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ABSTRACT 

Alternative polyadenylation (APA) causes shortening or lengthening of the 3ʹ-untranslated 

region (3ʹ-UTR), widespread in complex tissues. Bioinformatic tools have been developed to 

identify dynamic APA in single cell RNA-Seq (scRNA-Seq) data, but with relatively low power 

and the lack of interpretability for multiple cell types. To address these limitations, we developed 

a model-based method, scMAPA. scMAPA increases power by building a regression model 

based on a sensitive quantification of 3ʹ-UTR short and long isoforms. By developing a de novo 

simulation platform, we demonstrated that scMAPA shows a markedly better sensitivity (9.5% 

on average) than the previous method with a negligible loss in specificity (0.3% on average). 

scMAPA improves interpretability by modeling the direction and the degree of dynamic APA for 
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each cell type for each gene, while allowing flexibility to control potential confounders. 

scMAPA enables to bring a systematic understanding of APA dynamics in complex tissues in 

human Peripheral Blood Monocellular Cells and mouse brain data.  

 

INTRODUCTION 

The majority of mammalian messenger RNAs contain multiple polyadenylation (pA) sites, such 

as proximal and distal, in their 3ʹ-untranslated region (3ʹ-UTR) 1,2. By transcribing with different 

pA sites, alternative polyadenylation (APA) produces distinct isoforms with shortened or 

lengthened 3ʹ-UTRs. These APA events are widespread in diverse physiological and pathological 

processes such as cancer, viral infection, cardiac hypertrophy, heart failure, muscular dystrophy, 

and sclerosis 3. For example, 3ʹ-UTR lengthening was reported to regulate cell senescence 4 that 

is linked with important biological functions such as cell cycle inhibitors and DNA damage 

markers 5–7. 3ʹ-UTR shortening was reported widespread in cancers 8. We recently identified a 

trans effect of 3ʹ-UTR shortening in TCGA breast cancer data9–11, many of which were further 

validated in wet-bench experiments. However, understanding of their functions is generally very 

limited in most of the processes. To understand the functions of 3ʹ-UTR shortening and 

lengthening in a finer scale, it is critical to consider tissue-specificity of APA events 1,12 

suggesting its role in tissue-specific gene regulation 13. To consider the tissue-specificity, it is 

reasonable to identify APA events in single-cell RNA sequencing (scRNA-Seq) data, since 

scRNA-Seq data allow to investigate transcriptomic dynamics in the single-cell resolution. In 

contrast to scRNA-Seq data, the original RNA-Seq data from a mixture of cells is referred to as 

bulk RNA-Seq data.  
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Several bioinformatic tools have been developed to identify APA events based on RNA-

Seq data. Before scRNA-Seq data became widely available, one of the early developments for 

bulk RNA-Seq data includes Dynamic analyses of Alternative PolyAdenylation from RNA-Seq 

(DaPars) 8. With its case-control design, it has been used to make significant discoveries in 

disease vs. healthy samples8,14. Those methods with the case-control setting, such as DaPars, can 

be extended for scRNA-Seq data consisting of two cell types or clusters. However, those 

methods are not suitable for scRNA-Seq data typically of multiple cell clusters. Recently, several 

tools have been developed for scRNA-Seq data, namely scDAPA15 and scAPA16. However, they 

also come with several limitations to handle the multi-cluster setting of scRNA-Seq data. First, 

although scDAPA takes scRNA-Seq data as input, it identifies dynamic APA in comparison of 

two cell clusters in the data, thus not directly applicable for more than two clusters. On the other 

hand, while scAPA can identify genes with dynamic APA (gene-level identification) in more 

than two clusters using a statistical test (Pearson’s χ2), it raises two challenges for further 

analyses. First, after it identifies each gene with dynamic APA, it does not estimate in which 

clusters the gene undergoes dynamic APA in which direction (3ʹ-UTR shortening or lengthening) 

and how much degree. Second, the test is based on a contingency table that explicitly divides the 

input samples. Thus, scAPA cannot directly control confounding factors when the samples differ 

in multiple aspects. This becomes problematic in studying complex tissues. For example, brain 

transcriptomic dynamics is known to be specific to regions (e.g. cortex and dorsal midbrain) and 

cell types (e.g. neuron and astrocyte) 17–19. Thus, depending on how brain cells are clustered and 

the research question, it may be necessary to identify dynamic APA while controlling either 

brain region or cell type information. To address these challenges and bring a more systematic 

understanding of dynamic APA in scRNA-Seq data, we developed scMAPA that explicitly 
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models 3ʹ-UTR long and short isoforms (those using distal and proximal pA sites, respectively). 

This modeling of scMAPA improves interpretability by introducing a novel layer of analysis 

identifying cell clusters with different patterns of dynamic APA. Combined with the flexibility to 

control confounding factors, scMAPA brings a more comprehensive understanding of dynamic 

APA not only in terms of APA genes, but also clusters with different dynamics of APA for the 

genes.  

