
 1 

Title: Memory drives the formation of animal home ranges: evidence from a reintroduction 1 

 2 

Authors: Nathan Ranc1,2, Francesca Cagnacci1,2* and Paul R. Moorcroft1* 3 

 4 

1Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, 5 

Cambridge MA02138, USA. 6 

2Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, 7 

Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Italy. 8 

*F. Cagnacci and P.R. Moorcroft and are co-senior authors. 9 

 10 

Corresponding Author: Nathan Ranc (nathan.ranc@gmail.com) 11 

 12 

Abstract 13 

Most animals live in a characteristic home range, a space-use pattern thought to emerge from the 14 

benefits of memory-based movements; however, a general model for characterizing and predicting 15 

their formation in the absence of territoriality has been lacking. Here, we use a mechanistic 16 

movement model to quantify the role of memory in the movements of a large mammal reintroduced 17 

into a novel environment, and to predict observed patterns of home range emergence. We show 18 

that an interplay between memory and resource preferences is the primary process influencing the 19 

movements of reintroduced roe deer (Capreolus capreolus). Our memory-based model fitted with 20 

empirical data successfully predicts the formation of home ranges, as well as emerging properties 21 

of movement and revisits observed in the reintroduced animals. These results provide a quantitative 22 

framework for combining memory-based movements, resource preference and the emergence of 23 

home ranges in nature. 24 
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Introduction 25 

Most animals live in home ranges – areas that are typically much smaller than their movement 26 

capabilities would otherwise allow1. The spatially-constrained nature of animal space-use has 27 

important implications for many ecological processes, including density-dependent regulation of 28 

population abundance2, predator-prey dynamics3, the spread of infectious diseases4, as well as for 29 

the design of conservation strategies5. Home ranges are pervasive throughout the animal 30 

kingdom, suggesting that they may provide fitness benefits in a wide range of ecological 31 

contexts, and originate from general biological mechanisms6. In territorial species, the emergence 32 

of a constrained space-use has been successfully characterized by analytical movement models 33 

based on conspecific avoidance3,7–9. However, a general model for predicting emergent patterns 34 

of space-use is still lacking for animals that form home ranges in the absence of territoriality or 35 

central place foraging. 36 

In recent years, increasing attention has been devoted to the hypothesis suggesting that 37 

home ranges emerge from the foraging benefits of memory10,11. Theoretical studies have 38 

demonstrated the foraging advantages of memory over proximal mechanisms (e.g., area-restricted 39 

search and perception) in spatially-heterogeneous, predictable landscapes12–14. In turn, 40 

simulations have shown that memory-based movements can lead to the formation of stable home 41 

ranges15,16, and to non-territorial spatial segregation between individuals17. However, our 42 

understanding of how memory influences animal movement and resulting space-use patterns in 43 

nature is still in its infancy. 44 

Optimal foraging experiments have provided evidence for the adaptive value of memory. 45 

For example, green-backed fire-crown hummingbirds (Sephanoides sephaniodes) can achieve 46 

substantial energy gains by adjusting their visit frequency to the renewal dynamics of high-47 

quality resources at memorized locations18. At larger spatial scales, mechanistic models based on 48 
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telemetry data have shown that animals are capable of memorizing the location and profitability 49 

of resources19,20. For example, roe deer (Capreolus capreolus) rely on memory, and not 50 

perception, to track the dynamics of resource availability within their home range21. Whether 51 

mechanistic movement models parametrized with empirical data can capture the spatial patterns 52 

of animal home ranges in nature remains, however, largely unanswered.  53 

Most studies of animal home range movements have been conducted on resident animals 54 

whose experience and knowledge of the surrounding environment is already well-developed at 55 

the onset of monitoring19,20,22,23. This is problematic when studying the effects of memory 56 

because animals are utilising knowledge obtained prior to the observation period, which has been 57 

proposed as the reason for discrepancies between memory-based movement model predictions 58 

and observed space-use patterns22. One approach to address this challenge is to examine the 59 

process of home range formation (also referred to as emergence) when animals have been 60 

introduced into a novel environment11, where it can be reasonably assumed that the animals have 61 

no existing memories of the local environment. 62 

In this study, we elucidate the role of memory in the movements of animals by analysing 63 

the process of home range formation of individuals reintroduced into a novel environment. Our 64 

results show how the interplay between memory and resource (landscape attributes) preferences 65 

gives rise to observed patterns of home ranges. Specifically, we fit an individual-based, spatially 66 

explicit movement model to the observed trajectories of European roe deer reintroduced into the 67 

Aspromonte National Park (Calabria, Italy), where the species had previously been extirpated. 68 

This experimental system is ideally-suited to the study of the biological determinants of home 69 

ranging behaviour for three reasons. First, because roe deer were released into a novel 70 

environment, as noted above, the theoretical challenge of how to initialize memory at the 71 

beginning of the simulation is essentially side-stepped. Second, because roe deer are solitary24, 72 
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their movements are expected to be primarily based on individual information rather than group 73 

decision making25. Third, because roe deer population was being re-established, animal density 74 

was low throughout the study, therefore limiting the influence of intraspecific competition on 75 

individual movements and space-use.  76 

Roe deer were fitted with GPS telemetry collars and monitored from their release into the 77 

study area till the collars ceased functioning (n =17 individuals; see Methods). We analysed the 78 

biological processes underlying roe deer movements (n = 17,136 six-hour movement steps) using 79 

a redistribution kernel9,20,26. The model characterizes the probability that a given individual 80 

moves from its current position to any location in the landscape as a function of motion capacity, 81 

and a weighting function including resource preferences and memory. Building up on earlier 82 

work15–17, memory was represented as a bi-component mechanism: a reference memory encoding 83 

long-term attraction to previously visited locations, and a working memory, which accounts for a 84 

short-term avoidance of recently visited locations (for example, due to local resource 85 

depletion15). The dynamics of both memory components are governed by their respective 86 

learning and decay rates, and associated spatial scale. 87 

We hypothesized that the interplay between memory and resources was the primary driver 88 

underlying roe deer movements (H1). To this end, we fitted two competing movement models: (i) 89 

a resource-only model (Mres) in which roe deer movement was only influenced by resource 90 

preferences (which in this case corresponds to landscape attributes such as slope, tree cover and 91 

landcover categories; sensu 27). (ii) a memory-based model (Mmem:res) in which movement was 92 

governed by the interplay between memory and resource preference (sensu 26). Following on our 93 

previous work that examined memory dynamics in an experimental setting21,28, we predicted that 94 

the empirical movement data would provide a higher support to the memory-based model than its 95 
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resource-only counterpart (P1.1). In addition, we predicted that, overall, roe deer would strongly 96 

select for previously visited locations (P1.2). 97 

We further hypothesized that the interplay between memory and resource preferences can 98 

lead to formation of home ranges, as observed in the reintroduced roe deer (Cagnacci et al. in 99 

prep; H2). To this end, we compared the emerging movement and space-use properties of 100 

trajectories simulated from the parametrized redistribution kernels with those from the empirical 101 

roe deer movements. Accordingly, we predicted that, in contrast with the resource-only model, 102 

the simulations from the memory-based model would lead to spatially-constrained movements 103 

