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 2 

Abstract 1 

Human brain has a complex functional architecture and remains active during resting 2 

conditions. Resting-state functional magnetic resonance imaging (rsfMRI) measures 3 

brain activity at rest, which is closely linked with cognition and clinical outcomes. The 4 

role of genetics in human brain function is largely unknown. Here we utilized rsfMRI of 5 

44,190 multi-ethnic individuals (37,339 in the UK Biobank) to discover the common 6 

genetic variants influencing intrinsic brain activity. We identified and validated hundreds 7 

of novel genetic loci associated with intrinsic functional signatures (P < 2.8 × 10-11), 8 

especially for interactions of the central executive, default mode, and salience networks 9 

involved in the triple network model of psychopathology. A number of intrinsic brain 10 

activity associated loci had been implicated with brain disorders (e.g., Alzheimer's 11 

disease, Parkinson's disease, schizophrenia) and cognition, such as 17q21.31, 19q13.32, 12 

and 2p16.1. Genetic correlation analysis suggested the shared genetic influences among 13 

intrinsic brain function, brain structure, and brain structural connectivity. We also 14 

detected significant genetic correlations with 26 other complex traits, such as 15 

education, cognitive performance, ADHD, major depressive disorder, schizophrenia, 16 

sleep, and neuroticism. Heritability of intrinsic brain activity was enriched in brain 17 

tissues. The reported risk genes of Alzheimer's disease typically had stronger 18 

associations with intrinsic brain activity than brain structure, and the associated genes 19 

of intrinsic brain activity were enriched in multiple biological pathways related to 20 

nervous system and neuropathology (P < 1.8 × 10-9).  21 

 22 
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 3 

Human brain is a complex system exhibiting a wide variety of neural activity and 1 

connectivity patterns across brain regions1,2. Functional organization and 2 

communication of brain networks are fundamental to bodily behavior and cognitive 3 

architectures3-6. Human brain remains active at rest, resulting in an intrinsic functional 4 

architecture. Utilizing changes in blood oxygen level-dependent (BOLD) signal2,7, 5 

resting-state functional magnetic resonance imaging8 (rsfMRI) can capture spontaneous 6 

intrinsic brain activity, or neuronal activity not attributable to a given task or stimulus9. 7 

Specifically, the spontaneous neuronal activity within each functional region can be 8 

quantified by the amplitude of low frequency fluctuations (ALFF) in BOLD time 9 

series2,10,11. Moreover, a functional connectivity matrix quantifying pairwise 10 

inter-regional correlations in spontaneous neuronal variability measures the magnitude 11 

of temporal synchrony between each pair of brain regions2,12.  12 

 13 

Several techniques have been developed to characterize functional brain regions and 14 

their interactions, such as seed-based analysis with prior knowledges2,13, data-driven 15 

independent component analysis14,15 (ICA), and graph methods16. The intrinsic brain 16 

activity patterns revealed in rsfMRI illuminate functional architecture of human brain9. 17 

For example, rsfMRI yields many insights into the resting-state networks (RSNs) of a 18 

healthy brain, such as default mode, central executive (i.e., frontoparietal), attention, 19 

limbic, salience, somatomotor, and visual networks17-19. These RSNs are strongly linked 20 

functional sub-networks18,20 that commonly emerge in rsfMRI studies, which are of 21 

great interest in studies of cognition21. In addition, rsfMRI and RSNs have a wide range 22 

of clinical applications to detect brain abnormality in neurological and psychiatric 23 

disorders13, such as Alzheimer’s disease22, Parkinson’s disease23, and major depressive 24 

disorder (MDD)24. Among these RSNs, the central executive, default mode, and salience 25 

networks are three core neurocognitive networks that support efficient cognition25-27. 26 

Accumulating evidence suggests that the functional organization and dynamic 27 

interaction of these three networks underlie a wide range of mental disorders, resulting 28 

in the triple network model of psychopathology26,28.  29 

 30 

Twin and family studies have largely reported a low to moderate degree of genetic 31 

contributions for intrinsic brain activity29-35. For example, the family-based heritability 32 
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 4 

estimates of major RSNs ranged from 20% to 40% in the Human Connectome Project 1 

(HCP)36. In a previous study using about 8,000 UK Biobank (UKB) individuals37, the SNP 2 

heritability38 of amplitude and functional connectivity traits can be more than 30%. 3 

Although there were multiple candidate gene studies for intrinsic brain activity (such as 4 

for APOE39 and KIBRA40), currently only one genome-wide association study (GWAS)37 5 

has been successfully performed on rsfMRI29 (n ≈ 8000). This is mainly due to the fact 6 

that most rsfMRI datasets do not have enough participants for GWAS discovery and the 7 

overall genetic effects on neuronal activity are weaker compared to those on brain 8 

structure37,41-45. In addition, imaging batch effects46 (e.g., image processing procedures, 9 

software) may cause substantial extra variability in rsfMRI analyses47, making GWAS 10 

meta-analysis and independent replication particularly challenging. Therefore, genetic 11 

variants influencing intrinsic brain activity remain largely undiscovered and their shared 12 

genetic influences with other complex traits and clinical outcomes are unknown.  13 

 14 

To address these challenges, here we collected individual-level rsfMRI data from four 15 

independent studies: the UK Biobank48, Adolescent Brain Cognitive Development 16 

(ABCD49), Philadelphia Neurodevelopmental Cohort (PNC50), and HCP51. We harmonized 17 

rsfMRI processing procedures by following the unified UKB brain imaging pipeline10,52. 18 

Functional brain regions and corresponding functional connectivity were characterized 19 

via spatial ICA53,54 for 44,190 multi-ethnic individuals, including 37,339 from UK Biobank. 20 