With several bioinformatics tools developed to identify APA events in scRNA-Seq data, 

it is necessary to evaluate their performances in simulations where true APA and true non-APA 

genes are tested. However, it has been challenging due to the nature of the tasks. APA detection 

tools based on RNA-Seq alignment density shape perform two steps: 1) quantifying 3ʹ-UTR long 

and short isoforms from the density shape and 2) estimating statistical significance of the bias in 

the long/short isoform proportion. It is difficult to model and simulate the density shape for true 

APA genes, since RNA alignment density shape is most dynamic on the 3ʹ-UTRs. We believe 

that this is partly why current tools use heuristics for the first step and validate the findings 

mainly through the annotated polyadenylated sites8,15,16. On the other hand, it is relatively 

achievable to simulate and test the second step of estimating the statistical significance once the 

long and short isoforms are identified. Also, it is worth evaluating the APA detection tools at this 

step, since the second step largely determines the statistical power of the tools. Motivated by this 

rationale, we develop a simulation platform where the APA detection tools are compared in 

terms of their statistical power. In simulation data of diverse simulation scenarios and biological 

data of different contexts, scMAPA outperforms a previous method both in statistical power and 

interpretability.  
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MATERIALS AND METHODS 

Data sets  

PBMC data. Aligned BAM file and K-means clustering results were downloaded from the 10X 

genomics repository. Only 5 clusters with most cell numbers were used in the analysis.  

Mouse brain data. Aligned BAM file and clustering result of cortex and midbrain dorsal from 

two donors were downloaded from 20. We included only neurons, immune cells, astrocytes, 

oligos, and vascular cells in the analysis. On the data, scAPA previously identified widespread 

dynamic APA events (2,506 (14.8%) with a significant change in pA usage out of 16,942 3ʹ-

UTR peaks). We ran scAPA with the parameters specified in paper 16, and obtained 1,084 

transcripts with significant (B-H P-val < 0.05) dynamic APA. We believe the number difference 

should be due to the difference in the unit of experiments (either change in pA usage or PDUI as 

estimated by DaPars) and of APA events (either 3ʹ-UTR peak or transcript), the version of 

genomes, preprocessing steps, or other parameters that were not described.  

 

scMAPA algorithm 

Estimation of abundance of long/short isoforms. 

For this step, we employed a module of DaPars, a widely used method estimating significance of 

dynamic APA events in the bulk-RNA Seq data between two conditions, such as case and 

control 8. Before estimating significance of dynamic APA between two conditions, it first 

identifies the 3ʹ-UTR long/short isoforms for each gene in each condition. We extended this 

module to estimate abundance of the isoforms for each cell cluster of scRNA-Seq data.  
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Model fitting and APA detection. 

To quantifying 3ʹ-UTR long and short isoforms from the density shape for our computational 

framework, we successfully redesigned an APA detection tool originally developed for bulk 

RNA-Seq, DaPars to solve the following optimization problem:  

(𝑤𝑘𝐿
∗ , 𝑤𝑘𝑆

∗ , 𝑃𝑘
∗) = argmin

𝑤𝑘𝐿
∗ ,𝑤𝑘𝑆

∗ ≥0,1<𝑃𝑘<𝐿
|| 𝑅𝑘𝑖 − (𝑤𝑘𝐿𝐼𝑘𝐿 + 𝑤𝑘𝑆𝐼𝑘𝑃)||2

2  

where 𝑤𝑘𝐿 and 𝑤𝑘𝑆 are the transcript abundances of long and short 3ʹ-UTR isoforms for cell 

cluster 𝑘, respectively. 𝑅𝑘𝑖 = [𝑅𝑘𝑖1, … , 𝑅𝑘𝑖𝑗, … , 𝑅𝑘𝑖𝐿]
𝑇
is the corresponding read coverage at 

single-nucleotide resolution normalized by total sequencing depth. L is the length of the longest 

3ʹ-UTR length from annotation, 𝑃𝑘 is the length of alternative proximal 3ʹ-UTR to be estimated, 

𝐼𝑘𝐿 is an indicator function with L times of 1, and 𝐼𝑘𝑃 has 𝑃𝑘 times of 1 and 𝐿 − 𝑃𝑘 times of 0. 

Using the model of DaPars, we take the optimization of this linear regression model using 

quadratic programming 21. In order to model the relationship between long/short isoform and cell 

type, we build logistic regression for each gene with log-odds of the event that transcript uses 

distal polyA site (having long isoform) as the outcome and cell types as predictors using 

weighted effect coding scheme. When scRNA-Seq data were collected from multiple samples or 

individuals, scMAPA can be easily extended to control the effect of unmatched confounding 

factors by adding them into the regression model: 

ℓ = ln
𝑝

1 − 𝑝
= 𝛽0 + ∑ 𝛽𝑖 ∗ 𝐶𝑖

𝑛−1

𝑖

+ ∑ 𝛽𝑗 ∗ 𝑉𝑗

𝑚

𝑗

 

where 
𝑝

1−𝑝
 is the odds of transcript having long isoform. 𝛽𝑖 and 𝐶𝑖 denote the coefficients and the 

indicator of each cell type, respectively. 𝑛 is the number of cell types. Since one cell type needs 
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to be chosen as reference for model fitting, scMAPA fits the model twice to get the estimates of 

coefficients for all cell types. 𝑉𝑗 and 𝛽𝑗 denote the possible confounding variables and their 

coefficients, respectively. 𝑚 is the number of confounding factors.  

When there is no confounding variable, the likelihood ratio test (LRT) between cell type only 

model and null model is conducted to test the unadjusted effect of cell type, which is equivalent 

to the likelihood ratio chi-squared test of independence between long/short isoforms and cell 

types. With the existence of confounding variables, LRT between full model and confounding 

variables only model is conducted to test the adjusted effect of cell type. P values from all tests 

are further adjusted by the Benjamini–Hochberg procedure to control the false-discovery rate 

(FDR) at 5%.  