(P2.1) with a high prevalence of acute turning angles (P2.2). In addition, we predicted that 104 

memory-based movements would be characterized by a high number of revisitations (also 105 

referred to as movement recursions29; P2.3). Further details on the mathematical formulations of 106 

the redistribution kernel and on the movement simulations can be found in the Methods section. 107 

 108 

Results 109 

Biological drivers of reintroduced roe deer movements 110 

The movement model that included both memory and resource preferences (Mmem:res) had 111 

overwhelmingly stronger support compared to the resource-only model (Mres; ∆log-likelihood = –112 

8684; ∆df = -6; ∆AIC = 17355; p-value < 0.001; Table 1; P1.1 supported). Memory was a key 113 

biological process underlying the movements of reintroduced roe deer (most influential variable; 114 

Table 1; P1.1 supported). The importance of memory was primarily due to the effects of 115 

reference memory (∆AIC = 1278 when working memory was removed, compared to ∆AIC = 116 

17355 when both working and reference memory were removed; see Table 1). With respect to 117 

reference memory, the spatial scale of learning was most influential (∆AIC = 7444 if learning 118 
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occurred only on the visited locations i.e., 𝜆# = ∞), followed by learning rate (∆AIC = 3434 if 119 

learning was immediate i.e., 𝑙#	= 1) and decay rate (∆AIC = 2631 if there was no memory decay 120 

i.e., 𝛿#	= 0). 121 

 122 

Roe deer acquired memories of visited locations, with the learning curve reaching half its 123 

maximum value (i.e., memory = 0.5) after 7.9 days for reference memory (𝑙# = 0.0217	6h-1; see 124 

Fig. 1a for confidence intervals), and after 8.4 days for working memory (𝑙*	= 0.0204 6h-1). 125 

Spatially, information was gained beyond the visited locations: reference memory learning 126 

decayed with distance to half its maximum value at 14.3 m (𝜆#	= 0.0485 m-1; meaning that at 25 127 

m distance, learning was approximately 30 % that of the amount of memory acquired on the 128 

visited spatial location). Working memory learning declined to half its maximum value at 8.1 m 129 

(𝜆*	= 0.0855 m-1; meaning that the learning rate at 25 m distance was approximately 12 % that 130 

of the visited location). Temporally, reference memory decayed with time since last visit with a 131 

half-life (t1/2) of 9.5 days (𝛿#	= 0.0182 6h-1) while working memory decay was nearly 132 

instantaneous (t1/2 < 1 h; 𝛿*	= 0.99 6h-1).  133 

The combined effect of memory dynamics and of the intrinsic component of resource 134 

preference (i.e., the attraction of locations in absence of memory; 𝜀	= 6.94×10-4; Fig. 1b) led to a 135 

very strong selection for previously-visited locations (P1.2 supported). Specifically, the first visit 136 

of a given location resulted in a 31.6-fold increase in its attraction, and a 10.1-fold increase on the 137 

adjacent locations (Fig. 2a). 138 

 Roe deer movements were also influenced by their resource preferences (Fig. 1b; ∆AIC = 139 

304 when resource preferences were null i.e., 𝛽.: 𝛽0 = 0; Table 1). Roe deer preferred 140 

intermediate slopes (Fig. 2b), with peak preference at eight degrees (most influential resource; 141 
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∆AIC = 138 when 𝛽. = 𝛽2 = 0; Table 1). Roe deer preference for tree cover was characterized 142 

by slight qualitative differences between models: preference for intermediate tree cover (a clear 143 

peak at 57%) in the resource-only model, and for intermediate and high levels of tree cover (a 144 

broad peak at 73%) in the memory-based model (Fig. 2c; ∆AIC = 34 when 𝛽3 = 𝛽4 = 0; Table 145 

1). In addition, roe deer strongly preferred reforested areas and avoided agricultural areas (Fig. 146 

3c; ∆AIC = 83 when 𝛽0 = 0 and ∆AIC = 59 when 𝛽5 = 0, respectively; Table 1). For all 147 

evaluated resources, preferences had a lower effect size for the memory-based model than for the 148 

resource-only model (Fig. 1b). 149 

Roe deer motion capacity greatly differed between the two competing movement models. 150 

The resource-only model characterized the movement distances between six-hour relocations as a 151 

heavy-tailed Weibull distribution (shape parameter 𝜅7	= 0.79; decay rate parameter 𝜆7 = 0.0078; 152 

Fig. 1c), with a corresponding mean step length of 147.0 m. In contrast, the memory-based model 153 

indicates a nearly 3-fold larger motion capacity (𝜅7	= 1.02; 𝜆7 = 0.0024) corresponding to a mean 154 

step length = 409.4 m). The value of the shape parameter 𝜅7 being close to one implies that the 155 

step length distribution can be simplified to a negative exponential with a relatively small 156 

decrease in model accuracy (∆AIC = 4 if 𝜅7 = 1.00; Table 1). Step length decay rate was, 157 

however, a highly influential parameter (∆AIC = 4945 when compared with a resource-selection 158 

type movement kernel which assumes that roe deer spatial locations independently of their 159 

proximity i.e., 𝜆7 = 0; Table 1). 160 

 161 

Emergent space-use and movement properties 162 

Most reintroduced roe deer settled into a constrained space (i.e., formation of a home range) as 163 

shown visually by the spatial concentration of their movements (Fig. 3b). The movement 164 
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simulations from the resource-only model were typical of a random walk (technically, an 165 

inhomogeneous random walk due to the effects of resource preferences; Fig. 3a). In contrast, the 166 

memory-based model captured the characteristic space-use behaviour observed in released roe 167 

deer (Fig. 3c; see Supplementary S1 for additional movement trajectories). 168 

The visual differences in patterns of movement behaviour seen in Figure 3 were 169 

characterized and quantified by examining the temporal trends in net squared displacement 170 