As in previous studies10,37,55, two parcellations with different dimensionalities18,56 (25 21 

and 100 regions, respectively) were separately applied in spatial ICA and we focused on 22 

the 76 (21 and 55, respectively) regions that had been confirmed to be 23 

non-artefactual10. Two group of neuroimaging phenotypes were then generated: the 24 

first group contains 76 (node) amplitude traits reflecting the regional spontaneous 25 

neuronal activity; and the second group includes 1,695 (i.e., 21 × 20/2 + 55 × 54/2) 26 

(edge) functional connectivity traits that quantify the inter-regional co-activity, as well 27 

as 6 global functional connectivity measures summarizing all of the 1,695 pairwise 28 

functional connectivity traits37. These 1,777 traits were then used to explore the genetic 29 

architecture of intrinsic brain activity. To aid interpretation of GWAS results, the 30 

functional brain regions characterized in ICA were labelled by using the automated 31 

anatomical labeling atlas57 and were mapped onto major RSNs defined in Yeo, et al. 19 32 
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 5 

and Finn, et al. 17. Our GWAS results can be easily explored and downloaded through the 1 

Brain Imaging Genetics Knowledge Portal (BIG-KP) https://bigkp.web.unc.edu/.  2 

 3 

RESULTS 4 

Genetics of the intrinsic brain functional architecture.  5 

SNP heritability was estimated for the 1,777 intrinsic brain activity traits via GCTA58. The 6 

mean heritability (h2) estimate was 27.2% (range = (10%, 36.5%), standard error = 6.0%) 7 

for the 76 amplitude traits, all of which remained significant after adjusting for multiple 8 

comparisons by using the Benjamini-Hochberg procedure to control false discovery rate 9 

(FDR) at 0.05 level (1,777 tests, Fig. 1a, Supplementary Table 1). Among the 1,701 10 

functional connectivity traits, 1,230 had significant (again at 5% FDR) heritability with 11 

estimates varying from 3% to 61% (mean = 9.6%, standard error = 5.8%). Ten functional 12 

connectivity traits had heritability larger than 30%, including 6 pairwise functional 13 

connectivity traits and 4 global functional connectivity measures. These traits were most 14 

related to central executive, default mode, and salience networks in the triple network 15 

model of psychopathology26, indicating that the level of genetic control might be higher 16 

in these core neurocognitive networks (Fig. 1b, Supplementary Fig. 1). The range of 17 

heritability estimates was consistent with previous results37, suggesting that common 18 

genetic variants had a low to moderate degree of contributions to inter-individual 19 

variability of intrinsic brain activity. The overall genetic effects on both amplitude and 20 

functional connectivity were lower than those on brain structure. For example, the 21 

average heritability was reported to be 48.7% for diffusion tensor imaging (DTI) traits of 22 

brain structural connectivity in white matter tracts59 and 40% for regional brain volumes 23 

measuring brain morphometry43. However, as shown below, intrinsic brain activity may 24 

have stronger genetic connections with some brain disorders than brain structure, such 25 

as the Alzheimer's disease.  26 

 27 

Genome-wide association discovery was carried out for 1,777 intrinsic brain activity 28 

traits using UKB individuals of British ancestry (n = 34,691, Methods). The Manhattan 29 

and QQ plots can be found in the BIG-KP server. At the significance level 2.8 × 10-11 (i.e., 30 

5 × 10-8/1,777, adjusted for the 1,777 traits), we identified 328 independent significant 31 

variants (linkage disequilibrium [LD] r2 < 0.2, Methods) involved in 987 variant-trait 32 
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 6 

associations for 197 traits (75 amplitude and 122 functional connectivity, 1 

Supplementary Table 2). The amplitude traits typically had multiple associated variants 2 

(Supplementary Table 3) and a number of variants were widely related to the amplitude 3 

in different brain regions, such as rs11187837 in the 10q23.33 genomic region, 4 

rs9899649 in 17p11.2, rs10781575 in 10q26.3, and rs429358 in 19q13.32. For functional 5 

connectivity, rs2279829 in 3q24, rs2863957 in 2q14.1, rs7650184 in 3p11.1, and 6 

rs34522 in 5q14.3 were associated with multiple functional connectivity traits. Pairwise 7 

functional connectivity traits that had multiple significant variants were again most 8 

related to central executive, default mode, and salience networks (Fig. 2a). Of the 14 9 

associated variants that had been identified in the previous GWAS37, 12 were in LD (r2 ≥	10 

0.6) with our significant variants, most of which were associated with amplitude traits. 11 

With a more strict LD threshold (LD r2 < 0.1), FUMA60 selected 227 lead variants out of 12 

the 328 significant variants, and then characterized 604 significant locus-trait 13 

associations (Methods, Fig. 2b, Supplementary Tables 4-5). In summary, our analyses 14 

identify many novel variants associated with intrinsic functional signatures and illustrate 15 

the global genetic influences on functional connectivity across the whole brain. The 16 

degree of genetic control is higher in central executive, default mode, and salience 17 

networks, whose cross-network interactions closely control multiple cognitive functions 18 

and affect major brain disorders28.  19 

 20 

Validation and the effect of ethnicity.  21 

We aimed to validate our results in UKB British GWAS using other independent datasets. 22 

First, we repeated GWAS on UKB individuals of White but Non-British ancestry (UKBW, n 23 

= 1,970). We found that 97.3% significant associations (P < 2.8 × 10-11) in UKB British 24 

GWAS had the same effect signs in the UKBW GWAS, and 82.5% had smaller P-values 25 

after meta-analyzing the two GWAS. These results suggest similar effect sizes and 26 

directions of the top variants among the European subjects within the UKB study61,62. 27 

Next, we performed GWAS in three non-UKB European cohorts: ABCD European 28 

(ABCDE, n = 3,821), HCP (n = 495), and PNC (n = 510). We meta-analyzed UKBW with the 29 

three non-UKB GWAS and checked whether the locus-trait associations detected in UKB 30 

