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ABSTRACT 10 

Using time-reversible Markov models is a very common practice in phylogenetic 11 

analysis, because although we expect many of their assumptions to be violated by empirical 12 

data, they provide high computational efficiency. However, these models lack the ability to 13 

infer the root placement of the estimated phylogeny. In order to compensate for the inability of 14 

these models to root the tree, many researchers use external information such as using outgroup 15 

taxa or additional assumptions such as molecular-clocks. In this study, we investigate the utility 16 

of non-reversible models to root empirical phylogenies and introduce a new bootstrap measure, 17 

the rootstrap, which provides information on the statistical support for any given root position. 18 

Availability and implementation: A python script for calculating rootstrap support values is 19 

available at https://github.com/suhanaser/Rootstrap.  20 

[phylogenetic inference, root estimation, bootstrap, non-reversible models] 21 
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MAIN TEXT 23 

The most widely used method for rooting trees in phylogenetics is the outgroup method. 24 

Although the use of an outgroup to root an unrooted phylogeny usually outperforms other 25 

rooting methods (Huelsenbeck, et al. 2002), the main challenge with this method is to find an 26 

appropriate outgroup (Watrous and Wheeler 1981; Maddison, et al. 1984; Smith 1994; 27 

Swofford, et al. 1996; Lyons-Weiler, et al. 1998; Milinkovitch and Lyons-Weiler 1998). 28 

Outgroups that are too distantly-related to the ingroup may have substantially different 29 

molecular evolution than the ingroup, which can compromise accuracy. And outgroups that are 30 

too closely related to the ingroup may not be valid outgroups at all.  31 

It is possible to infer the root of a tree without an outgroup using molecular clocks 32 

(Huelsenbeck, et al. 2002; Drummond, et al. 2006). A strict molecular-clock assumes that the 33 

substitution rate is constant along all lineages, a problematic assumption especially when the 34 

ingroup taxa are distantly related such that their rates of molecular evolution may vary.  35 

Relaxed molecular-clocks are more robust to deviations from the clock-like behaviour 36 

(Drummond, et al. 2006), although previous studies have shown that they can perform poorly 37 

in estimating the root of a phylogeny when those deviations are considerable (Tria, et al. 2017). 38 

  Other rooting methods rely on the distribution of branch lengths, including Midpoint 39 

Rooting (MPR) (Farris 1972), Minimal Ancestor Deviation (MAD) (Tria, et al. 2017), and 40 

Minimum Variance Rooting (MVR) (Mai, et al. 2017). Such methods also assume a clock-like 41 

behaviour; however, they are less dependent on this assumption as the unrooted tree is 42 

estimated without it. Similar to inferring a root directly from molecular-clock methods, the 43 

accuracy of those rooting methods decreases with higher deviations from the molecular-clock 44 

assumption (Mai, et al. 2017). 45 
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Other less common rooting methods that can be used in the absence of outgroup are: 46 

rooting by gene duplication (Dayhoff and Schwartz 1980; Gogarten, et al. 1989; Iwabe, et al. 47 

1989), indel-based rooting (Rivera and Lake 1992; Baldauf and Palmer 1993; Lake, et al. 48 

2007), rooting species tree from the distribution of unrooted gene trees (Allman, et al. 2011; 49 

Yu, et al. 2011), and probabilistic co-estimation of gene trees and species tree (Boussau, et al. 50 

2013). 51 

All the methods mentioned above, apart from the molecular-clock, infer the root 52 

position independently of the ML tree inference. The only existing approach to include root 53 

placement in the ML inference is the application of non-reversible models. Using non-54 

reversible substitution models relaxes the fundamental assumption of time-reversibility that 55 

exists in the most widely used models in phylogenetic inference (Jukes and Cantor 1969; 56 

Kimura 1980; Hasegawa, et al. 1985; Tavaré 1986; Dayhoff 1987; Jones, et al. 1992; Tamura 57 

and Nei 1993; Whelan and Goldman 2001; Le and Gascuel 2008). This in itself is a potentially 58 

useful improvement in the fit between models of sequence evolution and empirical data. In 59 

addition, since non-reversible models naturally incorporate a notion of time, the position of the 60 

root on the tree is a parameter that is estimated as part of the ML tree inference. Since the 61 

incorporation of non-reversible models in efficient ML tree inference software is relatively new 62 

(Minh, et al. 2020), we still understand relatively little about the ability of non-reversible 63 

models to infer the root of a phylogenetic tree, although a recent simulation study has shown 64 

some encouraging results (Bettisworth and Stamatakis 2020). 65 

Regardless of the rooting method and the underlying assumptions, it is crucial that we 66 

are able to estimate the statistical confidence we have in any particular placement of the root 67 

on a phylogeny. A number of previous studies have sensibly use ratio likelihood tests such as 68 

the Shimodaira-Hasegawa (SH) test (Shimodaira and Hasegawa 1999) and the Approximately 69 