(NSD) with time since release (Fig. 4). The resource-only model did not capture the observed 171 

spatially-restricted movements of the released roe deer, with no saturation in the NSDs of 172 

individuals (Fig. 4a), and a linear increase of the mean NSD across individuals (compare the solid 173 

red line on Fig. 4b with the red line and grey shaded area in Fig. 4a). In contrast, the predictions 174 

of the memory-based movement model were consistent with the temporal trends in the observed 175 

movements of the released animals as demonstrated by the occurrence of prolonged plateaus in 176 

the NSD of individual animals (Fig. 4c; P2.1 supported), and the fact that the observed mean 177 

NSD across individuals is within the bounds of the predictions of the memory-based movement 178 

model (compare the solid red line on Fig. 4b with the grey area on Fig. 4c). 179 

Both the resource-only and memory-based models had step length distributions that 180 

closely matched the observations (Fig. 5a,b). The memory-based model more accurately 181 

characterized the observed median step length while the resource-only model better captured its 182 

mean (median step lengths of 55.9, 75.0 and 50.0 m; means of 141.1, 135.2 and 105.5 m for 183 

observed movements, resource-only simulations and memory-based simulations, respectively). In 184 

contrast, the two models differed greatly in their ability to reproduce the observed patterns of 185 

turning angles: the resource-only model showed a uniform circular distribution of turning angles 186 

(Fig. 5c) whereas the memory-based model captured the high density of acute turning angles (in 187 
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the vicinity of −𝜋 and +𝜋), that are characteristic of observed roe deer movements (Fig. 5d; P2.2 188 

supported).  189 

Observed roe deer movement behaviour was characterized by frequent revisits: 33.8% of 190 

the utilized locations (spatial scale = 25 x 25 m) were visited twice or more. The simulations 191 

from the resource-only model, however, had very few revisits – only 4.5% spatial locations were 192 

revisited – leading to a large mismatch with the revisitation patterns of observed trajectories (Fig. 193 

6a). In contrast, the memory-based simulations were characterized by many revisits: 35.2% of the 194 

locations were revisited (P2.3 supported). The revisitation patterns of the memory-based model 195 

were highly similar to those of the observed roe deer movements (Fig. 6b), albeit with a slight 196 

tendency to underestimate the number of locations with few revisits (i.e., less than five), and to 197 

overestimate those with many revisits (especially above 20). Consistent with these patterns in the 198 

number of revisits, the memory-based model also captured the observed patterns of time since 199 

last visit more accurately than the resource-only model (compare Figs 6c and 6d, respectively).  200 

 201 

Discussion 202 

The past two decades have seen remarkable advances in the ability to monitor animal 203 

movements30, and the development of ever more complex and comprehensive mechanistic 204 

movement models. However, our understanding of the underlying biological determinants of 205 

home ranges – the most prevalent space-use pattern observed in animals – has been relatively 206 

limited6,11,31. In this study, we evaluated how memory-based movements can predict the 207 

formation of home ranges in nature by parametrizing a mechanistic movement model with 208 

empirical data from animals reintroduced into a novel environment. We found that an interplay 209 

between memory and resource preferences was the primary process influencing reintroduced roe 210 

deer movements (Fig. 2; H1), and that it led to the formation of characteristic home ranges, as 211 
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observed in the released individuals (Figs 3 and 4; H2; see also Cagnacci et al. in prep). To our 212 

knowledge, this is the first demonstration that a mechanistic movement model parametrized with 213 

empirical movement data can capture patterns of home range formation in a non-territorial 214 

species. 215 

We found that the emergent properties of the memory-based movement model, as 216 

opposed to a resource-only movement model, were realistic and similar to the patterns observed 217 

in the reintroduced roe deer (Figs 3-5). First and foremost, the memory-based simulations gave 218 

rise to spatially-restricted movements, as shown by the saturation of individual net squared 219 

displacement with time since release (Fig. 4). In addition, the model successfully reproduced the 220 

heterogeneity and complexity of observed movement patterns, including long-distance 221 

explorations, multiple areas of concentrated use, and patterns of revisitation (Figs 3 and 6). 222 

Two approaches can be used to study the underlying determinants of animal space-use32: 223 

analyses inferring underlying movement parameters that capture observed space-use patterns i.e., 224 

pattern-oriented3,8,31,33,34, and analyses of individual movement trajectories to parametrise 225 

movement models20,23,35. In this study, we used the latter approach: characterizing the biological 226 

drivers of fine-scale behavioural decisions through the fitting of a mechanistic movement model 227 

to empirical trajectories, and subsequently evaluating resulting predictions of space-use 228 

properties. Although challenging, this approach is appealing because the space-use pattern itself 229 

is not fitted to data, but rather arises as an emergent property from the underlying movement 230 

process32,35. 231 

Previous analyses have shown that memory influences the proximate behavioural 232 

decisions of free-ranging animals19,20,22,23. Our study extends these analyses in three major ways. 233 

First, we show that a movement model operating in a spatially continuous landscape not only 234 

accounts for the observed aggregate (population-level) patterns of space-use, but also yields 235 
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realistic patterns of individual space-use (Figs 3 and 4). Second, our empirical setting of animals 236 

reintroduced into a novel environment allowed us to avoid the problematic issue of how to 237 

initialize memory-based movement models19,20,23 that has been invoked to explain the 238 

discrepancies between predicted and observed space-use patterns22. Third, as we discuss in more 239 

detail below, in addition to space-use patterns, the memory-based movement model captured 240 

several emergent characteristics of empirical roe deer trajectories (Figs 5 and 6). This provides 241 

confidence that the model’s realistic predictions of space-use are arising because the model 242 

closely approximates the key characteristics of individual movement behaviour that underlie the 243 

formation of the home ranges. 244 

Patterns of animal space-use recorded by GPS-telemetry can be viewed as resulting from 245 

a sequence of movement decisions by the animal about how far to move, and in which direction 246 

i.e., sequences of movement distances and turning angles9,36. Our memory-based model was able 247 

to accurately characterize the distributions of both these quantities (Fig. 5). We found that a 248 

realistic, heavy-tailed distribution of step lengths emerged from the combination of a large, 249 

exponentially-weighted motion capacity (that accounts for rare, long steps), and memory-based 250 

attraction (that accounts for the high density of short steps). It has been suggested that 251 

characterizing step lengths with heavy-tailed Gamma or Weibull distributions could improve the 252 

predictive performance of empirically-parametrized movement models20. Here we show that 253 

accounting for memory makes this unnecessary. Furthermore, incorporating the effects of 254 

memory also gave rise to frequent reversals in movement directions (i.e., sharp turning angles) 255 

that closely matched the movement behaviour of released roe deer, even though the underlying 256 

redistribution kernel did not include any form of autocorrelation in movement directions. 257 

