or more daughters associated with the bud neck 275 

(p<0.0001, Mann-Whitney U test; Figure 4B). We observed no morphological or growth 276 

defects in yeast-phase cells that are also present during titan induction (Figure 4A). 277 

Our observation suggests a conserved role of CnSsd1 in cytokinesis, but that is either 278 

specialised to polyploid titan morphology, or that is redundant with other regulators 279 

during yeast-phase growth. These findings are consistent with those of Hose et 280 

al. showing that loss of ScSsd1 function is lethal for aneuploid cells but not euploid cells 281 

(Hose et al. 2020). Overall, the data suggest that these conserved functions are not 282 

related to nuclease activity, but may instead be connected to Cbk1 regulation. The Cbk1 283 

kinase is required for cytokinesis from yeast-phase growth in C. neoformans (Walton, 284 

Heitman, and Idnurm 2006), and we speculate that this reflects Cbk1-mediated 285 

regulation of RNA binding by Ssd1. 286 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2020. ; https://doi.org/10.1101/2020.07.30.229070doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.30.229070
http://creativecommons.org/licenses/by/4.0/


 11

Evolution of an inactive RNA-binding protein from an 287 

ancestral nuclease via a bifunctional intermediate 288 

Our work suggests a scenario where an ancestral Dis3L2 nuclease evolved a second 289 

RNA-binding function in a common ancestor of dikarya and mucoromycota. This 290 

ancestral fungus was likely developing a multicellular lifestyle involving spatially 291 

extended hyphal growth (Kiss et al. 2019). Given the reported role of modern-day Ssd1 292 

homologs in mRNA localisation and translational control, we speculate that this role was 293 

played by Ssd1 in the ancestral hyphal fungus. 294 

Nucleases can display weak RNA binding activity on surfaces distal to the active site, as 295 

a means of increasing their affinity for substrates. These additional sites can adapted 296 

during evolution, leading to bifunctionality in these enzymes, which can be followed by 297 

loss of the nuclease activity. Our results show multiple independent losses of nuclease 298 

activity in fungal homologs of Dis3L2, subsequent to the emergence of a conserved 299 

function of the cold-shock domains. The opisthokont exosome is a more extreme 300 

example, where 6 core PH nuclease-like proteins have all lost activity compared with 301 

the archaeal exosome and bacterial PNPase (Houseley and Tollervey 2009). These 302 

core proteins are pseudonucleases with a role in RNA binding. Nuclease activity in the 303 

opisthokont exosome is now restricted to the Dis3/Rrp44 subunit, or to the homologous 304 

Dis3L1 subunit of the metazoan cytoplasmic exosome (Staals et al. 2010; Tomecki et 305 

al. 2010). Even there, the PIN domain of Dis3 is an active endonuclease yet the PIN 306 

domain of Dis3L1 lacks nuclease activity while ensuring Dis3L1 binds to the core 307 

exosome as a “pseudonuclease domain”. Thus, pseudonucleases are a common 308 

feature of complexes that bind and regulate RNA. 309 

Although the evidence is unambiguous that RNII domains lacking catalytic D residues 310 

are inactive, proteins that retain these residues are not necessarily active, as access to 311 

the active site could be blocked by other means. For example, active site residues might 312 

be retained in inactive enzymes, where access to the active site is blocked by mutations 313 

that occlude the RNA binding channel. The strong conservation of the active site and 314 

RNII domain in some clades, such as most basidiomycota, argues that retained 315 

nuclease activity is likely in these clades. Future experiments will have to address if 316 
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diverged Dis3L2 homologs are active nucleases in vivo or in vitro, and if the nuclease 317 

activity is required for wild-type cell growth. 318 

Lastly, we note that the canonical nuclease function of Dis3L2s requires its canonical 319 

substrates: RNAs that have poly(U) tails added by terminal U-transferases such as S. 320 

pombe cid1 and cid16, and human TUT1, TUT4, TUT7 (Yashiro and Tomita 2018). In 321 

the absence of terminal U-transferase activity, there would be few poly(U)-tailed 322 

substrates, removing selective pressure to retain Dis3L2’s terminal U-targeted nuclease 323 

activity. In this context, a bifunctional RNase/RBP would be unconstrained to evolve into 324 

a monofunctional RNA-binding pseudonuclease. Conversely, if terminal U-targeted 325 

nuclease activity were lost, there might be pressure against retaining an active TUTase, 326 

to avoid accumulation of poly(U)-tailed substrates. Supporting the coevolution of Dis3L2 327 

and TUTase enzymes, TUTases homologous to Spcid1/cid16 are present in fungal 328 

clades with active-signature Dis3L2 such as taphrinomycotina, most basidiomycota, 329 

mucoromycota, and chytridiomycota (PANTHER:PTHR12271:SF40; 330 

OrthoDB:264968at4751), but absent from prominent clades lacking active Dis3L2, such 331 

as most saccharomycotina. 332 

Overall, our analysis identifies extant fungal Ssd1 homologs as descendants of the 333 

