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Abstract: The ability of bacterial pathogens to form biofilms is an important virulence 6 

mechanism in relation to its pathogenesis and transmission. Biofilms play a crucial role in 7 

survival in unfavourable environmental conditions, act as reservoirs of microbial 8 

contamination and antibiotic resistance. For intestinal pathogen Campylobacter jejuni, 9 

biofilms are considered to be a contributing factor in transmission through the food chain and 10 

currently, there are no known methods for intervention. Here we present an unconventional 11 

approach to reducing biofilm formation by C. jejuni by the application of D-amino acids 12 

(DAs), and L-amino acids (LAs). We found that DAs and not LAs, except L-alanine, reduced 13 

biofilm formation by up to 70%. The treatment of C. jejuni cells with DAs changed the 14 

biofilm architecture and reduced the appearance of amyloid-like fibrils. In addition, a mixture 15 

of DAs enhanced antimicrobial efficacy of D-Cycloserine (DCS) up to 32% as compared 16 

with DCS treatment alone. Unexpectedly, D-alanine was able to reverse the inhibitory effect 17 

of other DAs as well as that of DCS. Furthermore, L-alanine and D-tryptophan 18 

decreased transcript levels of peptidoglycan biosynthesis enzymes alanine racemase (alr) and 19 

D-alanine-D-alanine ligase (ddlA) while D-serine was only able to decrease the transcript 20 

levels of alr. Our findings suggest that a combination of DAs could reduce biofilm formation, 21 

viability and persistence of C. jejuni through dysregulation of alr and ddlA.  22 
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Introduction 25 

Human pathogen Campylobacter jejuni is a leading foodborne bacterial cause of diarrhoeal 26 

disease which, according to the World Health Organization (WHO), occurs annually in 27 

approximately 10% of the world’s population, including 200 million children (1, 2). 28 

Campylobacters are increasingly resistant to antibiotics which is enhanced by their ability to 29 

form biofilms (3-5).  C. jejuni, in particular, is able to form mono- and mixed-culture biofilms 30 

in vitro and in vivo (6), which recognized as a contributing factor of C. jejuni transmission 31 

through the food chain where biofilms allow the cells to survive up to twice as long under 32 

atmospheric conditions and in water (7-9). Campylobacters exhibit intrinsic resistance to 33 

many antimicrobial agents such as cephalosporins, trimethoprim, sulfamethoxazole, 34 

rifampicin and vancomycin, and are listed in WHO list of priority pathogens for new 35 

antibiotics development (3, 4, 10-15). Biofilms are known to enhance antimicrobial 36 

resistance of many pathogens (3-5, 16); thus, unconventional approaches to controlling 37 

biofilms and improving the efficacy of currently used antibiotics are urgently needed. Recent 38 

investigations into potential antimicrobials include naturally occurring small molecules such 39 

as nitric oxide, fatty acids, and D-amino acids (DAs) (17-20). DAs showed an ability to 40 

disperse some bacterial biofilms in vitro,  such as those formed by Bacillus subtilis, 41 

Staphylococcus aureus , Enterococcus faecalis and Pseudomonas aeruginosa (21-26). It is 42 

well documented that microorganisms preferentially utilize L-amino acids (LAs) over DAs 43 
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(27, 28), yet naturally occurring DAs have been found in different environments, such as soil, 44 

as well as in human and animals tissues (27). In addition, many bacterial species secrete DAs 45 

in the stationary growth phase and when encased in biofilms. For example, Vibrio cholerae 46 

can produce D-methionine (D-met) and D-leucine (D-leu), while B. subtilis generates D-47 

tyrosine (D-tyr) and D-phenylalanine (D-phe) which can accumulate at millimolar 48 

concentrations (29, 30). The ability of bacteria to produce DAs is proposed to be a mechanism 49 

for self-dispersal of aging biofilms, and DA production may also inhibit the growth of other 50 

bacteria during maturation of mixed biofilms.  In a naturally occurring biofilms, DAs are 51 

found to be involved in the regulation of extracellular polymeric saccharide (EPS) 52 

production, for instance, D-tyr reduces the attachment of B. subtilis, S. aureus and P. 53 

aeruginosa to surfaces (22, 24, 31-33). Also, DAs can induce disassembly of matrix-54 

associated amyloid fibrils that link  the cells within the biofilm and contribute to the biofilm 55 

strength (34). Effective concentration of DAs required to inhibit the biofilm formation varies 56 

depending on bacterial strain and DAs concentration ranging between 3 μM and 10 mM (23, 57 