Unbiased (AU) test (Shimodaira 2002) to compare a small set of potential root placements, 70 
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rejecting some alternative root placements in favour of the ML root placement e.g.(Nardi, et 71 

al. 2003; Steenkamp, et al. 2006; Jansen, et al. 2007; Moore, et al. 2007; Williams, et al. 2010; 72 

Kocot, et al. 2011; Zhou, et al. 2011; Whelan, et al. 2015; Zhang, et al. 2018), these tests are 73 

still somewhat limited in that they do not provide the level of support the data have for a certain 74 

root position.   75 

There is strong empirical evidence that molecular evolutionary processes are rarely 76 

reversible (Squartini and Arndt 2008; Naser-Khdour, et al. 2019), but few studies have 77 

explored the accuracy of non-reversible substitution models to root phylogenetic trees 78 

(Huelsenbeck, et al. 2002; Yap and Speed 2005; Williams, et al. 2015; Cherlin, et al. 2018; 79 

Bettisworth and Stamatakis 2020). Most studies that have looked at this question in the past 80 

have focused on either simulated datasets (Huelsenbeck, et al. 2002; Jayaswal, et al. 2011; 81 

Cherlin, et al. 2018; Bettisworth and Stamatakis 2020) or relatively small empirical datasets 82 

(Yang and Roberts 1995; Yap and Speed 2005; Jayaswal, et al. 2011; Heaps, et al. 2014; 83 

Williams, et al. 2015; Cherlin, et al. 2018). In both cases, the addressed substitution models 84 

were nucleotide models, and to our knowledge, no study has yet investigated the potential of 85 

amino acid substitution models in inferring the root placement of phylogenetic trees.  86 

In this paper, we focus on evaluating the utility of non-reversible amino acid and 87 

nucleotide substitution models to root the trees, and we introduce a new metric, the rootstrap 88 

support value, which estimates the extent to which the data support every possible branch as 89 

the placement of a root in a phylogenetic tree.  Unlike previous studies that used Bayesian 90 

methods with non-reversible substitution models to infer rooted ML trees (Heaps, et al. 2014; 91 

Cherlin, et al. 2018), we will conduct our study in a Maximum likelihood framework using IQ-92 

TREE (Minh, et al. 2020). A clear advantage of the Maximum likelihood over the Bayesian 93 

analysis is that there is no need for a prior on the parameter distributions, which sometimes can 94 

affect tree inference (Huelsenbeck, et al. 2002; Cherlin, et al. 2018). Even though estimating 95 
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the non-reversible model’s parameters by maximizing the likelihood function seems more 96 

computationally intensive than calculating posterior probabilities (Huelsenbeck, et al. 2002), 97 

the IQ-TREE algorithm sufficiently fast to allow us to estimate root placements, with rootstrap 98 

support for very large datasets. 99 

MATERIAL AND METHODS 100 

The “Rootstrap” Support, and measurements of error in root placement 101 

To compute rootstrap supports, we conduct a bootstrap analysis, i.e., resampling alignment 102 

sites with replacement, to obtain a number of bootstrap trees. We define the rootstrap support 103 

for each branch in the ML tree, as the proportion of bootstrap trees that have the root on that 104 

branch. Since the root can be on any branch in a rooted tree, the rootstrap support values are 105 

computed for all the branches including external branches. The sum of the rootstrap support 106 

values along the tree are always smaller than or equal to one. A sum that is smaller than one 107 

can occur when one or more bootstrap replicates are rooted on a branch that does not occur in 108 

the ML tree (Fig. 1). 109 

 110 

FIGURE 1. Illustration of the rootstrap concept. (a) The bootstrap replicates trees. (b) 111 

The ML tree with the rootstrap support values for each branch. Note that the sum of the 112 

rootstrap support values is less than 100% due to 100 bootstrap replicates trees (green) that 113 

have their root at a branch that does not exist in the ML tree. 114 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 2, 2020. ; https://doi.org/10.1101/2020.07.31.230144doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.31.230144
http://creativecommons.org/licenses/by/4.0/


NASER-KHDOUR ET AL. 