British GWAS can be validated in the meta-analyzed validation GWAS (n = 6,796). For 31 

the 604 significant associations, 115 (19%) passed the 8.2 × 10-5 (i.e., 0.05/604) 32 
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 7 

Bonferroni significance level in this validation GWAS, and 599 (99.2%) were significant at 1 

FDR 5% level (Supplementary Table 6). Moreover, we performed a third meta-analysis 2 

to combine all of the five European GWAS, after which 75.5% significant associations in 3 

UKB British GWAS had smaller P-values. Overall, our results suggest that the associated 4 

genetic loci discovered in UKB British GWAS have high generalizability in independent 5 

European rsfMRI studies, despite the fact that these studies may use different imaging 6 

protocols/MRI scanners and recruit participants from different age groups. The good 7 

homogeneity of GWAS results may partially benefit from the consistent rsfMRI 8 

processing procedures that we applied to these datasets.  9 

 10 

We further examined replication using polygenic risk scores63 (PRS) derived from UKB 11 

British GWAS (Methods). For the 197 traits that had significant variants, 168 had 12 

significant PRS in at least one of the four European validation GWAS datasets at FDR 5% 13 

level (197 × 4 tests, Supplementary Table 7), illustrating the significant out-of-sample 14 

prediction power of our discovery GWAS results. The largest incremental R-squared 15 

were observed on the 2nd, 3rd, 4th, and 6th global functional connectivity measures in 16 

UKBW and HCP datasets, which were larger than 5% (range = (5.1%, 5.7%), P range = 17 

(1.1 × 10-24, 4 × 10-13)). To evaluate the influences of ethnicity, PRS was also constructed 18 

on four non-European validation datasets: the UKB Asian (UKBA, n = 446), UKB Black 19 

(UKBBL, n = 232), ABCD Hispanic (ABCDH, n = 768), and ABCD African American (ABCDA, 20 

n = 1,257). UKBA had the best validation performance among the four datasets, with 86 21 

PRS being significant at FDR 5% level (197 × 4 tests, Supplementary Table 7). The 22 

number of significant PRS was reduced to 59, 39, and 31 in ABCDH, ABCDA, and UKBBL, 23 

respectively. In summary, these PRS results illustrate the overall consistency of genetic 24 

effects in European cohorts and also show the potential negative effects of ethnicity in 25 

cross-population applications, especially for Black/African-American cohorts. More 26 

efforts are required to identify further loci associated with functional brain in global 27 

diverse populations.  28 

 29 

The shared genetic loci with brain-related complex traits and disorders. 30 

To evaluate the shared genetic influences between intrinsic brain activity and other 31 

complex traits, we carried out association lookups for the 328 significant variants (and 32 
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 8 

their LD tags, i.e., variants with LD r2 ≥	0.6) detected in UKB British GWAS (Methods). 1 

On the NHGRI-EBI GWAS catalog64, our results tagged many variants reported for a wide 2 

range of complex traits in different trait domains, such as cognitive performance, 3 

neurological and psychiatric disorders, education, bone mineral density, sleep, 4 

smoking/drinking, brain structure, and anthropometric traits (Supplementary Table 8). 5 

Below we highlighted colocalizations in a few selected genomic regions.  6 

 7 

The 17q21.31 region was associated with functional connectivity of temporal and frontal 8 

regions mostly involved in central executive, default mode, and salience networks (Fig. 9 

3a). This genomic region has been reported by Parkinson's disease studies65-69. As a 10 

system-level progressive neurodegenerative disorder70, Parkinson's disease not only led 11 

to motor abnormalities, but also had non-motor symptoms such as temporal perception 12 

abnormalities71 and impaired connectivity among frontal regions72. Cognitive 13 

dysfunction and disrupted coupling between default mode and salience networks were 14 

commonly reported in Parkinson's disease27. In addition to Parkinson's disease, the 15 

17q21.31 region was widely related to other complex traits, including neurological 16 

disorders (e.g., Alzheimer's disease73, corticobasal degeneration74, progressive 17 

supranuclear palsy75), psychiatric disorders (e.g., autism spectrum disorder76, depressive 18 

symptoms77), educational attainment78,79, psychological traits (e.g., neuroticism77), 19 

cognitive traits (cognitive ability80), sleep81, heel bone mineral density82, alcohol use 20 

disorder83, subcortical brain volumes44, and white matter microstructure59.  21 

 22 

Next, the 19q13.32 region had genetic effects on the amplitude of many functional brain 23 

regions that were most in default mode, central executive (i.e., frontoparietal), 24 

attention, and visual networks (Fig. 3b). It is well known that 19q13.32 is a risk locus of 25 

Alzheimer's disease, containing genes such as APOE, APOC, and TOMM40. In this region, 26 

we tagged variants associated with dementia and decline in mental ability, including 27 

Alzheimer's disease84-88, frontotemporal dementia89, cerebral amyloid angiopathy90, 28 

cognitive decline91-93, cognitive impairment test score94, as well as many biomarkers of 29 

Alzheimer's disease, such as neurofibrillary tangles90, neuritic plaque90, cerebral amyloid 30 

deposition95, cerebrospinal fluid protein levels94, and cortical amyloid beta load88. 31 

Altered amplitude activity has been widely reported in patients of cognitive impairment 32 
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 9 

and Alzheimer's disease96,97. The brain degeneration related to Alzheimer's disease may 1 

begin in the frontoparietal regions98 and was associated with dysfunction of multiple 2 

RSNs, especially the default mode network22. Our findings suggest the shared genetic 3 

influences between intrinsic neuronal activity and brain atrophy of Alzheimer’s disease.  4 

 5 

In addition, the 2p16.1 and 5q15 regions were mainly associated with interactions 6 

among central executive, default mode, and salience networks (Fig. 3c, Fig. 3d, and 7 