Model fitting and APA detection of scMAPA is compatible to >2 peak detection result. When 

only 2 peaks are detected for a gene, a binary logistic regression model would be fitted. When 

more than 2 peaks are detected for a gene, a multinomial logistic regression model would be 

fitted. To the best of our knowledge, since the only current tool that detects >2 peaks is scAPA, 

multinomial logistic regression mode is only compatible with the peak detection result of scAPA. 

LRT test is used to estimate the significance of APA among multiple peaks and cell types 

similarly.  

Identification of cluster-specific 3ʹ-UTR dynamics. 

For the genes where significant APA dynamics are detected, scMAPA further analyses which 

cell type significantly contributes to the APA in which direction within each gene. By using 

weighted effect coding scheme, each coefficient in the logistic regression can be interpreted as a 

measurement of deviation from the grand mean of all cells. This grand mean is not the mean of 
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all cell type means, rather it is the estimate of the proportion of long isoforms of all cells for each 

gene. So, the unbalanced cell population sizes, which are common in scRNA-Seq would not 

affect the accuracy of estimation.  

We use the following two criteria to determine the cluster-specific significant 3ʹ-UTR dynamics:  

First, given coefficients estimated from logistic regression, we use the Wald test to determine the 

p-value of each coefficient. P-values among all genes with significant APA of the same cell type 

are further adjusted by FDR. Then, the absolute coefficient must be greater than ln (2), 

corresponding to a 2-fold change in odds ratio. 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 ≥ ln (2) would be considered as 3ʹ-

UTR lengthening and 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 ≤ −ln (2) would be considered as 3ʹ-UTR shortening. 

3′𝑈𝑇𝑅 𝑙𝑒𝑛𝑔𝑡ℎ𝑒𝑛𝑖𝑛𝑔 {
𝐹𝐷𝑅 ≤ 0.05

𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 ≥ ln (2)
                   

3′𝑈𝑇𝑅 𝑠ℎ𝑜𝑟𝑡𝑒𝑛𝑖𝑛𝑔 {
𝐹𝐷𝑅 ≤ 0.05

𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 ≤ −ln (2)
 

 

Simulation 

First, we used Splatter, a widely known scRNA-Seq simulator, to simulate the cell-level count 

matrix, which acts as the base of synthetic data. Splatter was trained by unfiltered mouse brain 

data and set to generate count matrices containing 5000 genes and 3000 cells. The matrix then 

collapsed to 5 columns, representing the total count of 5 cell groups. We call this 5000 × 5 

matrix as cluster-level count matrix.  

From the analyses of PBMC and mouse brain data, we found that the standard deviation of PDUI 

(percentage of distal polyA site usage, which is equivalent to the proportion of long isoforms) of 

each gene could act as a classifier of APA gene and non-APA gene. Based on that, the standard 
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deviation of PDUI for APA genes in synthetic data is estimated by calculating the mean of 

standard deviations of PDUI from APA genes detected by both scMAPA and scAPA from 

mouse brain data. Similarly, the standard deviation of PDUI for non-APA genes was estimated 

by calculating the mean of standard deviations of PDUI from genes identified as non-APA by 

both scMAPA and scAPA. With the estimated standard deviations, a PDUI matrix with the same 

size (5000 × 5) as the cluster-level count matrices was generated. Each row of the PDUI matrix 

has a standard deviation equal to either estimated standard deviation for the APA gene or non-

APA gene. This is achieved by centering 5 randomly selected numbers from standard normal 

distribution to 0. Then multiply the desired standard deviation to these centered numbers and add 

them to the desired mean. The mean of each row was randomly picked from 0.05 to 0.95. Since 

the estimated 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 values are averaged to 0.19 and 0.009 for the APA and the non-APA 

genes respectively, we generated simulation data with 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 for APA genes in a range 

centered on 0.13 while fixing that for non-APAs at 0.009. The rows representing true APA genes 

were randomly selected. Then, each number in the cluster-level count matrix is divided into the 

count of long isoforms and the count of short isoforms by multiplying and PDUI matrix or (1-

PDUI matrix), respectively. Finally, Pearson’s chi-squared test (scAPA), logistic regression 

model + LRT (model-based scMAPA), Fisher’s exact test (test-based scMAPA) could be applied 

to assess the performance of these three methods. For each repeat of simulation, PDUI matrix is 

regenerated but cluster-level count matrix keeps same for the sake of computational burden. 

Every simulation design was repeated 100 times to derive summarized statistics.  

To examine the impact of experimental design on statistical power to detect significant APA 

genes, we assess the performance of scMAPA and scAPA in the following aspects: 1) To test the 

impact of unbalanced cell populations, the proportion of 5 cell types in the synthetic cell-level 
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count matrices were set to three scenarios with different distribution of cell type populations: 

(20%, 20%, 20%, 20%, 20%), (30%, 17.5%, 17.5%, 17.5%, 17.5%), and (50%, 12.5%, 12.5%, 

12.5%, 12.5%). 2) To test the impact of the proportion of true APA genes, we set three levels of 

true APA proportions, 5%, 10%, and 20%. 3) To test the impact of the extent of APA dynamics, 

instead of using mean of standard deviations, we set the standard deviations of true APA genes 

in the simulated PDUI matrix to 15 equally spaced sequence of numbers between the first 

quartile and the third quartile of standard deviations estimated from APA genes in mouse brain 

data. In total, there were 9 scenarios, corresponding to 9 combinations of factors 1) and 2). When 

testing factor 3), we chose balanced cell type proportion (0.2, 0.2, 0.2, 0.2, 0.2) and 10% true 

APA genes.  