 115 

If the true position of the root is known (e.g. in simulation studies) or assumed (e.g. in 116 

the empirical cases we present below), we can calculate additional measurements of the error 117 

of the root placement. We introduce two such measurements here: root branchlength error 118 

distance (rBED) and root split error distance (rSED). Since the non-reversible model infers 119 

the exact position of the root on a branch, we define the root branchlength error distance 120 

(rBED) as the range between the minimum and maximum distance between the inferred root 121 

position and the “true root” branch. If the true root is on the same branch as the ML tree root, 122 

then rBED will be between 0 and the distance between the ML tree root and the farthest point 123 

on that branch (Fig. 2). Since rBED is based on branch lengths only, it ignores the absolute 124 

number of splits between the ML tree root and the true root; and therefore, the rBED for the 125 

true root being on the same ML root branch can be bigger than the rBED for the true root 126 

being on a different branch (e.g. Fig. 2). In order to account for the number of splits (nodes) 127 

between the ML tree root and the true root, we define root split error distance (rSED) as the 128 

number of splits between the ML root branch and the branch that is believed to contain the 129 

true root (Fig. 2). 130 

 131 

FIGURE 2.  An example to illustrate the root error distance. (a) the ML rooted tree, (b) the 132 

root branch-length error distance (rBED) if the true root is believed to be on the same ML 133 
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root branch (rSED = 0), (c) the rBED if the true root is believed to be on the branch between 134 

D and the clade of C + B (rSED = 3). 135 

 136 

The rootstrap, rBED, and rSED assess different aspects of the root placement. While the 137 

rootstrap offers an indication of the support that the data have for a certain branch to be the 138 

root branch, rBED and rSED provide an estimation to the accuracy of the method in 139 

estimating the exact root position if the root position is known or assumed in advance. In 140 

other words, the rootstrap value is a measure for the adequacy of the data to validate a root 141 

placement given the model, while rBED, and rSED are measures of the accuracy of the non-142 

reversible model to find the root placement given the data. 143 

Empirical Datasets 144 

Because non-reversible amino acid models require the estimation of a large number of 145 

parameters, and because we suspected that the information in any such analysis on the 146 

placement of the root branch of a tree might be rather limited, we searched for empirical 147 

datasets that met a number of stringent criteria:  148 

(1) Existence of both DNA and amino acid multiple sequences alignments (MSA) for the 149 

same loci. 150 

(2)  Genome-scale MSAs to ensure that the MSAs have as much information as possible with 151 

which to estimate the non-reversible models’ free parameters and the root position. Since 152 

we do not know the number of sites required to correctly infer the rooted ML tree, we 153 

define 100,000 sites as the minimum number of required sites. This also allows us to 154 

subsample the dataset to explore the ability of smaller datasets to infer root positions. 155 

(3)  Highly-curated alignments: since the quality of the inferred phylogeny is highly 156 

dependent on the quality of the MSA (Philippe, et al. 2011), we focussed on datasets that 157 

were highly-curated for misalignment, contamination, and paralogy. 158 
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(4)  Existence of several clades for which there is a very strong consensus regarding their root 159 

placement. Since we are interested in evaluating the performance of non-reversible 160 

models to infer root placements in an empirical rather than a simulation context, we need 161 

to identify monophyletic sub-clades for which we can be almost certain about their root 162 

position. This enables us to divide the dataset into non-overlapping sub-clades for which 163 

we are willing to assume we know the root positions. Furthermore, we define the 164 

minimum number of taxa in each sub-dataset as five. 165 

We initially identified a number of genome-scale datasets that contained large numbers of 166 

nucleotide and amino acid MSAs. In many cases, it was difficult to determine whether these 167 

alignments had been rigorously curated, and even more challenging to find datasets for which 168 

the root position of a number of subclades could be assumed with confidence. The only dataset 169 

that met all of our criteria was a dataset of placental mammals with 78 ingroup taxa and 170 

3,050,199 amino acids (Wu, et al. 2019). This dataset was originally published as an MSA 171 

(Liu, et al. 2017) based on very high-quality sequences from Ensembl, NCBI, and GenBank 172 

databases. After receiving detailed critiques for potential alignment errors (Gatesy and Springer 173 

2017), the dataset was further processed to remove potential sources of bias and error, and an 174 

updated version of the dataset was recently published (Wu, et al. 2018). The fact that this 175 

alignment comes from one of the most well-studied clades on the planet, has been 176 

independently curated and critiqued by multiple groups of researchers and includes truly 177 

genome-scale data, makes it ideally suited for our study. 178 

 179 

Selecting Clades with a Well-Defined Root 180 

Since our main objective in this study is to evaluate the effectiveness of non-reversible 181 

models and the rootstrap value in estimating and measuring the support for a given root 182 

placement on empirical datasets, we must identify a collection of sub-clades of the larger 183 
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mammal dataset for which it is reasonable to assume a root position. We acknowledge, of 184 

course, that outside a simulation framework it is not possible to be certain of the position of the 185 

root position of a clade. Nevertheless, it is possible to identify clades for which the position of 186 

the root is well supported and non-controversial, thus minimising the chances that the 187 

assumption of particular root position is incorrect. To achieve this, we analysed the root 188 

position of each order and superorder in the dataset, and defined “well-defined clades” that 189 