Supplementary Fig. 2). We observed colocalizations with psychiatric disorders (e.g., 8 

schizophrenia99, MDD100, depressive symptoms101, autism spectrum disorder102), 9 

psychological traits (e.g., neuroticism77, well-being spectrum103), sleep104, cognitive traits 10 

(e.g., intelligence105), and hippocampus subfield volumes106. Dysregulated triple network 11 

interactions were frequently reported in patients of schizophrenia107, depression108, and 12 

autism spectrum disorder109. Similarly, the 2q24.2 and 10q26.13 regions had genetic 13 

effects on functional connectivity traits involved in central executive, default mode, 14 

salience, and attention networks (Supplementary Figs. 3-4). In these two regions, our 15 

identified variants tagged those that have been implicated with schizophrenia110, 16 

educational attainment78, cognitive traits (e.g., cognitive ability80), smoking/drinking 17 

(e.g., smoking status79,111, alcohol consumption111), hippocampus subfield volumes106, 18 

and heel bone mineral density82. We also observed colocalizations in many other 19 

genomic regions, such as in 2q14.1 region with sleep traits (e.g., sleep duration81,112, 20 

insomnia104), in 3p11.1 with cognitive traits (e.g., cognitive ability113, intelligence114, 21 

math ability78), in 2p21 with heel bone mineral density79,115, and in 6p25.3 with 22 

stroke116,117. In summary, instinct brain function has wide genetic links to a large 23 

number of brain-related complex traits and clinical outcomes, especially the 24 

neurological and psychiatric disorders and cognitive traits.  25 

 26 

Genetic correlations with brain structure and cognition. 27 

To explore whether genetically mediated brain structural changes were associated with 28 

brain function, we examined pairwise genetic correlations (gc) between 82 intrinsic 29 

brain activity traits (i.e., the 76 amplitude traits and the 6 global functional connectivity 30 

measures) and 315 traits of brain structure via LDSC118 (Methods), including 100 31 

regional brain volumes43 and 215 DTI traits of brain structural connectivity in white 32 
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 10 

matter tracts119. There were 137 significant pairs between 44 intrinsic brain functional 1 

traits and 87 brain structural traits at FDR 5% level (82 × 315 tests, |gc| range = (0.18, 2 

0.44), P range = (4.3 × 10-12, 2.6 × 10-4), Supplementary Table 9). 3 

 4 

We found significant genetic correlations between global functional connectivity 5 

measures and regional volumes in cerebral cortex, including prefrontal (caudal middle 6 

frontal, pars orbitalis, pars triangularis) and precentral of frontal lobe; superolateral 7 

(inferior parietal, supramarginal) and postcentral of parietal lobe; superolateral 8 

(transverse temporal, middle temporal, superior temporal) of temporal lobe; and insula 9 

(|gc| range = (0.2, 0.42), P < 1.4 × 10-4, Fig. 4a). These global functional connectivity 10 

measures mainly represented the central executive, default mode, salience, and 11 

attention networks, suggesting the widely shared genetic influences between cerebral 12 

cortex volumes and cognation. Amplitude traits also had significant genetic correlations 13 

with brain volumes, most of which were negative. For example, 16 amplitude traits 14 

across multiple RSNs had significant genetic correlations with total brain volume (|gc| 15 

range = (0.2, 0.41), P < 2 × 10-4). It is well known that brain size/volume is phenotypically 16 

associated with intrinsic amplitude120. Moreover, the amplitude of putamen and 17 

caudate regions in subcortical-cerebellum network17 was genetically correlated with 18 

ventricular volumes (|gc| range = (0.26, 0.36), P < 5.9 × 10-5). Ventricular volumes are 19 

known to be related to subcortical volumes121,122. For the amplitude of precuneus region 20 

in default mode and central executive networks, we observed significant genetic 21 

correlations with cuneus, lingual, and pericalcarine volumes in occipital lobe (|gc| range 22 

= (0.2, 0.37), P < 1 × 10-4). In addition, the amplitude of occipital regions (calcarine, 23 

lingual, and cuneus) in visual network had significant genetic correlations with 24 

pericalcarine volume (|gc| range = (0.3, 0.44), P < 5.1 × 10-5). Cerebral cortex is deeply 25 

involved in a wide variety of brain function19,123. Our results uncover the genetic links 26 

between intrinsic brain function and the associated structural substrates. 27 

 28 

Significant genetic correlations were also observed between intrinsic brain activity and 29 

brain structural connectivity (Fig. 4b). We highlighted the amplitude of frontal regions 30 

(precentral, middle/inferior frontal) in central executive network, which had significant 31 

genetic correlations with global integrity of white matter and tract-specific integrity in 32 
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 11 

body of corpus callosum (BCC), cingulum cingulate gyrus (CGC), external capsule (EC), 1 

long anterior limb of internal capsule (ALIC), posterior limb of internal capsule (RLIC), 2 

and superior longitudinal fasciculus (SLF) tracts (|gc| range = (0.2, 0.29), P < 2.5 × 10-4). 3 

Another example is the amplitude of occipital and temporal regions (middle occipital, 4 

inferior/middle temporal) in visual and attention networks, which was genetically 5 

correlated with the structural connectivity in BCC, fornix (FX), superior corona radiata 6 

(SCR), posterior corona radiata (PCR), posterior limb of internal capsule (PLIC), RLIC, and 7 

SLF tracts (|gc| range = (0.22, 0.37), P < 2.4 × 10-4). In addition, global functional 8 

connectivity measures were genetically correlated with BCC, genu of corpus callosum 9 