 

Application on PBMC and mouse brain data 

Model-based scMAPA.  In the application on PBMC and mouse brain data with only cell type as 

independent variable, only genes with sum CPM of all cell types greater than 10 and expression 

detected in at least three clusters were kept. In the application on mouse brain data with cell type 

and tissue type as independent variables, we kept genes detected in at least three cell types where 

in each cell type, it must be detected in both tissue types. 

Test-based scMAPA. Instead of using logistic regression to build a model. We employed Fisher’s 

exact test on each pairwise comparisons (e.g. 10 comparisons for 5 clusters). P-values from all 

comparisons were adjusted by Benjamini–Hochberg procedure. Significant APA genes were 

defined by having at least one adjusted P-value less than 0.05 among all pairwise comparisons.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2020. ; https://doi.org/10.1101/2020.07.30.229096doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.30.229096
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

scAPA. scAPA was ran with default parameters and intronic regions omitted. The genes with 

CPM less than 10 were filtered out.  

 

RESULTS 

Alternative Polyadenylation identification in multi-cluster setting of single-cell RNA-Seq 

data (scMAPA) 

To increase power and enhance interpretability in detecting dynamic APA in scRNA-Seq data, 

we developed scMAPA. To increase power in the two steps explained above, scMAPA employs 

a sensitive quantifier of 3ʹ-UTR isoforms and build a regression model respectively. In step 1, 

given the input scRNA-Seq data and the cell cluster definition, scMAPA first divides the aligned 

read data by the cell cluster, which we refer to as cluster-bulk data. Then, in each cluster-bulk 

data, scMAPA estimates the abundance of 3ʹ-UTR long and short isoform of genes using linear 

regression and quadratic programming21 implemented in DaPars8. DaPars demonstrated its 

sensitivity in quantifying 3ʹ-UTR long and short isoform in multiple analyses8,9,22. In step 2, 

scMAPA enhances its power by explicitly modeling the relationship among the ratio of the 

long/short isoforms, the cell cluster identity, and other possible confounding factors in logistic 

regression (see Methods). In comparison to previous methods only identifying genes with 

dynamic APA (gene-level identification), scMAPA introduces a novel layer of analysis, 

identifying clusters where the APA event occurs in different direction (3ʹ-UTR shortening or 

lengthening) and in different degree (see Methods, Fig. 1A, B). Since this step will identify the 

clusters with different APA patterns for the gene, it is called gene-cluster-level identification.  
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To assess the impact of the modeling, we developed another approach based on the same 

module of DaPars, termed test-based scMAPA. Based on the estimates of the long/short isoforms 

in each cluster-bulk data, test-based scMAPA tests independence of the isoforms in all pairwise 

comparisons of the clusters. Finally, it defines significant APA genes if they pass significance 

test in any pair of the clusters. To distinguish from test-based scMAPA, we will refer to 

scMAPA with regression model as model-based scMAPA. All the tests used FDR (B-H) < 0.05 

in the subsequent analyses.  

 

scMAPA identify true APA events with an enhanced statistical power 

To compare statistical power of scMAPA (S. Fig. 1), we first considered two previous methods 

for scRNA-Seq data, scAPA and scDAPA. However, scDAPA assumes case-control setting, so 

cannot be directly tested in the multi-cluster setting. Thus, we will compare two versions of 

scMAPA (test- and model-based) only to scAPA in the simulation data generated as follows. We 

first generated the gene expression matrix of 5,000 genes over 3,000 cells in 5 clusters using 

Splatter 23 by estimating the parameters from mouse brain data consisting of 5 main cell types 

collected from brain cortex and dorsal midbrain 20. Then, we determined the standard deviation 

of the 3ʹ-UTR long/short isoform proportion across the clusters separately for genes with 

dynamic APA (APA genes) and non-APA genes. Based on the long/short isoform proportion and 

the gene expression values, we generated abundance of long and short isoforms (see Methods) 

for each gene in each cluster under different simulation scenarios. The three simulation scenarios 

vary three factors: 1) standard deviation (SD) of the isoform proportion values across clusters 

(𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝), 2) number of APA genes, and 3) distribution of cell cluster size.  
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In the first scenario, we varied only the first factor, SD of the isoform proportion values 

across clusters (𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝), for APA genes while fixing i) 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 for non-APA genes to be 

the same across the clusters, ii) the number of APA genes to be 500 (10 % of the total genes) and 

iii) the uniform distribution of cluster size (20% of the cells in each cell group). This scenario is 

motivated by our analysis as follows. In the mouse brain data, we selected the APA genes that 

were identified by both scAPA and model-based scMAPA. Then, we estimated their 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 

values. We did the same for non-APA genes. We found that 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 is significantly (p value < 

2.2×10-16) higher in APA genes than in non-APA genes (S. Fig. 2A), indicating that the 3ʹ-UTR 

long and short isoform proportion values spread more drastically across the clusters in APA 

genes than in non-APA genes. On the simulated APA genes and non-APA genes with 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 

values separately estimated from mouse brain data (see Methods), we ran the statistical tests 

employed by scMAPA (a logistic regression model + Likelihood ratio test for model-based or 

Fisher’s exact test for pairwise) with scAPA (Pearson’s χ2) (Fig. 2A). The result shows that the 

statistical components of scMAPA identify more true APA genes than that of scAPA in all 

simulated 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 values. Especially, the sensitivity of scMAPA is around 20% higher than 

that of scAPA except in very high 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 values (e.g. 0.18), showing that statistical 

components of scMAPA are more sensitive at identifying subtle dynamic APA. Since all three 

methods perform equally good at identifying true non-APA genes in simulated 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 values 