33, 35, 36). It’s important to note that some DAs exhibit inhibitory or toxic effects on a 58 

number of bacterial species and can interfere with the activities of peptidases and proteases 59 

involved in cell wall synthesis, for example, D-met can be incorporated into the 60 

peptidoglycan (PG) of bacterial cell walls, causing morphological and structural damage 61 

(37).   62 
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DAs appear to be able to disrupt the biofilms via multiple mechanisms, offering an advantage 63 

to other biofilm dispersal agents which target a single process essential for biofilm formation, 64 

indicating that DAs could form basis for a potential antibiofilm agent.  65 

Herein, we demonstrate that D-alanine (D-ala), L-alanine (L-ala), D-serine (D-ser), D-66 

methionine (D-met), and D-tryptophan (D-trp) can inhibit and disperse biofilms formed by 67 

C. jejuni and C. coli and that it may be possible to use these DAs to enhance the efficacy of 68 

antibiotics such D-cycloserine. Also, we present evidence that DAS target alanine racemase 69 

(alr) in C. jejuni, which leads to the inhibition of growth and biofilm formation. This finding 70 

may be the key to understanding the mechanisms of DAs action and also could provide an 71 

alternative strategy to control Campylobacter spp transmission via the food chain. 72 

Results 73 

Effect of LAs and DAs on biofilm formation by C. jejuni 74 

In order to investigate the effect of LAs and DAs on biofilm formation, different 75 

concentrations of LAs and DAs (0.1-100 mM) were tested for their ability to disrupt or 76 

disperse the Campylobacter biofilm. Two assays were applied, one to measure the percentage 77 

of biofilm inhibition (%) (Inhibition Assay) and the other to determine the effect on the 78 

dispersion of a formed biofilm (Dispersion Assay). Treatment of C. jejuni culture with DAs 79 

showed significant inhibitory effect (P < 0.001) on biofilm formation. Prescreening of 80 

individual LAs and DAs identified four (D-ala, D-met, D-ser, and D-trp) that had a potent 81 

ability to inhibit biofilm formation by C. jejuni (Fig 1). In contrast, the L-form of those amino 82 

acids, except L-ala, had no inhibitory effect, and some of them, L-met and L-trp, significantly 83 

increased biofilm formation.  84 
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 85 

 86 

Fig 1. Effect of 100 mM DAs and LAs on C. jejuni 11168-O biofilm. Inhibition of biofilm 87 

formation in the presence of 100 mM of; L-alanine (L-ala), D- alanine (D-ala), L-serine (L-88 

ser), D-serine (D-ser), L-methionine (L-met), D-methionine (D-met), L-tryptophan (L-trp), 89 

or D-tryptophan (D-trp). The asterisk (*) indicates a statistically significant difference using 90 

the unpaired Student's t-test, p<0.05. 91 

The DAs had a strong inhibitory effect on biofilm formation by C. jejuni at 10 mM 92 

concentration, with 48% inhibition for D-trp, while D-ala reduced biofilm formation by 28%. 93 

Interestingly, 50 mM L-ala reduced biofilm by up to 63% as compared to 45% by D-ala at 94 

same concertation (Fig 2). DAs had a disruptive effect on the existing biofilm where D-ser 95 

had the most significant effect (P < 0.001) on formed biofilm disruption, up to 71%, at 50 96 

mM (Fig 2), and the addition of 10 mM D-trp led to 42% disruption of formed biofilm. Based 97 

on the results of DAs inhibitory and dispersal activities, the concentration between 5 to 10 98 

mM was chosen for all subsequent assays.  99 
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 100 

Fig 2. Inhibition and dispersion response of C. jejuni 11168-O biofilms in the presence of 101 

LAs and DAs at different concentrations. A) Dispersion of the existing biofilm induced by 102 

different concentrations of LAs and DAs. B) Inhibition of biofilm formation by different 103 

concentrations of LAs and DAs.  104 

In order to elucidate strain-specific responses, C. jejuni 11168-O, C. jejuni 81-176, and C. 105 

coli NCTC 11366, were used to confirm the inhibitory effect of D-ala, D-ser, D-met, and D-106 

trp at 10 mM. The effect of DAs on biofilm formation was strain-dependent, where D-ser 107 

and D-trp had the greatest inhibitory effect on biofilm formation by 11168-O, D-ala and D-108 

met were most effective against 81-176, and C. coli (Fig 3).   109 

The equimolar mixture of DAs and LAs (1:1) showed ≥ 40% inhibition of C. jejuni 11168-110 