(GCC), splenium of corpus callosum (SCC), EC, posterior thalamic radiation (PTR), SLF, 10 

uncinate fasciculus (UNC), corticospinal tract (CST), and sagittal stratum (SS) tracts (|gc| 11 

range = (0.18, 0.41), P < 2.2 × 10-4). Structural connectivity and functional connectivity 12 

have a complex but close relationship20,124, and our analyses provide new insights into 13 

their genetic overlaps. To our knowledge, these results are the first to indicate that 14 

genetic changes in brain structure may also impact intrinsic brain function and result in 15 

brain functional differences.   16 

 17 

Next, we examined the genetic correlations between 1,777 intrinsic brain activity traits 18 

and 30 other complex traits, mainly focusing on cognition and brain disorders 19 

(Supplementary Table 10). We found 176 significant pairs between 26 complex traits 20 

and 102 intrinsic brain activity traits at FDR 5% level (30 × 1,777 tests, P range = (8.6 × 21 

10-12, 2.3 × 10-3), Supplementary Table 11). For amplitude traits, we detected significant 22 

genetic correlations with cognitive traits studied in previous GWAS, including cognitive 23 

performance, general cognitive function, intelligence, and numerical reasoning (|gc| 24 

range = (0.15, 0.21), P < 1.8 × 10-4, Fig. 5). We also observed significant genetic 25 

correlations with cross disorder (five major psychiatric disorders125) (|gc| range = (0.32, 26 

0.33), P < 9.7 × 10-5) and sleep (|gc| range = (0.15, 0.18), P < 1.6 × 10-4). The association 27 

between intrinsic amplitude and cognition21, sleep126, and brain disorders127 had been 28 

previously reported. Furthermore, many significant genetic correlations were uncovered 29 

between intrinsic functional connectivity and brain-related traits, such as education, 30 

cognitive traits, cross disorder, attention-deficit/hyperactivity disorder (ADHD), 31 

schizophrenia, MDD, neuroticism, sleep, risk tolerance, and subjective well-being. For 32 
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example, ADHD was genetically correlated with functional connectivity in attention, 1 

somatomotor, and subcortical-cerebellum networks (|gc| = 0.31, P = 1.2 × 10-4), and 2 

MDD had significant genetic correlations with default mode, central executive, and 3 

salience networks (|gc| range = (0.26, 0.27), P < 1.2 × 10-4) (Supplementary Fig. 5). In 4 

addition, many functional connectivity traits across major RSNs had genetic correlations 5 

with education (|gc| range = (0.14, 0.35), P < 1.8 × 10-4), cognitive performance (|gc| 6 

range = (0.15, 0.35), P < 1.3 × 10-4), cross disorder (|gc| range = (0.26, 0.37), P < 8.7 × 7 

10-5), and schizophrenia (|gc| range = (0.18, 0.3), P < 1.2 × 10-4), matching previously 8 

reported phenotypical associations55,107,109 (Supplementary Figs. 6-8). We also found 9 

broad genetic correlations with manual occupation128 (|gc| range = (0.15, 0.24), P < 1.5 10 

× 10-4), BMI129 (|gc| range = (0.2, 0.37), P < 1.5 × 10-4), and behavioral factors 11 

(drinking130 and smoking131), all of which had been linked to brain functional differences.  12 

 13 

Gene-level association analysis and biological annotations.  14 

Gene-level association was tested via MAGMA132 (Methods), which detected 970 15 

significant gene-trait associations (P < 1.5 × 10-9, adjusted for 1,777 phenotypes) for 123 16 

genes (Supplementary Fig. 9, Supplementary Table 12). In addition, we applied FUMA60 17 

to map significant variants (P < 2.8 × 10-11) to genes via physical position, expression 18 

quantitative trait loci (eQTL) association, and 3D chromatin (Hi-C) interaction, which 19 

yielded 273 more associated genes that were not discovered in MAGMA (352 in total, 20 

Supplementary Table 13). For the 396 genes associated with intrinsic brain activity in 21 

either MAGMA or FUMA, 89 had been linked to white matter microstructure119, 52 were 22 

reported to be associated with regional brain volumes43, and 43 were related to both of 23 

them (Supplementary Table 14). These triple overlapped genes were also widely 24 

associated with other complex traits, such as Parkinson's disease, neuroticism, alopecia, 25 

handedness, reaction time, and intelligence (Supplementary Table 15), providing more 26 

insights into the genetic overlaps among brain structure, brain function, and other 27 

brain-related traits. For example, MAPT, NSF, WNT3, CRHR1, PLEKHM1, STH, LRRC37A3, 28 

ARHGAP27, KANSL1, and SPPL2C were risk genes of Parkinson's disease, which were also 29 

associated with pallidum grey matter volume43, fractional anisotropy and mean 30 

diffusivity of white matter microstructure119, and intrinsic functional connectivity in 31 

central executive, default mode, and salience networks. These complementary 32 
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neuroimaging traits had all been used to study the pathophysiology of Parkinson's 1 

disease133-135. In addition, 5 of our intrinsic brain activity associated genes (CALR, CALY, 2 

SLC47A1, CYP2C8, CYP2C9) were targets for 12 nervous system drugs136, such as 5 3 

psycholeptics (ATC code: N05) to produce calming effects, 2 anti-depressants (N06A) to 4 

treat MDD and related conditions, 2 anti-migraine (N02C), and one anti-dementia 5 

(N06D) (Supplementary Table 16).   6 

  7 

It is of particular interest to study the functional connectivity dysfunction in Alzheimer’s 8 

disease and identify the overlapped genes22,137. Our gene-level analysis replicated APOE 9 

and SORL1, which were frequently targeted in Alzheimer’s disease-candidate gene 10 

studies of functional connectivity29,138. More importantly, we uncovered more 11 

overlapped genes between intrinsic brain activity and Alzheimer’s disease, such as 12 