Similarly, home ranges are thought to emerge from the revisitation of specific geographic 258 

locations (also referred to as movement recursions29), considered to be the visible manifestations 259 
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of the influence of memory on movements11,29. Our results are consistent with this interpretation. 260 

The resource-only model led to very few revisits, while a revisitation behaviour similar to that 261 

observed in reintroduced roe deer emerged from the memory-based movement simulations (Fig. 262 

6). The memory-based model predicted well the overall distribution of time since last visits, 263 

although it tended to underestimate both short (a day or less) and very long time since last visits 264 

(especially above 100 days) i.e., smaller variance that the observed pattern. The high density of 265 

short-term revisits in observed roe deer trajectories could be the result of daily, local movements 266 

such as an alternation between a foraging ground and a neighbouring area used for shelter37. The 267 

discrepancy observed for long-term revisits could instead be due to an artefact of the data 268 

collection (time since last visit can be overestimated in empirical data if visits occur between two 269 

successive GPS relocations), or could reflect biological factors that are not characterized in the 270 

model formulation (e.g., particular environmental conditions may be exploited through proximal 271 

mechanisms such as perception; see Avgar et al.20 for a cognitive model including perception and 272 

memory). 273 

 274 

Similar to previous studies15–17, we hypothesized that home ranges emerge from the 275 

influence of a bi-component memory process in which reference memory captures the long-term 276 

attraction to previously-visited locations, while working memory accounts for a short-term 277 

repulsion (e.g., to adjust to resource dynamics). However, we found that it was not necessary to 278 

include a bi-component memory to give rise to home ranges. This result contrasts with the patch-279 

to-patch transition model of Van Moorter et al.15, where absence of working memory leads to 280 

repeated utilization of a sole resource patch. In the memory-based movement formulation used 281 

here, an intrinsic component of resource preference ensures that all locations, including those that 282 
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have not been visited, or that have been forgotten (i.e., whose reference memory is zero), have a 283 

non-zero probability of being visited at each time step. 284 

When fitting the movement model to empirical data, reference memory was the most 285 

influential driver of roe deer movement (Table 1). The learning associated to the initial visit of 286 

any given location led to a 31.6-fold increase in its attraction (Fig. 2a), and hence to a substantial 287 

increase in its probability of being revisited in the future. We found that the influence of memory 288 

on movements was very strong despite the learning rate of reference memory being low. 289 

Although, learning was modelled as an exponentially saturating function of experience38,39, the 290 

low value of learning rate effectively meant that learning never approached its asymptote, and 291 

was essentially a quasi-linear function of number of visits. In this aspect, our findings provide 292 

support for the simple memory enhanced random walk formulation proposed by Tan et al.40. 293 

However, in contrast to Tan et al.40, our formulation also includes a spatial scale of learning 294 

parameter, which was strongly supported (Table 1), and implies that roe deer are likely to return 295 

not only to their previously visited locations but also to adjacent areas (Fig 2a).  296 

Reference memory decayed relatively rapidly (half-life of 9.5 days) with time since last 297 

visit. This estimate is relatively consistent with the decay rate reported in a recent experimental 298 

study of roe deer foraging behaviour (half-life of 3.4 days)21, but contrasts markedly with the 299 

negligible decay of spatial memory over several months reported for bison (Bison bison)19 and 300 

woodland caribou (Rangifer tarandus caribou)20. Comparative studies may shed light on whether 301 

the factors underlying the differences in estimated memory decay rates are biological (e.g., 302 

variation in revisitation patterns linked to differences in movement rates and home range sizes), 303 

or methodological (e.g., between-model differences in the formulations of the cognitive 304 

processes).  305 
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Our results were, in contrast, much less sensitive to working memory. Working memory 306 

primarily influenced the duration that roe deer spent at visited locations (i.e., residence time). 307 

Because of its nearly instantaneous decay, the repulsion effect of working memory ceased as 308 

soon as the individual left a visited location. As a result, working memory did not influence the 309 

timing of revisits, which contrasts with predictions derived from theoretical movement 310 

simulations15–17. The probability that roe deer returned to previously visited locations decreased 311 

monotonically with time since their last visit (Fig. 5d), suggesting that a single memory 312 

component (reference memory, in our case) could capture roe deer revisitation patterns. 313 

Altogether, our results did not support the existence of characteristic multi-day revisitation 314 

periodicities, which would be expected if roe deer relied on working memory to optimally adjust 315 

their visits to underlying resource renewal dynamics. Because roe deer are very selective 316 

browsers, able to switch feeding between an important diversity of plant species41,42, it is indeed 317 

unlikely that their foraging behaviour is influenced by short-term dynamics of resource renewal. 318 

In contrast, a bi-component memory process may be more suited to model the foraging behaviour 319 

of species whose resources are concentrated within distinct, continuously-renewing patches such 320 

as grazing lawns in bison43 or geese44.  321 

 322 

In our study, the estimated memory parameters gave rise to a strong attraction to familiar 323 

locations, consistent with published literature in roe deer21,28, and other ungulates19,45. Two main 324 

hypotheses have been formulated for the fitness benefits associated with site familiarity: (i) 325 

improved resource acquisition through the memorization of resource locations and attributes10,15, 326 

and (ii) predator avoidance through the knowledge of fine-scale variations in predation risk and 327 

of escape routes46. Previous work has shown that in roe deer, individuals rely on memory to 328 

efficiently track the spatio-temporal changes in food availability within their familiar 329 
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environment21 but are also prone to elevated predation risk from Eurasian lynx (Lynx lynx) when 330 

outside of their familiar space47. These two benefits of site familiarity are difficult to disentangle 331 

in nature; in our study, both factors may likely have driven the revisitation patterns that 332 

contributed to the emergence of roe deer home ranges.  333 

Our analysis also revealed the resource preferences of roe deer in our study area. First, roe 334 

deer exhibited strong preference for intermediate slope steepness (Fig. 2b). Their avoidance of 335 

flat areas is likely explained by the fact that, in the rugged landscape of Aspromonte National 336 

Park, anthropogenic disturbances such as roads and logging activities48 were concentrated along 337 

valley bottoms, as well as high plateaus. In other ecological systems, these topographic features 338 

have also been associated with elevated predation risk from wolves49. Their avoidance of steep 339 

slopes is consistent with roe deer natural history (long limbs, and short and narrow hoofs not 340 

adapted to climbing), and its unsuitability supported by the occurrence of two mortality cases 341 

linked to falls during the reintroduction project (S. Nicoloso pers. comm.). Second, roe deer 342 

preferred areas of intermediate-to-high tree cover (Fig. 2c), a finding that is consistent with 343 

published literature on roe deer resource selection50–52. Intermediate cover values may indicate 344 

heterogenous environments rich in ecotones, which provide abundant browsing resources53. 345 