fulfilled all of the following criteria:  190 

(1)  It contains at least five taxa. This ensures that the probability of obtaining a random ML 191 

rooted tree to be at most 0.95%. For clades with four taxa, there are 15 different rooted 192 

topologies, and therefore a 6.7% probability to get any of these topologies by chance. On 193 

the other hand, for clades with at least five taxa, there are at least 105 different rooted 194 

topologies and maximum probability of 0.95% to randomly get one of them as the ML 195 

tree. 196 

(2)  The bootstrap support for the deepest two levels of branches leading to that clade in the 197 

phylogenetic tree calculated from the whole dataset is 100%: since the bootstrap value 198 

indicates the support the data have for a certain branch, we require 100% support for the 199 

deepest two levels of branches leading to a certain clade in the whole tree (Appendix Fig. 200 

A.1). This requirement ensures that there is strong support in the dataset for the root 201 

position of the clade when the entire dataset is rooted with an outgroup. 202 

(3)  The gene concordance factor (gCF) and the site concordance factor (sCF) for the deepest 203 

two levels of branches leading to the clade are significantly greater than 33%. The site 204 

Concordance Factor (sCF) is calculated by comparing the support of each site in the 205 

alignment for the different arrangements of quartet around a certain branch. In other 206 

words, an sCF of 33% means equal support for any of the possible arrangements. 207 
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Therefore, we require that the sCF of the deepest two levels of branches leading to that 208 

clade to be significantly greater than 33%. The gene Concordance Factor (gCF) of a 209 

branch is calculated as the proportion of gene trees contain that branch. Although there is 210 

no threshold regarding the required proportion of genes concordant with a certain branch, 211 

for convenience, we define branches with gCF significantly greater than 33% as 212 

branches that are concordant with enough genes in the alignment (Minh, et al. 2020). To 213 

test whether the sCF and the gCF are significantly greater than 33%, we use a simple 214 

binomial test with a success probability of 0.33. 215 

(4)  At least 95% of the studies that have been published in the last decade support this clade: 216 

we searched google scholar for all published papers since 2009 that determine the root of 217 

the addressed clade. We then checked if at least 95% of those papers agree that the root 218 

position of the clade matches that in the ML tree we estimate from the whole dataset (see 219 

supplementary material). 220 

Estimating unrooted Phylogenies 221 

For the whole nucleotide and amino-acid datasets with ingroup and outgroup taxa, we 222 

inferred the unrooted phylogeny using IQ-TREE (Nguyen, et al. 2015) with the best-fit fully 223 

partitioned model (Chernomor, et al. 2016) and edge-linked substitution rates (Duchene, et al. 224 

2020). We then determined the best-fit reversible model for each partition using ModelFinder 225 

(Kalyaanamoorthy, et al. 2017). See the algorithm for finding well-defined clades in 226 

Appendix Algorithm A.1. 227 

Estimating Rooted phylogenies  228 

For each well-defined clade, we first removed all other taxa from the tree and then 229 

sought to infer the root of the well-defined clade using non-reversible models without 230 

outgroups. Using the best partitioning scheme from the reversible analysis, we inferred the 231 
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rooted tree for each well-defined clade with the non-reversible models for amino acid (NR-232 

AA) and nucleotide (NR-DNA) sequences (Minh, et al. 2020). This approach fits a 12-233 

parameter non-reversible model for DNA sequences, and a 380-parameter non-reversible 234 

model for amino acids. Details of the command lines used are provided in the supplementary 235 

material section “Algorithm A.2”. Each analysis returns a rooted tree. We performed 1000 236 

non-parametric bootstraps of every analysis to measure the rootstrap support.  237 

To assess the performance of the rootstrap and the ability of non-reversible models to 238 

estimate the root of the trees on smaller datasets, we also repeated every analysis on 239 

subsamples of the complete dataset. For each well-defined clade, we performed analysis on 240 

the complete dataset (100%) as well as datasets with 10%, 1% and 0.1% of randomly-241 

selected loci from the original alignment.  242 

The confidence set of root branches using the Approximately Unbiased test  243 

In addition to the rootstrap support, we calculate the confidence set of all the branches 244 

that may contain the root of the ML tree using the Approximately Unbiased (AU) test 245 

(Shimodaira 2002). To do this, we re-root the ML tree with all possible placements of the root 246 

