Abstract
αSynuclein aggregation at the synapse is an early event in Parkinson’s disease and is associated with impaired striatal synaptic function and dopaminergic neuronal death. The cysteine string protein (CSPα) and αsynuclein have partially overlapping roles in maintaining synaptic function and mutations in each cause neurodegenerative diseases. CSPα is a member of the DNAJ/HSP40 family of co-chaperones and like αsynuclein, chaperones the SNARE complex assembly and neurotransmitter release. αSynuclein can rescue neurodegeneration in CSPαKO mice. However, whether αsynuclein aggregation alters CSPα expression and function is unknown. Here we show that αsynuclein aggregation at the synapse induces a decrease in synaptic CSPα and a reduction in the complexes that CSPα forms with HSC70 and STGa. We further show that viral delivery of CSPα rescues in vitro the impaired vesicle recycling in PC12 cells with αsynuclein aggregates and in vivo reduces synaptic αsynuclein aggregates restoring normal dopamine release in 1-120hαsyn mice. These novel findings reveal a mechanism by which αsynuclein aggregation alters CSPα at the synapse, and show that CSPα rescues αsynuclein aggregation-related phenotype in 1-120hαsyn mice similar to the effect of αsynuclein in CSPαKO mice. These results implicate CSPα as a potential therapeutic target for the treatment of early-stage PD.
Competing Interest Statement
The authors have declared no competing interest.
Abbreviations
- CSPα
- cysteine string protein
- KO
- knock-out
- 1-120hαSyn
- 1-120 truncated human αsynuclein
- PD
- Parkinson’s disease
- SNARE
- soluble N-ethylmaleimide sensitive fusion attachment protein receptor