Third, we found that roe deer strongly preferred reforested areas with young deciduous trees (Fig. 346 

2d), which is likely because these areas provide both cover and abundant browse42. Fourth, roe 347 

deer avoided agricultural areas (and associated pastures and settlements; Fig. 2d) in agreement 348 

with existing literature50,51. 349 

Despite qualitative similarities between the resource-only and memory-based model 350 

formulations, the effect sizes of resource preference parameters were consistently smaller for the 351 

memory-based model than for the resource-only model (Fig. 1; Fig. 2b-d). In absence of memory, 352 

the relative attraction (and hence probability of use) of equally-distant locations solely depends 353 
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on their respective resource attributes. In contrast, when memory processes operate the relative 354 

attraction is partitioned between two interacting components: resource attributes (i.e., resource 355 

effect), and memory (i.e., site familiarity effect) – thereby reducing the influence of resources per 356 

se. Because animal home ranges ultimately emerge as the revisitation of familiar, beneficial 357 

resources10,15, disentangling the influence of resources from that of site familiarity is challenging 358 

in nature. In particular, where important resource drivers are omitted – either because they are 359 

unknown or because they are not measured – the attraction for familiar areas can be confounded 360 

with attraction for unaccounted resources (i.e., a spurious familiarity effect54). Further progress to 361 

characterize the interplay between memory and resource preferences will be contingent on the 362 

ability to identify and quantify underlying spatio-temporal variation in resource patterns. In this 363 

context, combining mechanistic movement models with in situ experimental resource 364 

manipulations appears a promising way to disentangle the effects of memory from the effects of 365 

resources21,28. 366 

  367 

Connecting animal movement behaviour to space-use patterns and, ultimately, population 368 

dynamics is a long-term challenge that promises to provide a unifying theory for animal 369 

ecology55. In this study, we demonstrated that the interplay between memory and resource 370 

preferences is sufficient to explain the formation of animal home ranges following reintroduction 371 

to a novel environment, and thus contributing to our understanding of the space-use implications 372 

of movement behaviour. The approach utilised here could be expanded to model the 373 

interconnections between movement behaviour and energy acquisition and consumption56, 374 

providing a framework to quantitatively characterize the fitness, and demographic consequences 375 

of animal movement patterns, and space-use57. 376 

 377 
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Methods 378 

Roe deer reintroduction 379 

After being extirpated in most of its southern distribution range during the 19th century, a roe deer 380 

reintroduction project was undertaken by the Aspromonte National Park (AspNP; Calabria, Italy; 381 

Supplementary S2: Fig. S1) between 2008 and 2011. Ninety-two roe deer were captured in 382 

Sienna County (Tuscany, Italy), of which seventy-five were hard-released at four sites in the 383 

south-west portion of the AspNP (47 females and 28 males). The remaining seventeen either died 384 

during translocation or were not genotyped as Capreolus capreolus italicus, the roe deer 385 

subspecies native to the Italian peninsula.  386 

  The AspNP is 640 sq.km and is characterized by the rugged Aspromonte mountain range 387 

peaking at 1955 m a.s.l, and alternating gorges and torrent river valleys. The climate is 388 

Mediterranean with precipitations concentrated in winter, leading to irregular snow cover above 389 

1000 m a.s.l, and dry and warm summers (annual precipitation: 826 mm; temperature: -0.8/5.4°C 390 

in January, 14.9/23.0°C in August; Gambarie, 1300 m a.s.l). The significant topography within 391 

the region gives rise to a diverse vegetation cover58 ranging from temperate mountain forests 392 

(e.g., European beech Fagus sylvatica, silver fir Abies alba and alder Alnus sp.) to dry pine and 393 

oak forests (e.g., Calabrese black pine Pinus laricio, Mediterranean oaks Quercus ilex and 394 

Quercus suber), and high Mediterranean maquis (e.g., strawberry tree Arbutus unedo, heather 395 

Erica arborea and myrtle thickets Myrto-Pistacietum lentisci). The region also includes small-396 

scale, mixed agriculture, orchards and plantations (e.g., chestnut Castanea sativa, and olive 397 

groves), pastures at high elevation, as well as small settlements at the margins of the park. Wild 398 

boar (Sus scrofa) is the dominant wild ungulate in the study area (red deer, Cervus elaphus are 399 

locally extinct). Wolves (Canis lupus) are the only natural predators of adult roe deer, although 400 

red fox (Vulpes vulpes) may predate upon fawns. Hunting is forbidden within the national park. 401 
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 402 

Empirical data 403 

The movements of twenty-seven individual roe deer were monitored after their release via 404 

telemetry. Roe deer were fitted with GPS-GSM collars scheduled to acquire one relocation every 405 

30 min during the first month after release, and at six-hour intervals thereafter (schedule: 00:00, 406 

06:00, 12:00, 18:00 UTC). For the purpose of our analysis, we retained all animals for which we 407 

could obtain a trajectory of at least 30 days with a high acquisition success rate (> 85%). This 408 

choice led to the exclusion of ten individuals – seven died in the first month after release and 409 

three had malfunctioning collars. Our final sample consisted of 17 roe deer (15 adults: 11 410 

females, 4 males; 2 subadult males), tracked for an average of 281.82 days (𝜎 = 167.37, 411 

minimum = 39, maximum = 624; Supplementary S3: Table S1). 412 

We regularized the trajectories to a homogeneous relocation interval of six hour and did 413 

not interpolate the missing relocations. The final dataset consisted of 19,186 GPS relocations 414 

(acquisition success rate = 93.61%). Roe deer step length averaged 140.04 m between two 415 

successive relocations (𝜎 = 267.37, maximum = 6254.68 m). 416 

 417 

We analysed the movement behaviour of the reintroduced roe deer within a rectangular 418 

area (40.8 x 30 km; 1,224 sq.km; Supplementary S2: Fig. S1), that encompassed all available roe 419 

deer GPS locations and a buffer of 7 km (more than the longest observed step length). Given the 420 

average movement distance of the reintroduced roe deer, and the high landscape heterogeneity of 421 

our study area, the landscape was represented at a spatial resolution of 25 x 25 m. 422 

The resource preference component of the mechanistic movement model included both 423 

topographic (slope) and landcover variables (tree cover, agriculture and reforested landcover). 424 