O biofilm formation (Fig 4). The mixture of the four amino acids, L-ala, D-met, D-ser, D-trp 111 

(5:5:2:5 mM), was more potent, with up to 49% inhibition of biofilm formation; however, 112 

the addition of D-ala to D-ser decreased the inhibitory effect (Fig 4).   113 
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114 

 115 

Fig 3. Quantitative analysis of biofilm inhibition of A) C. jejuni 11168-O, B) C. jejuni 81-116 

176, and C) C. coli NCTC 11366 in the presence of 10 mM of DAs.  117 

 118 
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 119 

Fig 4. Effect of the equimolar mixture of DAs and LAs on C. jejuni 11168-O biofilm. The 120 

asterisk (*) indicates a statistically significant difference using the unpaired Student's t-test, 121 

p<0.05.  122 

 123 

Microscopic characterization of the dispersion effect of DAs on biofilm formation 124 

Microscopic examination of formed biofilms, treated with individual DAS, by confocal 125 

microscopy demonstrated a significant reduction in biofilm formation compared to that of 126 

untreated controls (Fig 5). The disassembly of the amyloid fibrils, which connect the cells 127 

within the structure of C. jejuni biofilms, can also be observed (Fig 6). 128 
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 129 

Fig 5. Confocal scanning laser microscopy images of C. jejuni 11168-O biofilm in presence 130 

of 25 mM of DAs. C. jejuni biofilm at 48h, imaged using dual fluorescence labelling by 131 

CLSM. a) Untreated, b) D-ala, c) L-ala, d) D-ser, e) D-met, f) D-trp. Cells were stained with 132 

4′,6-diamidino-2-phenylindole (DAPI, blue) and amyloid fibrils by Thioflavin T (ThioT, 133 

green) (Scale bar= 20µm). 134 

 135 

Fig 6. The mature biofilm of C. jejuni 11168-O and amyloid-like fibres. C. jejuni biofilm 136 

imaged using dual fluorescence labelling by CLSM.  Red arrow indicates for amyloid-like 137 

fibrils (ThioT, green) and bacterial cells within the biofilm (DAPI, blue). (Scale bar= 10µm). 138 

 139 
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Expression level of alr and ddlA in the presence of LAs and DAs 140 

In order to interrogate the mechanism of inhibitory action of DAs and L-ala, the expression 141 

of C. jejuni PG biosynthesis enzymes alanine racemase (alr) and D-Ala-D-Ala ligase (ddlA) 142 

in the presence and absence of DAs and LAs were examined. The relative expression of ddl 143 

and alr was downregulated by 1.25 to 4-fold below the cut-off level, respectively, following 144 

treatment of cells with 25 mM of L-ala (Table 1). In contrast, 25 mM of D-ala upregulated 145 

the expression of ddl by 10-fold and alr by 38-fold. Treatment of cells with 25 mM D-trp 146 

downregulated the expression level of ddl by 1.65-fold and alr by 3-fold whereas D-ser (25 147 

mM) downregulated the expression of alr by 2.92-fold and upregulated ddl by 2.58-fold. No 148 

significant effect on the expression of alr and ddl was observed following treatment with D-149 

met (Table 1). Interestingly, treatment of cells with D-Cycloserine (DCS) (10ng/ml), as a 150 

positive control, had a greater effect, downregulating the expression of ddlA with a 7-fold 151 

change as compared to 2.85-fold change for alr. No loss of cell viability could be detected 152 

after 2-h exposure to DAs or DCS. 153 

Table 1. Analysis of the relative expression of alr and ddlA genes in the present of LAs and 154 

DAs by real-time PCR (qRT-PCR). The relative expression of alr and ddl genes after 155 

incubation of C. jejuni 11168-O cells with 25 mM of LAs and DAs for 2 hrs. 156 

 

Fold change 

upregulated downregulated 

Gene name D-ala D-ser D-met L-ala D-ser D-trp DCS 

alr 38±7 - - 4.18±0.3 2.92±0.2 1.64±0.3 2.85±0.2 

ddlA 10±2 2.58±0.6 - 1.25±0.1 - 3.42±0.4 7.15±0.2 
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D-Ala can reverse the inhibitory effect of DAs and DCS 157 

D-ala has been reported to reverse the antimicrobial efficacy of DCS in Mycobacterium spp 158 