PVRL2, TOMM40, APOC1, MAPK7, CLPTM1, HESX1, BCAR3, ANO3, and YAP1 13 

(Supplementary Table 17). These genes had much stronger associations with intrinsic 14 

brain activity than brain structure. We also found many pleiotropic genes associated 15 

with serum metabolite, low density lipoprotein cholesterol, high density lipoprotein 16 

cholesterol, triglyceride, type II diabetes mellitus, and blood protein measurements, all 17 

of which might be related to the Alzheimer’s disease139,140. These results largely expand 18 

the overview of the shared genetic components among metabolic dysfunction, blood 19 

biomarkers, brain function, and Alzheimer’s disease, suggesting the potential value of 20 

integrating these traits in future Alzheimer’s disease research.  21 

 22 

To identify the tissues and cell types in which genetic variation yields differences in 23 

functional connectivity, we performed partitioned heritability analyses141 for tissue type 24 

and cell type specific regulatory elements142 (Methods). We focused on the 10 25 

functional connectivity traits that had heritability larger than 30%. At FDR 5% level, the 26 

most significant enrichments of heritability were observed in active gene regulation 27 

regions of fetal brain tissues, neurospheres, and neuron/neuronal progenitor cultured 28 

cells (Supplementary Fig. 10, Supplementary Table 18). We also tried to further identify 29 

brain cell type specific enrichments using chromatin accessibility data of two main gross 30 

brain cell types143 (i.e., neurons (NeuN+) and glia (NeuN-)) and multiple neuronal and 31 

glial cell subtypes, including oligodendrocyte (NeuN-/Sox10+), microglia, and astrocyte 32 
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(NeuN-/Sox10-), as well as GABAergic (NeuN+/Sox6+) and glutamatergic neurons 1 

(NeuN+/Sox6-). No significant enrichment was detected for these brain cell types after 2 

adjusting for multiple testing. Next, we performed MAGMA tissue-specific gene 3 

property132 analysis for 13 GTEx144 (v8) brain tissues (Methods). We found that genes 4 

with higher expression levels in human brain tissues generally had stronger associations 5 

with intrinsic brain activity, particularly for tissues sampled from cerebellar hemisphere 6 

and cerebellum regions (P < 1.9 × 10-5, Supplementary Fig. 11, Supplementary Table 7 

19).  8 

 9 

MAGMA132 gene-set analysis was performed to prioritize the enriched biological 10 

pathways (Methods). We found 59 significantly enriched gene sets after Bonferroni 11 

adjustment (P < 1.8 × 10-9, Supplementary Table 20). Multiple pathways related to 12 

nervous system were detected, such as “go neurogenesis” (GO: 0022008), “go neuron 13 

differentiation” (GO: 0030182), “go regulation of nervous system development” (GO: 14 

0051960), “go regulation of neuron differentiation” (GO: 0045664), “go cell 15 

morphogenesis involved in neuron differentiation” (GO: 0048667), and “go neuron 16 

development” (GO: 0048666). Other frequently prioritized gene sets included “dacosta 17 

uv response via ercc3 dn” (M4500), “go dna binding transcription factor activity” 18 

(GO:0003700), “go sequence specific dna binding” (GO:0043565), “dacosta uv response 19 

via ercc3 common dn” (M13522), “go negative regulation of rna biosynthetic process” 20 

(GO:1902679), “go negative regulation of biosynthetic process” (GO:0009890), and “go 21 

regulatory region nucleic acid binding” (GO: 0001067). M4500 and M13522 are 22 

ERCC3-associated gene sets related to xeroderma pigmentosum (XP) and 23 

trichothiodystrophy (TTD) syndromes145,146. The ERCC3 gene was highly relevant to the 24 

progression of Alzheimer's disease147. Patients affected with XP or TTD may have 25 

primary neuronal degeneration and reduced myelination146, which were closely related 26 

to abnormal functional connectivity148 and intellectual impairment149.  27 

 28 

DISCUSSION 29 

In the present study, we evaluated the influences of common variants on intrinsic brain 30 

functional architecture using uniformly processed rsfMRI data of 44,190 subjects from 31 

four independent studies. Genome-wide association analysis found hundreds of novel 32 
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loci related to intrinsic brain activity in the UKB British cohort, which were successfully 1 

replicated in independent datasets. The interactions across core neurocognitive 2 

networks (central executive, default mode, and salience) in the triple network model 3 

had genetic links with cognation and multiple brain disorders. The shared genetic 4 

factors among functional, structural, and diffusion neuroimaging traits were also 5 

uncovered. Gene-level analysis detected many overlapped genes between intrinsic brain 6 

activity and Alzheimer’s disease. The enriched tissues and biological pathways were also 7 

prioritized in bioinformatic analyses. Compared to the previous study37 with about 8,000 8 

subjects, this large-scale GWAS much improved our understanding of the genetic 9 

architecture of functional human brain.  10 

 11 

Our study faces a few limitations. First, the samples in our discovery GWAS were mainly 12 

from European ancestry. In our PRS analysis, we illustrated the negative effects of 13 

ethnicity when applying the European GWAS results on validation cohorts with 14 

non-European ancestry. The multi-ethnic genetic architecture of intrinsic brain activity 15 

needs to be further investigated when more rsfMRI data from global populations 16 

become available. Second, our study focused on the brain functional activity at rest. 17 

Recent study34 had found that combining rsfMRI and task functional magnetic 18 

resonance imaging (tfMRI) may result in higher heritability estimates and potentially 19 

boost the GWAS power. Thus, future studies could model rsfMRI and tfMRI together to 20 

uncover more insights into the genetic influences on brain function. In addition, we 21 

applied ICA in this study, which was a popular data-driven approach to characterize the 22 

functionally connected brain2. It is also of great interest to evaluate the performance of 23 

other popular rsfMRI approaches (such as seed-based analysis and graph theory) in 24 

these large-scale datasets. Finally, although we found the genetic links between brain 25 

function and other complex traits, the shared biological mechanisms and causal genetic 26 

relationships among these traits remain largely unclear. More efforts are required to 27 

enhance our knowledge of human brain using the accumulating publicly available 28 

imaging genetics data resources.  29 

 30 

URLs. 31 

Brain Imaging GWAS Summary Statistics, https://github.com/BIG-S2/GWAS;  32 
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Brain Imaging Genetics Knowledge Portal, https://bigkp.web.unc.edu/; 1 