We selected these variables a priori as they are known predictors of roe deer movement and 425 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 31, 2020. ; https://doi.org/10.1101/2020.07.30.229880doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.30.229880


 19 

resource selection42,48,51,52, and a preliminary step selection analysis (SSA59; results not shown) 426 

ascertained their relevance in our study system. 427 

 We obtained the slope layer from the European Union Digital Elevation Model EU-DEM 428 

v1.060. Slope ranges from 0 to 90°, and was available at a 25 m spatial resolution. We obtained an 429 

estimate of tree cover from Copernicus pan-European, high-resolution layers61, 2012 reference 430 

year. Tree cover ranges from 0 to 100%, and was resampled at 25 m from a native spatial 431 

resolution of 20 m. Following preliminary SSA explorations, we (1) calculated tree cover at a 432 

grain of 325 m (i.e., each squared cell of 25 m averaged tree cover within a larger 325 x 325 m 433 

area) and (2) included in the model both linear and quadratic terms for slope and tree cover. 434 

 Two landcover data sources were available for our study area – a botanical map of high 435 

biological detail and fine spatial resolution (94 categories; 0.05 ha mapping unit) for the 436 

Aspromonte National Park58, and the coarser CORINE landcover classification (45 categories; 25 437 

ha mapping unit) for the entire study area62, 2012 reference year. Preliminary SSA conducted 438 

within the park boundaries suggested that roe deer selected for areas reforested with deciduous 439 

trees (Alnus cordata, Juglans regia and Prunus avium; hereafter referenced to as Reforested), and 440 

avoided spatially-dominant agriculture areas (olive groves, cultivated fields, mixed agriculture), 441 

and more localized pastures and anthropized areas (hereafter referenced to as Agriculture). 442 

Outside the park, we assumed that there were no Reforested areas, and used CORINE to map 443 

Agriculture – choices that we validated by visually inspecting the satellite images in the vicinity 444 

(< 1 km) of the roe deer relocations outside of the park. 445 

 446 

Modelling approach 447 

We modelled the movement of reintroduced roe deer using an individual-based, spatially explicit 448 

redistribution kernel combining spatial memory and resource preferences. Specifically, we 449 
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defined the probability of moving between the relocation 𝐱=>. and the relocation 𝐱= (as it is 450 

standard: 𝐱 = (𝑥, 𝑦)), as the normalized product of an information-independent movement 451 

kernel27, 𝑘(𝐱=; 𝐱=>., 𝜃.), and a cognitive weighting function, 𝑤(𝐱=; 𝑡, 𝜃2)20,26: 452 

𝑝(𝐱=|𝐱=>., 𝜃., 𝜃2) = 𝑘(𝐱=; 𝐱=>., 𝜃.)KLLLMLLLN
OPQRSRT=
URVTRW

. 𝑤(𝐱=; 𝑡, 𝜃2)KLLMLLN
*RYZ[=YTZ
\]T^=YPT

. _` 𝑘(𝒖; 𝐱=>., 𝜃.).𝑤(𝒖; 𝑡, 𝜃2)
]∈c

d
>.

KLLLLLLLLLLMLLLLLLLLLLN

ePVSfWYgf=YPT	PQRV
hif=YfW	jPSfYT	c

					𝐸𝑞. 1 453 

 454 

with 𝒖 = (𝑥, 𝑦) denoting all the locations within the within the spatial domain 𝛺, and 𝜃. and 𝜃2 455 

the ensemble of parameters governing the movement kernel, and the weighting function, 456 

respectively. 457 

 458 

Motion capacity – the information-independent movement kernel 459 

The information-independent movement kernel characterizes the movement of an animal 460 

independently of its cognitive abilities and of the surrounding landscape, and therefore quantifies 461 

its motion capacity20. It is obtained through the product of two probability distributions: step 462 

length, 𝑆, and movement direction, Φ. Here, we modelled roe deer step length using a truncated 463 

Weibull distribution. The Weibull distribution is governed by two parameters – the shape (𝜅7 >464 

0) and the rate (𝜆7 ≥ 0), and can account for both a high density of short movements and rare, 465 

long movements (i.e., heavy tail), typical of empirical data of animal movement63. To reduce the 466 

computational power required for model fitting, we assumed that roe deer movement probability 467 

was zero beyond 7 km (maximum observed step length = 6.25 km). The resulting step length 468 

distribution for any location 𝒖 is given by: 469 
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𝑆(‖𝒖 − 𝐱=>.‖; 𝜅7, 𝜆7)470 

= s𝜆7𝜅7(𝜆7‖𝒖 − 𝐱=>.‖)
tu>.𝑒>(wu‖𝒖>𝐱xyz‖){u, ‖𝒖 − 𝐱=>.‖ ≤ 7	𝑘𝑚

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
						𝐸𝑞. 2 471 

 472 

We modelled roe deer movement directions as a circular normal distribution such that: 473 

Φ =
1
2𝜋 									𝐸𝑞. 3 474 

 475 

It follows that the information-independent movement kernel is given by: 476 

𝑘(𝒖; 𝐱=>., 𝜅7, 𝜆7) =
𝑆(‖𝒖 − 𝐱=>.‖; 𝜅7, 𝜆7)Φ

‖𝒖 − 𝐱=>.‖
									𝐸𝑞. 4 477 

 478 

where the denominator ‖𝒖 − 𝐱=>.‖ translates polar coordinates into Euclidean coordinates i.e., 479 

the conversion of a probability of moving a given distance and direction to a probability of 480 

moving to a particular area9. Given the temporal resolution of our movement data (every 6 h), we 481 

ignored serial correlation in movement direction. Because we fitted our mechanistic movement 482 

model to observed movement data in a discretized landscape (square cells of resolution 25 m), we 483 

transformed the GPS relocations in the continuous space, 𝐱=, to the centroid of the overlapping 484 

cell (see Supplementary S4 for the correction required to calculate the movement kernel on the 485 

location currently used by the animal).  486 

 487 

Interplay between memory and resource preferences – the cognitive weighting function 488 