(one placement for each branch) and calculate the likelihood of each tree. Using the AU test, 247 

we then ask which root placements can be rejected in favour of the ML root, using an alpha 248 

value of 5%. We define the root branches confidence set as the set of root branches that are not 249 

rejected in favour of the ML root placement.  250 

Reducing systematic bias by removing third codon positions and loci that fail the MaxSym 251 

test 252 

As it is common in many phylogenetic analyses to remove third codon positions from 253 

the alignment (Swofford, et al. 1996), we wanted to assess the effect of removing third codon 254 

positions on the root inference and the rootstrap values in nucleotide datasets. For that 255 
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purpose, we remove all the third codon positions from the nucleotide alignments and re-ran 256 

the analysis using the NR-DNA model. 257 

Moreover, although the NR-AA and NR-DNA models relax the reversibility assumption, 258 

they still assume stationarity and homogeneity. To reduce the systematic bias produced by 259 

violating these assumptions, we used the MaxSym test (Naser-Khdour, et al. 2019) to remove 260 

loci that violate those assumptions in the nucleotide and amino acid datasets, and then re-ran 261 

all analyses as above.  262 

Applying the methods to two clades whose root position is uncertain  263 

In addition to the well-defined clades, we used the methods we propose here to infer 264 

the root of two clades of mammals whose root position is controversial; Chiroptera and the 265 

Cetartiodactyla.  266 

There is a controversy around the root of the Chiroptera (bats) in literature. The two 267 

most popular hypotheses are: 1) the Microchiroptera-Megachiroptera hypothesis; where the 268 

root is placed between the Megachiroptera, which contains the family Pteropodidae, and the 269 

Microchiroptera, which contains all the remaining Chiroptera families. This hypothesis is 270 

well supported in the literature (Agnarsson, et al. 2011; Meredith, et al. 2011). However, 271 

more recent studies seem to provide less support for this hypothesis; 2) the 272 

Yinpterochiroptera-Yangochiroptera hypothesis, in which the Yangochiroptera clade includes 273 

most of Microchiroptera and the Yinpterochiroptera clade includes the rest of 274 

Microchiroptera and all of Megachiroptera. There is growing support for this hypothesis in 275 

the literature (Meganathan, et al. 2012; Tsagkogeorga, et al. 2013; Ren, et al. 2018; Reyes-276 

Amaya and Flores 2019). 277 

Similar to Chiroptera, the root of Cetartiodactyla remains contentious in the literature. 278 

The three main hypotheses regarding the root of Cetartiodactyla are: 1) Tylopoda as the sister 279 
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group for all other cetartiodactylans; 2) Suina as the sister group for all other 280 

cetartiodactylans; 3) the monophyletic clade containing Tylopoda and Suina as the sister 281 

group for all other cetartiodactylans.  282 

To ascertain whether certain sites or loci had very strong effects on the placement of 283 

the root we follow the approach of Shen et. al. (Shen, et al. 2017) and calculate the difference 284 

in site-wise log-likelihood scores (ΔSLS) and gene-wise log-likelihood scores (ΔGLS) between 285 

the supported root positions for each clade.  286 

 287 

RESULTS 288 

Inference of the mammal tree and selection of well-defined clades 289 

The trees inferred from the whole datasets with the nucleotide-reversible model and 290 

the amino-acid-reversible model (Appendix Fig. A.2, Appendix Fig. A.3, Appendix Table 291 

A.2) are consistent with the published tree (Liu, et al. 2017). Five clades met all the criteria of 292 

well-defined clades, namely, Afrotheria, Bovidae, Carnivora, Myomorpha, and Primates in 293 

both amino acid and nucleotide datasets (see Appendix Table A.1 and Appendix Table A.2).  294 

High accuracy of the AA non-reversible model in inferring the root 295 

Using NR-AA, we inferred the correct root with very high rootstrap support for all 296 

five well-defined clades (Appendix Table A.3). Moreover, for all the five clades, the true root 297 

was the only root placement in the confidence set of the AU test. 298 

Our results show that using only 10% of the sites in the amino acid alignments gave 299 

very high rootstrap support values (> 98%) for most of these clades (Fig. 3). Moreover, in 300 

some datasets, 1% of the sites were enough to give a very high rootstrap support value. Yet, 301 

using only 0.1% decreased the rootstrap support value noticeably in all datasets (Appendix 302 
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Table A.3). These values are shown for each dataset in Figure 3, where the X-axis is plotted 303 

in terms of parsimony-informative sites to allow for a more direct comparison between 304 

datasets. Although the rootstrap support for the true root improves as the number of 305 

parsimony-informative sites increase, in some datasets (e.g. Afrotheria nucleotide dataset) 306 

this is not the case (Fig. 3). 307 

 308 
FIGURE 3.  The rootstrap support value for each clade as a function of the number of 309 

parsimony-informative sites. 310 

 311 

 312 

Poor performance of the DNA non-reversible model in inferring the root 313 

We correctly inferred the root for four out of the five nucleotide datasets with the NR-314 