(scAPA 0.26% higher than model-based scMAPA and 0.33% higher than test-based scMAPA on 

average, Fig. 2B), scMAPA, either model-based or test-based, outperforms scAPA overall. In the 

second scenario, we varied the number of true APA genes and the distribution of cell cluster size 

simultaneously while fixing 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 values for APA and non-APA genes (see Methods). With 

500 (10% of the total genes) true APA genes, the statistical components of scMAPA consistently 
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outperform that of scAPA in all three cluster size distributions (a: 20% of the cells for all 

clusters, b: 50% for one and 12.5% for all the others, and c: 30% for one and 17.5% for all the 

others) (Fig. 2C) with a slight loss of specificity (Fig. 2D). This trend holds true with 250 and 

1,000 true APA genes simulated (S. Fig. 2B, C, D, E). Together, the statistical components of 

scMAPA identify true APA events with an enhanced statistical power compared to that of 

scAPA.  

 

The enhanced statistical power of scMAPA facilitates more detailed understanding of APA 

dynamics 

To compare the performance as a whole, we ran all three methods on the public data generated 

from 10x Chromium scRNA-Seq experiment on human Peripheral Blood Monocellular Cells 

(PBMC) (https://www.10xgenomics.com/, 10k PBMCs from a Healthy Donor in v3 chemistry). 

PBMCs are parts of the immune system critical to cell-mediated and humoral immunity, 

including T-Cells, B-Cells, monocytes and NK-Cells. Together with the definition of five cell 

clusters available in the 10x database as input, model-based scMAPA identifies dynamic APA 

genes distinctive to those of scAPA (31.3-fold less in common than unique findings combined, 

Fig. 3A). To test whether this result is due to scMAPA’s high statistical power or high false 

positive, we inspected the APA genes and non-APA genes identified by scMAPA and scAPA. 

With the proportion of the long/short isoforms across clusters (𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝) as an indicator of APA 

heterogeneity across cluster, APA genes by scMAPA show significantly higher 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 than 

those by scAPA (p value < 2.2×10-16, Fig. 3B). PBMCs are known for extreme heterogeneity 

partly due to its nature being a mixture of different cell types 24,25. Since this heterogeneity likely 
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also affects the APA level, we believe that there should be APA genes with high 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝  

values. Further, our simulation showed that scAPA is not as sensitive as scMAPA to identify true 

APA genes in a wide range of 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 values (0.06 to 0.18, Fig. 2A). Since this range 

coincides with the range of 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 values where scMAPA found much more true APA genes, 

we believe that more findings of scMAPA in the PBMC data are attributable to its greater 

sensitivity, not high false positive.  

To demonstrate biological implications brought by the high sensitivity of scMAPA, we 

ran Ingenuity Pathway Analysis (IPA) on 5,192 and 162 APA genes identified by scMAPA and 

scAPA respectively. While 500 IPA “Disease & Function” terms are significantly enriched (B-H 

P-Val < 0.05) for scMAPA APA genes (S. Table 1), 82 terms were enriched (B-H P-Val < 0.05) 

for scAPA APA genes (S. Table 2). Although this difference of the number of enriched terms is 

expected due to the difference of the number of input genes, it is interesting to note that only 

scMAPA APA genes include 14 terms with keyword “hemato” (Fig. 3C). Those terms are with 

additional keywords representing important biological function: 5 with “hematopoiesis”, 

“development” or “differentiation”, 5 with “cell death” or “apoptosis”, 4 with “cancer” or 

“neoplasm”. This result shows that scMAPA will help elucidate dynamic APA contributing to 

those important functions in hematology.  

 Further analyses attribute some of the scMAPA sensitivity to the underlying model. Since 

both of the scMAPA versions (model- or test-based) use DaPars modules to quantify 3ʹ-UTR 

isoforms, they identify a high overlap of significant APA genes (6.5-fold more in common than 

unique findings combined, Fig. 3D). However, model-based scMAPA uniquely identifies 13.5-

fold more significant APA genes than test-based scMAPA’s unique identification. For example, 

model-based scMAPA uniquely identifies Myocyte Enhancer Factor 2D (MEF2D) with 
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significant dynamic APA (B-H P-val < 0.05), as the RNA read density on the leftmost (the last 

3ʹ-UTR region) part of the backward stranded gene is 1.73-fold higher in cluster 4 vs. cluster 1 

(Fig. 3E). The MEF2D transcription factor has essential roles in diverse biological conditions 

including blood and immune cell development26 with its alteration implied for blood disorders 

(e.g. 27–29). Since different proportions of the long and short 3ʹ-UTR isoforms characterize certain 

pathological conditions, e.g. glioblastoma multiforme vs. normal brain tissues 30, we believe that 

the different proportion of the isoforms in cluster 4 vs. cluster 1 is associated with the different 

functions of the clusters. For 672 other APA genes uniquely identified by model-based scMAPA 

(e.g. PECAM1 in S. Fig. 3), our manual inspection suggests that the corresponding significance 

estimation module (regression + LRT) detects such difference in RNA alignment density in the 

3ʹ-UTR with more sensitivity than test-based scMAPA for real biological data.  