The interaction between the landscape and the animal cognitive abilities was represented via the 489 

weighting function 𝑤. We assumed that animal movement was influenced by memory, 𝑚(𝒖; 𝑡), 490 
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and that, in absence of such information, animals may visit locations in proportion to their 491 

intrinsic resource preference value: 492 

𝑤(𝒖; 𝑡, 𝜀) = �	 𝑚(𝒖; 𝑡)KLMLN
ORSPV�

^PSiPTRT=

+ 𝜀⏟
�T=VYThY^
^PSiPTRT=

� 𝑄(𝒖)KMN
#RhP]V^R
iVR\RVRT^R

									𝐸𝑞. 5 493 

 494 

 with 𝜀, the intrinsic component of resource preference. In our model formulation, it is not the 495 

absolute value of memory that defines its influence on movement, but rather its value relative to 496 

the intrinsic component of resource preference i.e., scaled to the attraction of similar resource 497 

conditions in absence of memory. We modelled the preference for location 𝑢, 𝑄(𝒖), using an 498 

exponential resource selection64: 499 

𝑄(𝒖) = 𝑒��zhWPiR���hWPiR����^PQRV���^PQRV�������������x�������� �¡¢£¤x£��¥									𝐸𝑞. 6 500 

 501 

with 𝛽Y the selection coefficient for resource variable 𝑖 – slope (linear and quadratic terms), tree 502 

cover (linear and quadratic terms), and reforested and agriculture landcovers – evaluated at 503 

location 𝒖. 504 

We modelled memory, 𝑚(𝒖; 𝑡), as a bi-component mechanism15–17. Reference memory, 505 

𝑚#(𝒖; 𝑡), is the long-term memory of previously-visited spatial locations and has an attractive 506 

effect. By contrast, the working memory, 𝑚*(𝒖; 𝑡), encodes the short-term, temporary repulsion 507 

of previously visited locations. The combined memory map is given by: 508 

𝑚(𝒖; 𝑡) = 𝑚#(𝒖; 𝑡) − 𝑚*(𝒖; 𝑡)									𝐸𝑞. 7 509 

 510 

The dynamics of both memory components are governed by learning (i.e., acquisition of 511 

information) and decay or forgetting (i.e., loss of information). The learning curve was 512 
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represented by an asymptotically increasing function of experience38,39. Specifically, we 513 

formulated learning as an exponentially saturating process with an associated spatial scale such 514 

that animals experience maximum learning at their current position, but also gain information 515 

about surrounding areas. Decay was modelled as a negative exponential of time since last 516 

visit65,66. Together this yields the following equations for the dynamics of memory across space 517 

𝒖, given the animal’s current position 𝐱𝒕: 518 

𝑚¨(𝒖; 𝑡, 𝐱=>.) = 𝑚¨(𝒖; 𝑡 − 1) + 𝛼�𝒖; 𝐱=>., 𝜆¨¥	. ª1 −𝑚¨(𝒖; 𝑡 − 1)« . 𝑙¨KLLLLLLLLLLLMLLLLLLLLLLLN
�RfVTYTZ

519 

− ª1 − 𝛼�𝒖; 𝐱=>., 𝜆¨¥« .𝑚¨(𝒖; 𝑡 − 1). 𝛿¨KLLLLLLLLLLLMLLLLLLLLLLLN
¬R^f�

									𝐸𝑞. 8 520 

 521 

𝛼�𝒖; 𝐱=>., 𝜆¨¥ = 𝑒>w®.‖𝒖>𝐱xyz‖									𝐸𝑞. 9 522 

 523 

where 𝐽 = 𝑅 and 𝐽 = 𝑊 for reference and working memory, respectively;  𝑙# and 𝑙* are the rates 524 

of learning for reference and working memory; the functions 𝛼(𝒖; 𝐱=>., 𝜆#) and 𝛼(𝒖; 𝐱=>., 𝜆*) 525 

respectively describe how the rates of reference and working memory acquisition attenuate as a 526 

function of distance from the animal’s previous position (modelled via negative exponential 527 

functions); and 𝛿# and 𝛿* determine the rates at which the two forms of memory decay over 528 

time. According to their biological definition15,16, reference memory is always larger than 529 

working memory, thus imposing the following constraints: 𝑙# ≥ 𝑙*, 𝛿# ≤ 𝛿* and 𝜆# ≤ 𝜆*. For 530 

missing relocations, no learning occurred but memory decay took place.  531 

 532 

Model fitting 533 
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We fitted two models representing competing hypotheses pertaining to the biological processes 534 

influencing the movements of reintroduced roe deer: resource-only (Mres), and interplay between 535 

memory and resources (Mmem:res). For the Mres model, the memory parameters were omitted (i.e., 536 

no memory learning; 𝑙# = 𝑙* = 0). We estimated the model parameters through maximum-537 

likelihood inference. The likelihood function for the parameter set of the information-538 

independent movement kernel 𝜃. = 𝜅7, 𝜆7, and of the cognitive weighting function, 𝜃2 =539 

(𝑙#, 𝑙*, 𝛿#, 𝛿*, 𝜆#, 𝜆*, 𝜀, 𝛽.: 𝛽0), is given as: 540 

𝐿(𝝎) =µµ𝑝(𝐱=|𝐱=>., 𝜃., 𝜃2)
¶¡

=·.

e

Y·.

									𝐸𝑞. 10 541 

 542 

with 𝑁 the number of animals (i.e., 17) and 𝑇Y the number of relocations for animal 𝑖. Missing 543 

GPS relocations were omitted from the likelihood function. We estimated the global minima of 544 

the log-likelihood function [𝑙𝑜𝑔𝐿(𝝎); i.e., the objective function] using the particle swarm 545 

optimization algorithm (PSO67; see Supplementary S5 for details). We calculated 95% marginal 546 

confidence intervals (CIs) via an asymptotic normal approximation of the objective function in 547 

the neighbourhood of the global minima. We then evaluated the contribution of each variable to 548 

the model support by calculating the delta Akaike Information Criterion68 of the reduced model 549 

(i.e., excluding the variable of interest) relative to the full model. 550 

 551 

Movement simulations and emergent properties 552 

We evaluated whether the two parametrized movement models (Mres and Mmem:res) could 553 

characterize the spatial behaviour of reintroduced roe deer by means of movement simulations. 554 

For each monitored roe deer, we ran 30 movement simulations (17 animals x 30 runs = 510 555 
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simulated trajectories per model), initiated on the first observed GPS relocation of each 556 

individual (i.e., in the vicinity of the release site). At each time step, a spatial location was 557 

randomly selected according to the probabilities defined by the parametrized redistribution 558 

kernel. Simulations ran for a duration equivalent to that of the observed roe deer trajectories.  559 