UKB Imaging Pipeline, https://git.fmrib.ox.ac.uk/falmagro/UK_biobank_pipeline_v_1;  2 

PLINK, https://www.cog-genomics.org/plink2/;  3 

GCTA & fastGWA, http://cnsgenomics.com/software/gcta/; 4 

METAL, https://genome.sph.umich.edu/wiki/METAL;  5 

FUMA, http://fuma.ctglab.nl/;  6 

MGAMA, https://ctg.cncr.nl/software/magma; 7 

LDSC, https://github.com/bulik/ldsc/; 8 

FINDOR, https://github.com/gkichaev/FINDOR; 9 

NHGRI-EBI GWAS Catalog, https://www.ebi.ac.uk/gwas/home; 10 

The atlas of GWAS Summary Statistics, http://atlas.ctglab.nl/. 11 

 12 

METHODS 13 

Methods are available in the Methods section. 14 

Note: One supplementary information pdf file and one supplementary table zip file are 15 

available. 16 
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METHODS 17 

Imaging phenotypes and datasets. The rsfMRI datasets were consistently processed 18 

following the procedures in UK Biobank imaging pipeline10. Details about image 19 

acquisition, preprocessing, and phenotype generation in each dataset can be found in 20 

Supplementary Note. Following the previous study37, we generated two groups of 21 

phenotypes, including 76 node amplitude traits reflecting the spontaneous neuronal 22 

activity, 1,695 pairwise functional connectivity traits quantifying co-activity for node 23 

pairs, and 6 global functional connectivity measures to summarize all pairwise functional 24 

connectivity (Supplementary Table 21). For each continuous phenotype or covariate 25 

variable, values greater than five times the median absolute deviation from the median 26 

value were removed. We analyzed the following datasets separately: 1) the UKB 27 

discovery GWAS, which used data of individuals of British ancestry150 in the UKB study (n 28 

= 34,691); 2) four European validation GWAS: UKB White but Non-British (UKBW, n = 29 

1,970), ABCD European (ABCDE, n = 3,821), HCP (n = 495), and PNC (n = 510); 3) two 30 

non-European UKB validation GWAS: UKB Asian (UKBA, n = 446) and UKB Black (UKBBL, 31 

n = 232); and 4) two non-European non-UKB validation GWAS, including ABCD Hispanic 32 
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(ABCDH, n = 768) and ABCD African American (ABCDA, n = 1,257). See Supplementary 1 

Table 22 for a summary of these datasets and demographic information. The 2 

assignment of ancestry in UKB was based on self-reported ethnicity (Data-Field 21000), 3 

which was verified in Bycroft, et al. 150. The ancestry in ABCD was assigned by  4 

combining the self-reported ethnicity and ancestry inference results as in Zhao, et al. 119. 5 

The functional brain regions characterized in ICA were labelled using the automated 6 

anatomical labeling atlas57 (Supplementary Table 23) and were mapped onto major 7 

RSNs defined in Yeo, et al. 19 and Finn, et al. 17 (Supplementary Figs. 12-13, 8 

Supplementary Tables 24-26). Details of mapping procedures can be found in 9 

Supplementary Note. 10 

 11 

GWAS discovery and validation. Details of genotyping and quality controls can be found 12 

in Supplementary Note. SNP heritability was estimated by GCTA58 using all autosomal 13 

SNPs in the UKB British cohort. We adjusted the effects of age (at imaging), 14 

age-squared, sex, age-sex interaction, age-squared-sex interaction, imaging site, and the 15 

top 40 genetic principle components (PCs). Genome-wide association analysis was 16 

performed in linear mixed effect model using fastGWA151, while adjusting the same set 17 

of covariates as in GCTA. GWAS were also separately performed via Plink152 in European 18 

validation datasets UKBW, ABCDE, HCP, and PNC, where the effects of age, age-squared, 19 

sex, imaging sites (if applicable), age-sex interaction, age-squared-sex interaction, and 20 

top ten genetic PCs were adjusted.  21 

 22 

To validate results in the UKB British discovery GWAS, meta-analysis was performed 23 

using the sample-size weighted approach via METAL153. We checked whether the 24 

locus-level associations detected in the British GWAS can be validated in the 25 

meta-analyzed GWAS. We also performed meta-analysis for the UKB British discovery 26 

GWAS and the meta-analyzed validation GWAS to check whether the P-values became 27 

smaller after combining these results. Polygenic risk scores (PRS) were constructed on 28 

eight validation datasets using Plink. The BLUP effect sizes estimated from GCTA-GREML 29 

analysis in UKB British discovery GWAS were used as weights in PRS construction, which 30 

accounted for the LD structures. Ambiguous variants (i.e. variants with complementary 31 

alleles) were removed from analysis. We tried 17 P-value thresholds for variant 32 
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selection according to their marginal P-values from fastGWA: 1, 0.8, 0.5, 0.4, 0.3, 0.2, 1 

0.1, 0.08, 0.05, 0.02, 0.01, 1 × 10-3, 1 × 10-4, 1 × 10-5, 1 × 10-6, 1× 10-7, and 1 × 10-8. The 2 

best prediction accuracy achieved by a single threshold was reported for each 3 

phenotype, which was measured by the additional phenotypic variation that can be 4 

explained by the polygenic profile (i.e., the incremental R-squared), adjusting for the 5 

effects of age, gender, and top ten genetic PCs.  6 

 7 

The shared loci and genetic correlation. The genomic loci associated with intrinsic brain 8 

activity traits were defined using FUMA (version 1.3.5e). We input UKB British discovery 9 

summary statistics after reweighting the P-values using functional information via 10 

FINDOR79. After LD-based clumping, FUMA identified independent significant variants, 11 

which were defined as variants with a P-value smaller than the predefined threshold 12 

and were independent of other significant variants (LD r2 < 0.2). FUMA then constructed 13 