 

scMAPA estimates multiple clusters for significant APA events 

Model-based scMAPA has a novel layer of dynamic APA analysis not available in scAPA and 

scDAPA, identifying cell clusters with different patterns of dynamic APA (Fig. 1B). To do this 

for the genes identified with dynamic APA, we first identified such genes in mouse brain data 

(cortex and dorsal midbrain)20 using scMAPA. Among 6 cell types defined in the data, we 

selected five main cell types with large sample size: neurons, astrocytes, immune cells, 

oligodendrocytes and vascular (see Methods). Across the five cell types, scMAPA identified 

2,682 (35.5%) significant dynamic APA out of 7,560 transcripts expressed in > 3 cells and of 

which the sum of CPM > 10 across cells (S. Table 3). Our result is consistent with the report of 

scAPA on the same data (2,506 transcripts reported with significant dynamic APA). In the gene-

level identification, model-based scMAPA identified significant APA genes in a high overlap 
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with test-based scMAPA (6.5-fold more in common than unique findings combined, Fig. 4A), 

distinct to scAPA (8.2-fold less in common than unique findings combined, Fig. 4B), consistent 

with the PBMC data analysis. 

On the significant APA genes returned from the gene-level identification, we ran the 

gene-cluster-level identification module of scMAPA that estimates the coefficients representing 

the degree and the direction of APA events in each cluster. Running hierarchical clustering on 

the resulting coefficients by cell type, we found that immune cells and neuron cells are most 

distinguished from the other cell types (Fig. 4C). While this finding supports the previous 

finding of scAPA that neuronal cells and brain immune cells are most different in the APA 

pattern 31, scMAPA uniquely identified a distinct tendency of either 3ʹ-UTR shortening or 

lengthening in each cell type (Fig. 4D). Neuron cells are characterized with 3ʹ-UTR lengthening, 

while immune and vascular cells are characterized with 3ʹ-UTR shortening. This tendency not 

only reiterates the reported dominance of 3ʹ-UTR lengthening in neuron cells 32–35, but also 

shows how the cell type specificity of the APA landscape1,12 actually appears in mouse brain. To 

understand the functional implication of the cell type specificity, we selected APA genes (3ʹ-

UTR shortening or lengthening separately) uniquely identified in each cell type. By running 

g:Profiler 36 on them, 3ʹ-UTR shortening or lengthening together, we identified significantly 

enriched terms (B-H p-val. < 0.05, S. Table 4) for each cell type. In either GO biological process 

(BP) or cellular component (CC), several enriched terms suggest that the APA genes are 

involved in the biological functions unique to each cell type. For example, APA genes unique in 

neuron cells are enriched for 3 GO cellular component (CC) terms with keyword “endoplasmic 

reticulum” and 1 with “myelin sheath”. Neuronal cytoplasm embeds various types of organelles, 

a major component of which is endoplasmic reticulum. Also, the myelin sheath is a lipid that 
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wraps around nerve fibers and serves to increase the speed of neuronal electrical communication. 

So, APA genes’ enrichment for “endoplasmic reticulum” and “myelin sheath” cellular 

components suggests that dynamic APAs add another dimension of regulation to maintain 

complex endoplasmic reticulum and myelin sheath biology in neurons. For example, CDC42 is 

known to affect myelin stabilization 37. Its significant 3ʹ-UTR lengthening found only in neurons 

suggests that CDC42 may play its roles partly in association with the APA signal. Quite 

strikingly, the GO terms with keyword “endoplasmic reticulum” did not come up in other cell 

types except oligodendrocytes. Since oligodendrocytes must synthesize an enormous amount of 

myelin membrane proteins, cholesterol, and membrane lipids through the secretory pathway, 

particularly the homeostasis of the endoplasmic reticulum 38, we believe that dynamic APA helps 

facilitate the specific biological functions of myelin formation involving the endoplasmic 

reticulum. Since this APA signal is independent of the expression information of the genes (S. 

Fig. 4A, B, C, D, E, F), the results suggest that the dynamic APA plays biological roles to 

differentiate the cell types in an independent manner on expression signals. 

 

scMAPA controls confounding factors  

Model-based scMAPA enables to control confounders. Confounding arises when cells are 

affected by the factors that are not a part of the research hypothesis under investigation. In that 

sense, it is often important to consider confounders in the scRNA-Seq data analysis where 

multiple factors affect the molecular dynamics of individual cells differently. To demonstrate the 

effect of such a consideration, we first split mouse brain scRNA-Seq data by both cell type 

(neurons, immune cells, astrocytes, oligos, and vascular cells) and brain region (cortex and 

midbrain dorsal) information, since these two factors are non-ordinal categorical variables that 
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are addressed usually by splitting data. In the resulting cluster-bulk RNA-Seq data, scMAPA 

identified 1,018 transcripts with significant dynamic APA (S. Table 5) with all the other 

parameters same as previous. Note that the previous run of scMAPA, based on the cluster-bulk 

data split only by cell type, identified 2,682 APA transcripts (S. Table 3). Since the runs differ 

only in how the data are divided, it is reasonable to see a high overlap between the runs (the left 