(38, 39). Considering that the MIC range of DCS for Campylobacter spp reported to be 159 

between 0.25 μg/ml-4 μg/ml (40), we tested the effect of sub-inhibitory concentration of 160 

50ng/ml DCS on C. jejuni cells and determined that DCS can reduce C. jejuni growth and 161 

biofilm formation by up to 76% (Fig 7). Furthermore, this effect can be reversed by 162 

increasing the concentration of D-ala from 10 mM to 50mM (Fig 7). Combining D-ala with 163 

other DAs also decreased the inhibition of biofilm formation. In contrast, a combination of 164 

DAs with DCS increased the efficacy of DCS at 10 ng/ml by 32% as compared with DCS 165 

treatment alone (Fig 8).   166 

 167 

 Fig 7. Reversal of DCS growth inhibition by D-alanine at different concentrations in C. 168 

jejuni 11168-O.  169 
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 170 
Fig 8. Effect of DCS on C. jejuni 11168-O biofilm when combined with L-ala, D-ser, D-met, 171 

D-trp (5:5:2:5 mM).  172 

Discussion 173 

This study describes the identification of specific small, naturally occurring molecules, DAs, 174 

which are highly effective in preventing and disrupting C. jejuni biofilms, in concert with 175 

that previously shown for B. subtilis, S. aureus and P. aeruginosa (24, 36, 41). While D-met 176 

and D-trp are able to inhibit the biofilm formation of C. jejuni, L-form of those amino acids 177 

significantly increased biofilm formation. It is possible that C. jejuni is able to catabolize L-178 

form of those amino acids (42), which promotes bacterial growth, and consequently 179 

formation of the biofilm. This is consistent with the previous report of B. subtilis growth 180 

inhibition by D-form of Tyr, Leu, and Trp, and the L-form of those amino acids counteracting 181 

this effect (23). The effect of DAs on inhibition and dispersal of C. jejuni biofilms showed a 182 

concentration-dependent response, with D-ser, D-met and D-trp being most effective in 183 

inhibition and dispersion of the biofilm. We observed that D-met, and D-trp, have a 184 

significant dispersive effect on biofilms at concentrations of ≥10 mM, similar to that observed 185 
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for S. aureus and P. aeruginosa (43). It’s important to note that, the inhibitory effect on the 186 

growth of C. jejuni by DAs, except D-met, could be reversed by D-ala, similar to that 187 

observed for B. subtilis , M. tuberculosis and Escherichia coli (38, 39, 44, 45).  188 

Microscopic analysis confirmed the effect of DAs on biofilm formation of C. jejuni, and 189 

particularly, the formation of amyloid-like fibrils within the biofilm matrix. Matrix-190 

associated amyloid fibrils had been previously reported to form a part of C. jejuni biofilm 191 

(46), and similar DA-induced disassembly of matrix-associated amyloid fibers of B. subtilis  192 

biofilm, had been proposed as a biofilm-dispersal mechanism (34, 41). Together, these data 193 

allow us to speculate that the ability of DAs to promote the dispersal of formed C. jejuni 194 

biofilms, could involve the triggering the disassembly of matrix-associated amyloid fibrils. 195 

While the mechanisms of antimicrobial and antibiofilm action of DAs, particularly, D-ser, 196 

D-met, and D-trp, are not fully understood, DAs effect on C. jejuni growth and biofilm 197 

formation may be similar to that for Alcaligenes faecalis, where D-met incorporates into PG, 198 

causing morphological and structural damage to the cell wall (30, 37, 47), and consequently 199 

suppresses bacterial growth. To explore that possibility, we interrogated the effect of DAs 200 

and LAs on the expression level of two genes in C. jejuni; alanine racemase (alr) (Cj0905c), 201 

and D-Ala-D-Ala ligase (ddlA) (Cj0798c) (48, 49). Both genes are encoding enzymes 202 

involved in an important step in D‐Ala metabolism (44, 50), which is essential for the 203 

synthesis of PG of the bacterial cell wall (45, 51, 52). Two main reactions are involved in 204 

this process, first the conversion of L‐Ala to D‐Ala by alanine racemase (alr), and the 205 

formation of D‐alanyl–D‐alanine dipeptide (D-Ala-D-Ala) from D‐Ala by D‐alanine–D‐206 
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alanine ligase (ddl) (53). RT-PCR data shows that DCS able to reduce both C. jejuni alr and 207 

ddlA expression levels, similarly to L-ala, and D-trp. Interestingly, D-ser reduced alr 208 

expression levels, but not that of ddlA, suggesting that ddlA may not be the primary target for 209 