Dis3L2 family of 3′-5′ exoribonucleases, identifies the CSDs as highly conserved 334 

features across dikarya that are likely to perform conserved functions related to 335 

aneuploidy and cytokinesis, and raises new questions about the interaction of these 336 

domains with client RNAs. 337 
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Figures 350 

351 

Figure 1: Phylogeny and active-site residues for Dis3 family enzymes in opisthokonta 352 

and amoebozoa. A, Phylogenetic tree of Dis3L2 and Ssd1 BLASTp homologs from 76 353 

selected eukaryotes. Subfamilies are indicated in distinct colours: Dis3, Dis3L1, Dis3L2, 354 

Dss1, and amoebozoan RNII-Like proteins (aRNIIL). B, Consensus sequences (amino 355 

acid probability) for the RNII active site in Dis3, Dis3L1, Dis3L2, and Dss1 alignments. 356 
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 358 

Figure 2: Evolution of the Dis3L2/Ssd1 family in fungi and relatives. A, Schematic of 359 

features found in Dis3L2 and Ssd1 family proteins. B, Phylogenetic tree of Dis3L2 family360 

proteins, excluding N-termini aligned to ScSsd1 residues 1-337. Proteins are labeled by 361 

the species name coloured by clade, with a further identifier where there are multiple 362 

paralogs. Note that homologs from taphrinomycotina are in widely separated groups, 363 

e.g. S. pombe Dis3L2 and S. pombe Sts5. C, Features of Dis3L2/Ssd1 family proteins 364 

shown aligned with their position in the phylogenetic tree in B. For example, all 365 

homologs in Saccharomycotina have no active site, a nuclear localisation sequence, 366 

Cbk1 phosphorylation sites and a Cbk1 docking site. See text for details; full information 367 

with sequences, sequence identifiers, feature calculation and feature counts, is in the 368 

supplemental information. 369 

  370 

5

ily 
y 

n 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2020. ; https://doi.org/10.1101/2020.07.30.229070doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.30.229070
http://creativecommons.org/licenses/by/4.0/


 16

371 

Figure 3: Conservation of Dis3L2-family domains in fungi and relatives. Heatmap shows 372 

percent identity of alignments within specific domains CSD1 and CSD2 considered 373 

together, and RNII domain, with darker blues indicating higher conservation. For 374 

example, dark blue patches at top left of CSD1+2 indicate that these domains are highly 375 

conserved within Saccharomycotina, compared to the lighter colours in the 376 

corresponding region for RNII indicating lower conservation. Cladogram and clade 377 

colouring is repeated from figure 2, as these are the same sequences in the same 378 

order. 379 
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 381 

Figure 4: Cryptococcus neoformans Ssd1 is required for cytokinesis from polyploid titan-382 

phase growth but not yeast-phase growth. SSD1 (wild-type strain H99) and ssd1∆ C. 383 

neoformans were grown in titan-inducing conditions as previously described (Dambuza 384 

et al. 2018). A, cells were stained for chitin using 0.1 μg/ml calcofluor white and imaged 385 

using a Zeiss AxioImager at 63x. Scale bar indicates 10 μm. Y indicates representative 386 

yeast cells, T indicates representative titan cells, and arrows indicate cells with 387 

abnormal cytokinesis. Among WT mother cells, none were observed with more than one 388 

bud; among ssd1∆ cells, the majority of mother cells >9μm had 2 or more daughters 389 

associated with the bud neck. B, The diameter of >100 cells was measured and 390 

analysed by Mann-Whitney U test for non-parametric data (p<0.0001). Median diameter 391 

and 95% CI are shown. All cells in 5 randomly selected frames were measured. Data 392 

are representative of three independent repeats but only a single experimental repeat is 393 

shown. 394 
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