Venn diagram in Fig. 5A). Using the run with the further split as reference, we ran another 

scMAPA that considers a confounder variable for brain region, identifying 881 transcripts with 

significant dynamic APA (the right Venn diagram in Fig. 5A, S. Table 6). Comparing to the 

dynamic APA transcripts in the reference, 163 transcripts are left representing the association 

caused by the confounding effect of brain region. To check if they are indeed associated with 

brain region, we ran Ingenuity Pathway Analysis (IPA) upstream regulator analysis on the 108 

and 682 genes corresponding to the 163 and 881 transcripts, respectively (region-associated and 

type-associated APA genes respectively, S. Table 7). Since the enrichment significance would 

represent how statistically confident particular IPA upstream regulators regulate the input genes, 

we hypothesized that the region-associated APA genes are more enriched for the IPA upstream 

regulators that play region-specific functions. We found that the 5 IPA upstream regulators more 

enriched for the region-based APA genes support our hypothesis (Fig. 5B). For example, 

NUAK1 is heavily involved in the development of a specific mouse brain region, the cerebral 

cortex39 likely by targeting downstream target genes. Also, TAF1 also regulates downstream 

genes in regulating the morphology and function of mouse brain regions, the cerebellum and the 

cerebral cortex40. Our result shows that the target genes undergo dynamic APA in a region 

specific manner. Since this data were collected from mouse brain regions including the cortex, 

these results collectively show the contribution of dynamic APA specific to the cortex region. 
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Since these results are unique findings of scMAPA due to its model-based property, they 

demonstrate the importance of the confounder consideration and, thus, highlight a unique 

contribution of scMAPA.  

 

DISCUSSION 

APA is a type of post-transcriptional regulation emerging as an important layer for 

transcriptomic diversity in physiological and pathological conditions. With the cell type 

specificity 1,41, there have been a couple of computational methods identifying APA events in 

scRNA-Seq data. However, we realized the need for improvement for better statistical power and 

cell cluster-wise interpretation. In this work, we bring the improvement in three major ways. 

First, we developed scMAPA that identifies genes with significant APA events (gene-level 

identification) with a better sensitivity than the previous method. Second, we devised a de novo 

simulation framework where an essential part of the APA detection methods, the statistical 

component, can be objectively compared. Although scMAPA consistently outperforms the 

previous method, it is important to note that this result does not necessarily imply that scMAPA 

would outperform scAPA as a whole, since this simulation does not cover the first step of the 

methods of quantifying 3ʹ-UTR long and short isoforms. Third, we enable a new type of APA 

analysis in multi-cluster setting, identifying multiple clusters in which each gene shortens or 

lengthens the 3ʹ-UTRs with significance (gene-cluster-level identification). To demonstrate these 

improvements, we used simulation data of various simulation scenarios and biological data of 

different biological contexts (human PBMC and mouse brain data).  
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Another contribution of this work is the decomposition of the APA detection algorithms 

into two steps: quantifying 3ʹ-UTR long/short isoforms and estimating statistical significance of 

the isoform proportion. This decomposition brings out two advantages for further development 

of scRNA-Seq APA detection tools. First, it enables to compare the statistical power of various 

APA detection methods step by step, which establishes our simulation framework. Second, 

although scMAPA currently utilizes the DaPars module for the isoform quantification, it can 

easily adapt other pairwise APA detection methods to carry out the step. This implies that 

scMAPA can improve simply by replacing the DaPars module with other tools with a better 

sensitivity whenever such tools emerge.  

Currently, both the simulation platform and scMAPA have limitations. First, our 

simulation platform does not cover how APA detection tools quantify 3ʹ-UTR long/short 

isoforms from RNA alignment density information. However, it is critical to evaluate efficiency 

of the step to evaluate the tools in totality. Secondly, we studied scRNA-Seq data of 5 cell 

clusters at most, partly because many scRNA-Seq data have around that number of main cell 

types investigated. It is important to study performance of both scMAPA and our simulation 

platform in scRNA-Seq data with more than 5 cell clusters. Thirdly, scMAPA, like other 

scRNA-Seq APA detection tool, bases its identification on the pooling of scRNA-Seq data with 

respect to cell clusters that we call bulk RNA-Seq data. To study the APA dynamics in the single 

cell resolution, much advance is needed both in the biochemistry and bioinformatics techniques. 

One of our main tasks for future research is to study the potential of the current chemistry of 

scRNA-Seq data (e.g. version 3 chemistry in 10x Chromium) in detecting dynamic APA in the 

single cell resolution.  
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Figures  

 

Figure 1. Characteristics of APA detection tools for scRNA-Seq data. (A) schematic illustration of 

scMAPA. Bars represent the estimated abundance of 3ʹ-UTR shortening (left) and lengthening (right) 

isoforms in each cluster-bulk data. The black bars on the bottom represent the grand mean of all 

long/short isoforms across the clusters. (B) table showing the capability of the scRNA-Seq APA 

detection algorithms for the corresponding step. The green checkmarks indicate the full capability and 

the red checkmark for scDAPA at Step 3 indicates a partial capability in that it is designed for two-

cluster, not multi-cluster setting.  
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Figure 2. Performance assessment using simulated data. With fixed number of true APA events (500 

out of 5000) and uniform distribution of cell cluster size (600 cells in each cell type), (A) sensitivity 

and (B) specificity were plotted against varying degree of standard deviation (SD) of PDUI values 

across clusters (𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝) for true APA genes. With fixed number of true APA events (500) and SD 

values (0.127 for true APA genes and 0.009 for non-APA genes), (C) sensitivity and (D) specificity in 

scenarios with different distributions of cell cluster size: (20%, 20%, 20%, 20%, 20%) for scenario a, 

(30%, 17.5%, 17.5%, 17.5%, 17.5%) for b, and (50%, 12.5%, 12.5%, 12.5%, 12.5%) for c. 
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Figure 3. Performance assessment of scMAPA and scAPA using PBMC data. (A) Venn diagram of 

significant APA genes detected by scMAPA and scAPA. (B) Frequency polygon plot shows the 

distribution of standard deviations (SD) of PDUI values across clusters (𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝) for significant 