D-ser or DCS in C. jejuni. Furthermore, the ability of D-ala to reverse the inhibitory effect 210 

of DCS and D-ser suggests that the inhibitory effect of DCS and D-ser on C. jejuni can be 211 

mediated through inhibition of alr alone. In contrast, in M. tuberculosis, both alr and ddl 212 

were reported to be the primary targets of DCS (39), and S. Halouska, et al. (54) suggested 213 

that ddl ay be a primary target of DCS, rather than alr. 214 

It is interesting to note that bacterial PG dipeptide D-Ala-D-Ala, which is generated by D-215 

Ala-D-Ala ligase (ddlA), is the usual target for vancomycin, but in C. jejuni, PG contains D-216 

Alanyl-D-Lactate (D-Ala-D-Lac) termini resulting in reduced efficacy of vancomycin by up 217 

to 1,000-fold. Substitution by D-alanyl-D-serine (D-Ala-D-ser) termini reduces the efficacy 218 

of this antibiotic by up to 7-fold (4, 55-58). This further suggests that alr and not ddlA, is 219 

likely to be the primary target for D-ser and DCS in C. jejuni,. 220 

Our results suggest that DAs might have a promising application in enhancing the activity 221 

antibiotics where the combination of DAs with DCS, synergistically increased the ability of 222 

DCS to inhibit C. jejuni biofilm formation and growth. The enhancement of DCS efficacy 223 

with DAs is likely to lower minimal dose requirement, which would consequently reduce the 224 

drug toxicity. DAs had also been reported to enhance the effectiveness for colistin and 225 

ciprofloxacin, when used against biofilms of P. aeruginosa, and rifampin used against 226 

biofilms of clinical isolates of S. aureus (43).  227 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 31, 2020. ; https://doi.org/10.1101/2020.07.30.230045doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.30.230045


 

15 

 

To summarize, this study suggests that (i) DAs show the inhibitory effect at millimolar 228 

concentrations on biofilm formation by C. jejuni; (ii) DAs can trigger C. jejuni biofilm-229 

disassembly; (iii) a combination of DAS can enhance the efficacy of DSC, (iv) DAs inhibit 230 

growth and biofilm formation of C. jejuni by repressing the expression of alr. The data 231 

described here contribute to the understanding of the mechanisms involved in biofilm 232 

dispersion and inform on identification of potential antimicrobial drug targets. 233 

Materials and Methods  234 

C. jejuni strains and growth conditions. Bacterial strains used in this study were C. jejuni 235 

11168-O (courtesy of Prof. D. G. Newell, United Kingdom), C. jejuni 81-176 (courtesy of 236 

Prof. Christine Szymanski, University of Alberta, Alberta), and C. coli NCTC 11366 237 

(Griffith University culture collection, Australia). Cells were grown at 42ºC microaerobically 238 

(85% N2, 10% CO2 and 5% O2) on Mueller-Hinton agar (MHA) and in Mueller-Hinton broth 239 

(MHB), supplemented with Trimethoprim (5 g ml-1) and Vancomycin (10 g ml-1) (TV) 240 

(Sigma). 241 

Chemical and reagents used in this study. L-alanine (L-ala), D-alanine (D-ala), L-serine 242 

(L-ser), D-serine (D-ser), L-methionine (L-met), D-methionine (D-met), L-tryptophan (L-243 

trp), D-tryptophan (D-trp) D- cycloserine were from Sigma-Aldrich. Individual stock 244 

solutions of 100 mM of DAs in Phosphate-buffered saline (PBS) (PH 7.2).  245 

Biofilm formation and dispersion assays. Overnight cultures of C. jejuni strains were 246 

diluted to an OD600 of 0.05, and 2 mL of cell suspension was placed into 24-wells flat-bottom 247 

polystyrene tissue culture plates (Geiner Bio-One).  Different concentrations of DAs (1-100 248 
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mM) were added directly to the culture in the wells and incubated at 42°C under 249 

microaeroaerobic conditions for 48 hours. For dispersion assay, C. jejuni cells were grown 250 

as described above, except no DAs were added. Then PBS containing the appropriate 251 

concentration of DAs (0.1-100 mM) was added to the wells and plates incubated for further 252 