DNA model. However, the rootstrap support was generally lower than in the amino-acid 315 

datasets (Fig. 3, Appendix Tables A.3 and A.4). In addition, our results show that removing 316 

the third codon positions does not improve the rootstrap support value. In contrast, in some 317 

datasets removing third codon positions decreased the rootstrap support value and increased 318 

the rSED (Table 1).  319 

TABLE 1.  Rootstrap support and rSED values in whole nucleotide datasets and 320 

nucleotide datasets without third codon positions. 321 

Clades 
All loci Without 3rd 

rootstrap rSED rootstrap rSED 

Afrotheria 0.0% 2 0.0% 2 

Primates 90.1% 0 90.1% 0 
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Myomorpha 15.8% 0 15.8% 1 

Carnivora 100.0% 0 100.0% 0 

Bovidae 82.5% 0 82.5% 0 

 322 

Removing loci that violate the stationarity and homogeneity assumptions improves the 323 

rootstrap support 324 

As expected, our results show that removing loci that fail the MaxSym test improves 325 

the root placement inference and the rootstrap support values when the rootstrap support 326 

value was less than 100% and/or the root placement was inferred incorrectly, as the case in 327 

some nucleotide datasets (TABLE 2).  328 

TABLE 2.  Rootstrap support values in whole datasets and datasets with loci that passed 329 

the MaxSym test only. 330 

Clade 

Amino Acid Nucleotide 

all loci 

Passed 

MaxSym all loci 

Passed 

MaxSym 

Afrotheria 100.0% 100.0% 0.0% 8.4% 

Primates 100.0% 100.0% 99.7% 99.9% 

Myomorpha 100.0% 100.0% 73.2% 88.3% 

Carnivora 100.0% 100.0% 100.0% 100.0% 

Bovidae 100.0% 100.0% 100.0% 100.0% 

 331 

Microchiroptera-Megachiroptera or Yinpterochiroptera-Yangochiroptera? 332 

Using the whole amino acid dataset, our results show 65.5% rootstrap support for the 333 

Yinpterochiroptera-Yangochiroptera hypothesis and 23.2% for the Microchiroptera -334 

Megachiroptera hypothesis. The remaining11.3% of the rootstrap support goes to supporting 335 

the branch leading to Rhinolophoidea as root branch of the bats (Fig. 4). Removing amino 336 

acid loci that fail the MaxSym test (110 loci) gives similar results, with 65.9% rootstrap 337 

support for the Yinptero-Yango hypothesis and 25.6% rootstrap support for the Micro-Mega 338 

hypothesis. In both cases, the AU test could not reject any of the three root positions that 339 

received non-zero rootstrap support (Appendix Table A.5). 340 
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 341 

FIGURE 4.  The ML rooted tree as inferred from the whole Chiroptera amino acid dataset. 342 

Bold branches are branches in the AU confidence set. Blue values under each branch are the 343 

rootstrap support values. 344 

Using the NR-DNA model gives 100% rootstrap support for the Yinptero-Yango 345 

hypothesis, and we can confidently reject the Micro-Mega hypothesis in favour of the 346 

Yinptero-Yango hypothesis using the AU test (Appendix Fig. A.4). Yet, removing nucleotide 347 

loci that fail the MaxSym test (~25% of the loci) decreases the support for the Yinptero-348 

Yango hypothesis to 90.1%, although we can still confidently reject the Micro-Mega 349 

hypothesis using the AU test (Appendix Table A.5).  350 

Interestingly, when we randomly subsample 10%, 1%, and 0.1% of the loci in the 351 

nucleotide dataset, we consistently get the Yinptero-Yango hypothesis as the ML tree and the 352 

solely rooted topology in the AU confidence set (Appendix Table A.5). Moreover, the 353 

rootstrap support value for the Yinptero-Yango hypothesis increases and the rootstrap support 354 

value for the Micro-Mega hypothesis decreases as more parsimony-informative sites are 355 

added to the alignment, for both nucleotide and amino acid datasets (Fig. 5, Appendix Table 356 

A.5). 357 
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 358 

FIGURE 5.  Rootstrap support value as a function of the number of parsimony-informative 359 

characters in the Chiroptera nucleotide and amino acid datasets. 360 

The ΔGLS and ΔSLS values (Shen, et al. 2017) reveal that approximately half of the 361 

nucleotide and amino acid loci prefer the Yinptero-Yango hypothesis while the other half 362 

prefers Micro-Mega hypothesis. Furthermore, slightly less than half of the nucleotide sites 363 

prefer the Yinptero-Yango hypothesis. However, more than two-thirds of the amino acid sites 364 

prefer the Yinptero-Yango hypothesis (Appendix Fig. A.5). The distributions of ΔGLS and 365 

ΔSLS (Appendix Fig. A.6) show that a small proportion of the amino acid loci (~1%) have 366 

very strong support for the Micro-Mega hypothesis, and removing those loci from the 367 

alignment increased the rootstrap support for the Yinptero-Yango hypothesis to 76.6%. 368 