We compared observed and simulated trajectories using key emerging properties. First, to 560 

evaluate the emergence of spatially-restricted movements, we compared the temporal trend in net 561 

squared displacement (NSD). NSD was calculated as the squared distance between the individual 562 

position at time 𝑡, 𝐱=, and the trajectory start position, 𝐱¾: 563 

𝑁𝑆𝐷= = ‖𝐱= − 𝐱¾‖2									𝐸𝑞. 11 564 

 565 

At the population-level, we computed the mean NSD for the 17 released roe deer as a 5-day 566 

running mean to remove individual noise. For the simulations, we calculated the 5% and 95% 567 

confidence bounds for the mean NSD via bootstrapping (1000 random samples of 17 simulated 568 

trajectories). Second, we evaluated whether the parametrized movement models captured the 569 

empirical distributions of emergent movement properties. We calculated step length as the 570 

Euclidean distance between two successive relocations, and turning angle as the angle in radians 571 

between the directions of two successive steps (ranges from −𝜋 to 𝜋; 0 indicating no directional 572 

change). Third, we investigated whether the parametrized movement models captured roe deer 573 

revisitation behaviour (i.e., movement recursions29). Revisits, defined as returns to a previously 574 

visited area, occurred when an animal (observed or simulated) used a 25 x 25 m spatial cell that 575 

had been last visited within > 6 hours (i.e., temporally-disjointed use of a specific location). For 576 

each visited cell along the trajectory, we computed its total number of revisits (0 indicating a 577 

single visit) and their associated time since last visit. 578 
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 579 

Equations 1-10 were solved numerically, and simulations performed in C++. The 580 

parameters were estimated using the PSO algorithm, implemented within the Global 581 

Optimization Toolbox, MATLAB R2017b (MathWorks, Natick, Massachusetts, USA). The 582 

optimization ran on a computer cluster using the Distributed Computer Server69. We calculated 583 

the CIs, produced the effect size plots and comparison between observed and simulated 584 

trajectories in R70.  585 
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Table 1 Variable contributions to the memory-based model (Mmem:res).  586 

Variable(s) removed from 

the full model Equation(s) Parameter setting(s) 

Number of removed 

parameters  ∆ AIC 

Ref. memory (i.e., Mres) 7, 8 𝑙# = 0* 6 17,355 

Ref. memory spatial scale 8, 10 𝜆# = ∞ 1 7,444 

Step length decay 2 𝜆7 = 0 1 4,945 

Ref. memory learning 8 𝑙# = 1 1 3,434 

Ref. memory decay 8 𝛿# = 0 1 2,631 

Working memory 7, 9 𝑙* = 0** 3 1,278 

All resources 6 𝛽.: 𝛽0 = 0 6 304 

Slope + Slope2 6 𝛽. = 𝛽2 = 0 2 138 

Landcover – reforested  6 𝛽0 = 0 1 83 

Landcover – agriculture 6 𝛽5 = 0 1 59 

Cover + Cover2 6 𝛽3 = 𝛽4 = 0 2 34 

Step length rate 2 𝜅7 = 1 1 4 

Variable importance is calculated as the delta AIC of the reduced model (i.e., excluding the variable of 587 

interest) relative to the full model. Equations refer to the numbered formulations in the Methods section. 588 

Parameters setting refers to the conditions imposed to exclude the variable. *Reference (Ref.) memory was 589 

removed by setting its learning rate, 𝑙# = 0, resulting in the effective removal of all memory parameters (i.e., 590 

equivalent to a resource-only model): 𝜆# and 𝛿# are irrelevant if there is no reference memory learning, and 591 

because 𝑙* ≤ 𝑙#, the three working memory parameters (𝑙*, 𝜆* and 𝛿*) were dropped as well. **Similarly, 592 

removing working memory by setting 𝑙# = 0, led to the effective removal of 𝜆* and 𝛿*. 593 
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 595 

Figure 1: Parameter estimates. The estimates for the resource-only (Mres; orange), and the memory-based 596 

(Mmem:res; blue) models are plotted with the corresponding 95% marginal confidence intervals. Memory 597 

(panel a), resource preference (b) and movement (c) parameters are shown separately for readability.  598 
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 599 

Figure 2: Predictor effects. The response curves for the resource-only (Mres; orange) and the memory-600 

based (Mmem:res; blue) models are plotted with the corresponding 95% marginal confidence intervals. Panel 601 

(a) shows the attraction of a visited spatial cell (continuous line) and an adjacent cell (25 m away; dashed 602 

line) relative to a cell that has never been visited (attraction = 1) resulting from the fitted memory-based 603 

model. Hypothetical visits (at t = 1.25, 7.00 and 7.50 days) are shown in dotted vertical lines. Panel (b) and 604 

(c) illustrate the preference for slope and tree cover, respectively. Panel (d) shows the relative preference 605 

for reforested and agriculture landcovers. 606 
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 608 

Figure 3: Movement trajectories. Three typical trajectories are shown for the resource-only simulations 609 

(Mres; panel a), observed roe deer movements (panel b), and memory-based simulations (Mmem:res; panel c). 610 

The release location is shown as a red dot and the time since release illustrated as a colour gradient (blue 611 

= old, yellow = recent). The trajectories were selected from the sample displayed on Figure 4. 612 

  613 

Simulations – Mres Simulations – Mmem:resObservations

20 25 30 20 25 30 20 25 30

20

25

15

Easting [km]

N
or

th
in

g
[k

m
]

Release 
location

Trajectory
Old Recent

(a) (b) (c)

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 31, 2020. ; https://doi.org/10.1101/2020.07.30.229880doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.30.229880


 31 

 614 

Figure 4: Trends in net squared displacement (NSD) with time since release. Panel (a): resource-only 615 

simulations (Mres). Panel (b): observed roe deer movements. Panel (c): memory-based simulations 616 

(Mmem:res). For the sake of clarity, only the individuals with more than 230 days of monitoring are shown (n = 617 

10). For the simulations, one run for each of the selected individuals was randomly chosen. The trends in 618 

mean NSD across individuals are plotted as solid red lines (grey ribbons indicate the 5% and 95% 619 

bootstrapped quantiles for the simulations; panels a and c). The vertical histograms show the frequency of 620 

final NSD (i.e., evaluated at the end of the trajectories) for the simulations. 621 
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 623 

Figure 5: Emergent movement properties. The distributions of step length (panels a and b) and turning 624 

angle (panels c and d) are shown for observed roe deer movements (grey), the simulated trajectories from 625 

the resource-only model (Mres; orange), and the simulated trajectories from the memory-based model 626 

(Mmem:res; blue).   627 
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 628 

Figure 6: Emergent revisitation properties. The distributions of revisits (panels a and b) and time since 629 

last visit (panels c and d) are shown for observed roe deer movements (grey), the simulated trajectories 630 

from the resource-only model (Mres; orange), and the simulated trajectories from the memory-based model 631 

(Mmem:res; blue).   632 
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