24 hrs. For crystal violet staining, plates were rinsed with water once (gently) and dried at 253 

55°C for 30 minutes and stained using modified crystal violet staining method as described 254 

previously (59). Data are representative of three independent experiments, and values are 255 

expressed in presented as Mean± S.D. 256 

RNA extraction, cDNA synthesis and RT-qPCR of Alanine racemase (alr), D-alanine-257 

D-alanine ligase (ddlA). C. jejuni 11168-O cells were grown overnight microaerobically in 258 

MHB at 42ºC. Cells were collected by centrifuging at 4000 rpm for 15 minutes. The pellets 259 

were suspended in MHB and OD600 adjusted to 1 (~3×109 cells/ml) and subsequently 260 

challenged with (1) 25 mM of L-ala, (2)25 mM of D-ala ,(3) 25 mM of D-ser, (4) 25 mM of 261 

D-met or ,(5) 25 mM of D-trp for 2-h; (5) 10ng/ml of DCS (below MIC which 250 ng/ml) 262 

was used as control. The bacterial survival was confirmed by viable cells counts after 2-h. 263 

Then, cells were collected by centrifugation at 4000 rpm for 15 minutes and pellets used for 264 

RNA extraction by RNeasy kit according to the manufacturer's protocol (Bioline). cDNA 265 

synthesis and RT-qPCR was performed as previously described  (60). The following primers 266 

sets were used: alr (Cj0905c) forward 3-AGCCAAAAATTTAGGAGTTT-5 and alr reverse 267 

5-GAGGACGATGTGATAGTATT-3, ddl (Cj0798c) forward 3-268 

TTATTTTTTGTGATGAAGAAAGAA-5 and sdl reverse 5-269 

GAGTTCTTTTTCTTTTTTATAAGC-3. A gryA gene was used as a housekeeping control 270 

gene, using the primers, gryA forward 3-CCACTGGTGGTGAAGAAAATTTA-5 and gryA 271 

reverse 5-AGCATTTTACCTTGTGTGCTTAC-3. Relative n-fold changes in the 272 

transcription of the examined genes between the treated and non-treated samples were 273 
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calculated using the relative quantification (RQ), also known as 2−ΔΔCT method, where ΔΔCT 274 

= ΔCT (treated sample) − ΔCT (untreated sample), ΔCT = CT (target gene) − CT (gyrA), and CT 275 

is the threshold cycle value for the amplified gene. The fold change due to treatment was 276 

calculated as -1/2−ΔΔCT (61, 62). The data are presented as Mean± S.D and were calculated 277 

from triplicate cultures and are representative of three independent experiments.  278 

Confocal laser scanning microscopy. Overnight cultures of C. jejuni cells were diluted to 279 

an OD600 of 0.05, and 3 mL of each sample was placed into duplicate wells of a 6-well flat-280 

bottom polystyrene tissue culture plate containing a glass coverslip to enable the formation 281 

of biofilm (Geiner Bio-One). 25 mM of LAs and DAs were added directly to the wells, and 282 

then the plates were incubated at 42°C microaerobically for 48 hours. After the incubation, 283 

MH broth was removed, and the wells were gently washed with PBS solution twice to remove 284 

planktonic cells. The coverslips were carefully removed by using sterile needle and forceps 285 

to new 6-well plates and fixed using 5% formaldehyde solution for 1 h at room temperature. 286 

Then, the coverslips were gently washed with 2 mL of PBS and prepared for staining with 287 

fluorescent dyes. 288 

Staining of C. jejuni cells. The fluorescent DNA-binding stain DAPI (Sigma Aldrich) was 289 

used to visualise cell distribution as described previously (63). Thioflavin T (ThT) at 20 µM 290 

was then used to treat the coverslips for 30 minutes. ThT emits green fluorescence upon 291 

binding to cellulose or amyloids (64, 65). The coverslips then were mounted on glass slides 292 

using the mounting medium (Ibidi GmbH, Martinsried, Germany) and sealed with 293 

transparent nail varnish. Microscopy (Nikon A1R+) (Griffith University) was performed with 294 

two coverslips per sample from at least two separate experiments. All images were processed 295 
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using ImageJ analysis software version 1.5i (National Institutes of Health, Besthda, 296 

Maryland). 297 

Statistical analysis. The statistical analyses performed using GraphPad Prism, version 6.00 298 

(for Windows; GraphPad Software) to calculate statistically significant differences when P‐299 

value by applied Student’s t-test. 300 
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