Nonetheless, both root placements are still in the confidence set of the AU test (Appendix 369 

Table A.5) with the amino acid dataset. On the other hand, removing nucleotide loci with the 370 

highest absolute ΔGLS value still gives the Yinptero-Yango hypothesis as the ML tree and 371 

the sole topology in the AU confidence set.  We conclude that while the nucleotide data show 372 

a clear preference to the Yinptero-Yango hypothesis, the amino acid data do not allow us to 373 

distinguish between the two leading hypotheses for the placement of the root of the 374 

Chiroptera based on rooting with non-reversible models.  375 
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The ambiguous root of Cetartiodactyla  376 

The ML tree inferred with the whole amino acid dataset places the clade containing 377 

Tylopoda (represented by its only extant family; Camelidae) and Suina as the most basal 378 

cetartiodactylan clade with 71.8% rootstrap support (Fig. 6). Yet, The AU test did not reject 379 

Tylopoda as the most basal clade. On the other hand, the ML tree inferred with the whole 380 

nucleotide dataset places Tylopoda as the most basal clade with 71.0% rootstrap support, and 381 

we can confidently reject the Tylopoda + Suina hypothesis using the AU test (Appendix Fig. 382 

A.7). 383 

Removing the amino acid loci that failed the MaxSym test (~1%) still places Tylopoda + 384 

Suina as the basal-most clade, yet, it decreases the rootstrap support for the Tylopoda + Suina 385 

hypothesis to 63.3% and increases the rootstrap support for the Tylopoda hypothesis to 386 

28.5%. However, we still cannot reject either of the hypotheses using the AU test (Appendix 387 

Table A.6).  388 

 389 

FIGURE 6.  The ML rooted tree of as inferred from the whole Cetartiodactyla amino acid 390 

dataset. Bold branches are branches in the AU confidence set. Blue values under each branch 391 

are the rootstrap support values. 392 
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Removing the nucleotide loci that failed the MaxSym test (~1%) still places Tylopoda 393 

as the basal-most clade and the only rooted topology in the AU confidence set. However, it 394 

decreases the rootstrap support for the Tylopoda hypothesis to 68.7% and increases the 395 

rootstrap support for the Tylopoda + Suina hypothesis to 20.1% (Appendix Table A.6). 396 

The results from the subsample datasets are mixed (Fig. 7). Analyses on smaller datasets 397 

show no clear pattern in the placement of the root (Appendix Table A.6), leading us to 398 

conclude only that the analyses of the whole dataset is likely to provide the most accurate 399 

result, but that it is plausible that adding more data may lead to different conclusions in the 400 

future. 401 

 402 

FIGURE 7.  rootstrap support value as a function of the number of parsimony-informative 403 

characters in the Cetartiodactyla nucleotide and amino acid datasets. 404 

ΔGLS analyses reveal that approximately, half of the amino acid and nucleotide loci 405 

favour the Tylopoda+Suina hypothesis, while the other half of loci favour the Tylopoda 406 

hypothesis (Appendix Figs. A.8-9). On the other hand, two-thirds of the amino acid sites and 407 

more than 80% of the nucleotide sites favour the Tylopoda+Suina hypothesis. Removing 1% 408 

of the amino acid loci with the highest absolute ΔGLS values still places Tylopoda + Suina as 409 

the most basal clade. However, the rootstrap support of the Tylopoda + Suina decreased to 410 

63.2% and the rootstrap support for the Tylopoda hypothesis remains approximately the same 411 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 2, 2020. ; https://doi.org/10.1101/2020.07.31.230144doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.31.230144
http://creativecommons.org/licenses/by/4.0/


NASER-KHDOUR ET AL. 

(~14.5%), while the rootstrap support for the Suina hypothesis increases from 13.7% to 412 

22.4%. Yet, both the Tylopoda + Suina hypothesis and the Tylopoda hypothesis are in the 413 

confidence set of the AU test, while the Suina hypothesis is rejected by the AU test 414 

(Appendix Table A.6). 415 

Removing 1% of the nucleotide loci with the highest absolute ΔGLS values gives the 416 

Tylopoda+Suina as the most basal clade of Cetartiodactyla with 39.7% rootstrap support. 417 

However, the solely rooted topology in the AU confidence set is the topology in which the 418 

root is placed on the branch leading to Suina (Appendix Table A.6). We conclude that neither 419 

the nucleotide nor the amino acid data are adequate to infer the root placement of 420 

Cetartiodactyla with non-reversible models. 421 

DISCUSSION  422 

In this paper, we introduced a new measure of support for the placement of the root in 423 

a phylogenetic tree, the rootstrap support value, and applied it to empirical amino acid and 424 

nucleotide datasets inferred using non-reversible models implemented in IQ-TREE (Minh, et 425 

al. 2020). The rootstrap is a useful measure because it can be used to assess the statistical 426 

support for the placement of the root in any rooted tree, regardless of the rooting method. In a 427 