APA genes. (C) Bar plot shows that the significant APA genes identified by scMAPA is significantly 

enriched with “hemato”-related “Disease & Function” IPA terms. The yellow line represents the 

number of APA genes that fall into molecule list of each term. The blue bar represents the -log10(p 

values) from enrichment test. Terms are colored based on the additional associated keyword: red for 

neoplasm/cancer, blue for development/hematopoiesis, green for cell death/apoptosis. (D) Venn 

diagram of significant APA genes detected by model-based and test-based scMAPA. (E) Coverage 

plot of gene MEF2D illustrates the dynamic of APA among the cell clusters. Orange arrows on the 

bottom indicate the polyA site annotated in polyASite database. Bar on top marks the boundary of 3ʹ-

UTR region of MEF2D.  
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Figure 4. Gene-level and gene-cluster-level identification using mouse brain data. (A) Venn diagram 

of significant APA genes detected by scMAPA and scAPA. (B) Venn diagram of significant APA 

genes detected by model-based and test-based scMAPA. (C) Heatmap of coefficients of cell type-

specific APA genes. Coefficients were estimated in logistic regression model. (D) Bar plot shows the 

number of 3’ UTR lengthening and shortening detected in each cell type.  
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Figure 5. Venn diagrams show the significant APA identification by scMAPA before and after 

adjusting for the brain region. (A) In the left venn diagram, the left circle represents the identification 

with the input BAM file split by only cell type. The right circle represents the identification with the 

input BAM file split by both cell type and brain region. Only cell type was considered as the 

independent variable in both runs. With the right circle in the left venn diagram as the reference for 

further process in the right venn diagram (colored in gray), the right circle represents the identification 

with both cell type and brain region as independent variables. (B) Significance of IPA enrichment 

terms most distinguishing region- and type-associated APA genes ranked by the significance 

difference in region-based vs. type-based APA genes.  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2020. ; https://doi.org/10.1101/2020.07.30.229096doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.30.229096
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 
 

Supplemental Figures 

 

 

Supplemental Figure 1. Algorithm overview of bioinformatic tools and statistical methods to 

identify dynamic APAs in scRNA-Seq data 
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Supplemental Figure 2. Performance assessment of significance estimation methods using simulated 

data. (A) shows the frequency of standard deviations (SD) of PDUI values across clusters from mouse 

brain data. Genes identified as significant APA genes by both scMAPA and scAPA were considered 

as APA genes. Genes identified as non-significant APA genes by both methods were considered as 

non-APA genes. (B) to (E) show the performance assessment using simulated data. With fixed 

number of true APA events (250) and SD values (0.1268 for true APA genes and 0.009190 for non-

APA genes), box plots in (B) and (C) show the sensitivity and specificity in scenarios with different 

distributions of cell type populations: (20%, 20%, 20%, 20%, 20%) for scenario a, (30%, 17.5%, 

17.5%, 17.5%, 17.5%) for b, and (50%, 12.5%, 12.5%, 12.5%, 12.5%) for c. Box plots in (D) and (E) 

show the sensitivity and specificity with the number of true APA events set to 1000 and all other 

factors remain same. 
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Supplemental Figure 3. Performance assessment of scMAPA and scAPA using PBMC data. (A) 

Coverage plot of gene PECAM1 illustrates the dynamic of APA among cell types. Orange arrows 

indicate the polyA site annotated in polyASite database. Purple arrow shows the proximal polyA site 

predicted by DaPars. Two numbers above the arrows mark the boundary of 3’UTR region.  
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Supplemental Figure 4. (A) Heatmaps of log(CPM+1) of all cell type-specific APA genes shown in 

Fig 4.D. (B)-(F) Scatter plots show the correlation pattern between APA dynamic and expression of 

genes in Fig 4.C by cell type. X-axis represents coefficients shown in Fig 4.C, Y-axis represents 

log(CPM+1) shown in Fig S3.A. (B) shows the pattern for Astrocytes, (C) for Immune, (D) for 

Neurons, (E) for Oligos, (F) for Vascular cells.  
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S. Table 1. Detailed information of significantly enriched “Disease & Function” terms from 

Ingenuity Pathway Analysis (IPA) analysis on APA genes detected by scMAPA on the PBMC 

data. 

S. Table 2. Detailed information of significantly enriched “Disease & Function” terms from 

Ingenuity Pathway Analysis (IPA) analysis on APA genes detected by scAPA on the PBMC 

data. 

S. Table 3. scMAPA estimates on the 2,682 transcripts with significant dynamic APA in the 

gene level identification of the scMAPA run.  

S. Table 4. Analysis results from g:Profiler on tissue-specific APA events identified by scMAPA 

on the mouse brain data.  

S. Table 5. scMAPA estimates on the 1,018 transcripts with significant APA identified by 

scMAPA. Input BAM file is split by cell type and brain region, but the regression model 

included cell type as the only independent variable.  

S. Table 6. scMAPA estimates on the 881 transcripts with significant APA identified by 

scMAPA. Input BAM file is split by cell type and brain region, and the regression model 

included cell type as the only independent variable and brain region as a confounding factor.  

S. Table 7. IPA analysis result (enrichment p-value) on 108 and 682 genes corresponding to the 

163 region-associated and 881 type-associated APA events.  
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