LD blocks for these independent significant variants by tagging all variants in LD (r2 ≥	14 

0.6) with at least one independent significant variant and had a MAF ≥ 0.0005. These 15 

variants included those from the 1000 Genomes reference panel that may not have 16 

been included in the GWAS. Moreover, within these significant variants, independent 17 

lead variants were identified as those that were independent from each other (LD r2 < 18 

0.1). If LD blocks of independent significant variants were close (<250 kb based on the 19 

closest boundary variants of LD blocks), they were merged into a single genomic locus. 20 

Thus, each genomic locus could contain multiple significant variants and lead variants. 21 

Independent significant variants and all the variants in LD with them (r2 ≥	 0.6) were 22 

searched by FUMA on the NHGRI-EBI GWAS catalog (version 2019-09-24) to look for 23 

previously reported associations (P < 9 × 10-6) with any traits. LDSC118 software (version 24 

1.0.1) was used to estimate and test the pairwise genetic correlation. We used the 25 

pre-calculated LD scores provided by LDSC, which were computed using 1000 Genomes 26 

European data. We used HapMap3154 variants and removed all variants in the major 27 

histocompatibility complex (MHC) region. The summary statistics of intrinsic brain 28 

activity traits were from the UKB British discovery GWAS and the resources of other 29 

summary statistics were provided in Supplementary Table 10.  30 

 31 
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Gene-level analysis and biological annotation. Gene-based association analysis was 1 

performed in UKB British participants for 18,796 protein-coding genes using MAGMA132 2 

(version 1.07). Default MAGMA settings were used with zero window size around each 3 

gene. We then carried out FUMA functional annotation and mapping analysis, in which 4 

variants were annotated with their biological functionality and then were linked to 5 

35,808 candidate genes by a combination of positional, eQTL, and 3D chromatin 6 

interaction mappings. Brain-related tissues/cells were selected in all options and default 7 

values were used for all other parameters in FUMA. For the detected genes in MAGMA 8 

and FUMA, we performed lookups in the NHGRI-EBI GWAS catalog (version 2020-02-08) 9 

to explore their previously reported gene-trait associations. We performed heritability 10 

enrichment analysis via partitioned LDSC141. Baseline models were adjusted when 11 

estimating and testing the enrichment scores for our tissue type and cell type specific 12 

annotations. Methods to analysis chromatin data of glial and neuronal cell subtypes can 13 

be found in Zhao, et al. 119. We also performed gene property analysis for the 13 GTEx144 14 

v8 brain tissues via MAGMA. Specifically, we examined whether the tissue-specific gene 15 

expression levels can be linked to the strength of the gene-trait association. MAGMA 16 

was also used to explore the enriched biological pathways, in which we tested 500 17 

curated gene sets and 9,996 Gene Ontology (GO) terms from the Molecular Signatures 18 

Database155 (MSigDB, version 7.0).  19 

 20 

Code availability  21 

We made use of publicly available software and tools listed in URLs. Other codes used in 22 

our analyses are available upon reasonable request.  23 

 24 

Data availability  25 

Our GWAS summary statistics can be downloaded at https://github.com/BIG-S2/GWAS. 26 

The individual-level data used in the present study can be obtained from four publicly 27 

accessible data resources: UK Biobank (http://www.ukbiobank.ac.uk/resources/), ABCD 28 

(https://abcdstudy.org/), HCP (https://www.humanconnectome.org/), and PNC 29 

(https://www.med.upenn.edu/bbl/philadelphianeurodevelopmentalcohort.html). Our 30 

results can also be easily browsed through our knowledge portal 31 

https://bigkp.web.unc.edu/.  32 
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Figure 1: SNP heritability estimates of intrinsic brain activity (n = 34,691 subjects). a)a)a) The SNP
heritability estimates of 1,777 intrinsic brain activity traits, including 76 amplitude traits, 1,695 pairwise functional
connectivity traits, and 6 global functional connectivity measures. Two parcellations with different dimensionalities
(25 and 100, respectively) were applied. b)b)b) The 6 pairwise functional connectivity traits that had heritability larger
than 30%.
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Figure 2: The associated genetic loci of intrinsic brain activity (n = 34,691 subjects). a)a)a) Selected
pairwise functional connectivity traits that had multiple associated genetic loci. b)b)b) Ideogram of all loci influencing
intrinsic brain activity.
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Figure 3: The selected shared loci associated with both intrinsic brain activity and other brain-
related complex traits and disorders. We illustrate local colocalizations (left, LD r2 ≥ 0.6) between intrinsic
brain activity traits (right) associated variants (n = 34,691 subjects) and previously reported associations of other
traits on the NHGRI-EBI GWAS catalog (https://www.ebi.ac.uk/gwas/).
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Figure 4: Pairwise genetic correlations between intrinsic brain activity and brain structure (n =
34,691 subjects). a)a)a) Genetic correlations between intrinsic brain activity traits and regional brain volumes. b)b)b)
Genetic correlations between intrinsic brain activity traits and DTI traits of white matter microstructure. The x
axis lists names of brain structural traits and y axis lists names of brain intrinsic brain activity traits. We adjusted
for multiple testing by the Benjamini-Hochberg procedure at 0.05 significance level (82×315 tests), while significant
pairs are labeled with stars.
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Figure 5: Pairwise genetic correlations between intrinsic brain activity and other complex traits (n
= 34,691 subjects). We adjusted for multiple testing by the Benjamini-Hochberg procedure at 0.05 significance
level (1, 777 × 30 tests), while significant pairs are labeled with stars. The y axis lists names of brain structural
traits and x axis lists names of other complex traits.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 30, 2020. ; https://doi.org/10.1101/2020.07.30.229914doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.30.229914
http://creativecommons.org/licenses/by-nc-nd/4.0/