Maximum Likelihood setting, interpretation of the rootstrap support is similar to the 428 

interpretation of the classic nonparametric bootstrap. In a Bayesian setting, the same 429 

procedure could be used to calculate the posterior probability of the root placement given a 430 

posterior distribution of trees. It is noteworthy that the rootstrap support value is not a 431 

measure of the accuracy of the root placement and therefore should not be interpreted as 432 

such. However, it provides information about the robustness of the root inference with regard 433 

to resampling the data. This interpretation is consistent with the interpretation of the 434 
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nonparametric bootstrap (Holmes 2003) but with regard to the root placement instead of the 435 

whole tree topology. 436 

In addition to the rootstrap support value, we introduced another two metrics; the root 437 

branch-length error distance (rBED), and the root split error distance rSED. Similar to the 438 

rootstrap metric, these additional metrics can be used in with any approach that generates 439 

rooted phylogenetic trees. We note that both metrics require the true position of the root to be 440 

known (or assumed) and that the rBED requires the rooting method to be able to accurately 441 

place the root in a specific position of the root branch. 442 

In this study, we used these and other methods to assess the utility of non-reversible 443 

models to root phylogenetic trees in a Maximum Likelihood framework. We focussed on 444 

applying these methods to a large and very well curated phylogenomic dataset of mammals, 445 

as the mammal phylogeny provides perhaps the best opportunity to find clades for which the 446 

root position is known with some confidence. As expected, our results show an exponential 447 

increase in the rootstrap support for the true root as we add more information to the MSA. 448 

Our results suggest that non-reversible amino-acid models are more useful for inferring root 449 

positions than non-reversible DNA models, which is consistent with results from previous 450 

simulations using the NR-DNA model (Bettisworth and Stamatakis 2020). One explanation 451 

for this difference between the NR-DNA and the NR-AA models is the bigger character-state 452 

space of the NR-AA models. These models have 400 parameters (380 rate parameters and 20 453 

amino acid frequencies) whereas NR-DNA models have only 16 parameters (12 rate 454 

parameters and 4 nucleotide frequencies). This could allow the NR-AA model to capture the 455 

evolutionary process better than the NR-DNA model, potentially providing more information 456 

on the root position of the phylogeny. This hypothesis requires some further exploration 457 

though, and we note that the actual character-space of amino acids is much smaller than 458 
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accommodated in NR-DNA models due to functional constraints on protein structure 459 

(Dayhoff, et al. 1978). 460 

Another explanation for the difference in performance between the NR-AA and NR-461 

DNA models is that higher compositional heterogeneity in nucleotide datasets may bias tree 462 

inference. In principle, this bias can be alleviated by removing loci that violate the 463 

stationarity and homogeneity assumptions (Naser-Khdour, et al. 2019). Our results suggest 464 

that this may be the case for the datasets we analysed: we show that removing loci that 465 

violate the stationarity and homogeneity assumptions improves the accuracy and statistical 466 

support for the placement of the root. This is not surprising since the robustness of the 467 

rootstrap, similar to the bootstrap, relies on the consistency of the inference method,  so 468 

removing systematic bias should improve its performance.  469 

We used the non-reversible approach to rooting trees along with the rootstrap support 470 

to assess the evidence for different root placements in the Chiroptera and Cetartiodactyla. 471 

Using the amino acid datasets we found that in both cases, although there tended to be higher 472 

rootstrap support for one hypothesis, neither of the current hypotheses for either dataset could 473 

be rejected. These results emphasize the importance of the rootstrap support value as a 474 

measure of the robustness of the root estimate given the data. In both the Chiroptera and 475 

Cetartiodactyla datasets the root placement varied among subsamples of the dataset, and the 476 

rootstrap support reflects this uncertainty. In both cases, the amino acid data is inadequate to 477 

distinguish between certain root placements. On the other hand, in both the Chiroptera and 478 

Cetartiodactyla, the nucleotide datasets appear to show stronger support for a single root 479 

placement. This difference between the amino acid and the nucleotide datasets results may be 480 

due to greater phylogenetic signal contained in the nucleotide characters.  481 
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Our results demonstrate that both non-reversible models can be surprisingly useful for 482 

inferring the root placement of phylogenies in the absence of additional information (such as 483 

outgroups) or assumptions (such as molecular clocks). Indeed, we show that root placements 484 

appear to be accurate even with fairly datasets as small as 50 well-curated loci between fairly 485 

closely-related taxa such as orders of mammals. We hope that the combination of non-486 

reversible models and rootstrap support will add another tool to the phylogeneticist’s arsenal 487 

when it comes to inferring rooted phylogenies.  488 
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