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 17 

Abstract 18 

To elucidate novel molecular mechanisms of known drugs, efficient and feasible 19 

computational methods for predicting potential drug-target interactions (DTI) would 20 

be of great importance. A novel calculation model called DLDTI was generated for 21 

predicting DTI based on network representation learning and convolutional neural 22 

networks. The proposed approach simultaneously fuses the topology of complex 23 

networks and diverse information from heterogeneous data sources and copes with the 24 

noisy, incomplete, and high-dimensional nature of large-scale biological data by 25 

learning low-dimensional and rich depth features of drugs and proteins. 26 

Low-dimensional feature vectors were used to train DLDTI to obtain optimal 27 

mapping space and infer new DTIs by ranking DTI candidates based on their 28 

proximity to optimal mapping space. DLDTI achieves promising performance under 29 

5-fold cross-validation with AUC values of 0.9172, which was higher than that of the 30 

method based on different classifiers or different feature combination technique. 31 

Moreover, biomedical experiments were also completed to validate DLDTI’s 32 

performance. Consistent with the predicted result, tetramethylpyrazine, a member of 33 

pyrazines, reduced atherosclerosis progression and inhibited signal transduction in 34 

platelets, via PI3K/Akt, cAMP and calcium signaling pathways. The source code and 35 

datasets explored in this work are available at 36 

https://github.com/CUMTzackGit/DLDTI 37 

Keywords: drug-target interaction; heterogeneous information; network 38 

representation learning; stacked auto-encoder; deep convolutional neural networks; 39 

atherosclerosis; signal transduction; tetramethylpyrazine 40 
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Introduction 41 

Research on drug development is becoming increasingly expensive, while the number 42 

of newly approved drugs per year remains quite low [1][2]. In contrast to the classical 43 

hypothesis of “one gene, one drug, one disease”, drug repositioning aims to identify 44 

new characteristics of existing drugs [3]. Considering the available data on safety of 45 

already-licensed drugs, this approach could be advantageous compared with 46 

traditional drug discovery, which involves extensive preclinical and clinical studies 47 

[4]. Currently, a number of existing drugs have been successfully tuned to the new 48 

requirements. Methotrexate, an original cancer therapy, has been used for the 49 

treatment of rheumatoid arthritis and psoriasis for decades [5]. Galanthamine, an 50 

acetylcholinesterase inhibitor for treating paralysis, has been approved for 51 

Alzheimer’s disease [6].  52 

Besides the evidence based on biological experiments and clinical trials, 53 

computational methods could facilitate high-throughput identification of novel target 54 

proteins of known drugs. To discover targets of drugs with known chemical structures, 55 

the prediction of drug-target interaction (DTI) based on numerous computational 56 

approaches have provided an alternative to costly and time-consuming experimental 57 

approaches [7]. In the past years, DTI prediction has bolstered the identification of 58 

putative new targets of existing drugs [8]. For instance, the computational pipeline 59 

predicted that telmisartan, an angiotensin II receptor antagonist, had the potential of 60 

inhibiting  cyclooxygenase. In vitro experimental evidence also validated the 61 

predicted targets of this known drug [9]. Further, combined with in silico prediction, 62 

in vitro validation and animal phenotype model demonstrated that, topotecan, a 63 

topoisomerase inhibitor also had the potential to act as a direct inhibitor of human 64 

retinoic-acid-receptor-related orphan receptor-gamma t (ROR-γt) [10]. 65 

Most existing prediction methods mainly extract information from complex networks. 66 

Bleakley et al. [11] proposed a support vector machine-based method for identifying 67 

drug-target interactions based on bipartite local model (BLM). Mei et al. [12] 68 

proposed BLMNII method for predicting DTIs based on the bipartite local model and 69 
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neighbor-based interaction-profile inference. In addition, some researchers adopted 70 

kernelized Bayesian matrix factorization to predict DTIs, called KBMF2K [13]. A key 71 

step of KBMF2K is utilizing dimensional reduction, matrix factorization, and binary 72 

classification. Although homogenous network-based derivation methods have 73 

achieved good results, they are less effective in low-connectivity (degree) drugs for 74 

known target networks. The introduction of heterogeneous information can provide 75 

more perspective for predicting the potential of DTI. Recently, Luo et al. proposed a 76 

heterogeneous network-based unsupervised method for computing the interaction 77 

score between drugs and targets, called DTInet [9]. Subsequently, they proposed a 78 

neural network-based method [14] for improving the prediction performance of DTI. 79 

Effective integration of large-scale heterogeneous data sources is crucial in academia 80 

and industry. 81 

Tetramethylpyrazine (TMPZ) is a member of pyrazines derived from Rhizoma 82 

Chuanxiong Hort [15]. According to a recent review, TMPZ could attenuate 83 

atherosclerosis by suppressing lipid accumulation in macrophages [16], alleviation of 84 

lipid metabolism disorder [17], and attenuation of oxidative stress [18]. However, 85 

since atherosclerosis is a chronic illness involving multiple cells and cytokines [19], 86 

besides lipoprotein metabolism and oxidative stress, other possible targets of TMPZ 87 

on atherosclerosis remain unexplored.  88 

In this study, a novel model for prediction of DTI based on network representation 89 

learning and convolutional neural networks, referred to as DLDTI is presented for in 90 

silico identification of target proteins of known drugs. New DTIs were inferred by 91 

integrating drug- and protein-related multiple networks, to demonstrate the DLDTI's 92 

ability of integrating heterogeneous information and neural networks to extract deep 93 

features of drugs and target networks as well as attributes to effectively improve 94 

prediction accuracy. Moreover, comprehensive testing demonstrated that DLDTI 95 

could achieve substantial improvements in performance over other prediction 96 

methods. Based on the results predicted by DTDTI, new interactions between TMPZ 97 

and targets involved in atherosclerosis, namely signal transduction in platelets, were 98 
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validated in vivo. The anti-atherosclerosis effect of TMPZ was confirmed in a novel 99 

atherosclerosis model. In summary, these improvements could advance studies on 100 

drug-target interaction. 101 

Results 102 

Overview of DLDTI and performance evaluation on predicting drug-target 103 

interaction 104 

A new computational model referred to as DLDTI was developed to predict potential 105 

DTIs to identify novel behavior of traditional drugs based on complex networks and 106 

heterogeneous information. As an overview (Figure 1), DLDTI integrates learning 107 

from complex network's various heterogeneous information to obtain 108 

low-dimensional and deep rich features (Figure 2), through a processing method 109 

known as compact feature learning. During compact feature learning, the resulting 110 

low-dimensional descriptor integrates attribute characteristics, interaction information, 111 

relational properties, and network topology of each protein or target node in the 112 

complex network. DLDTI then determines the optimal mapping from the plenary 113 

mapping space to the prediction subspace, and whether the feature vector is close to 114 

the known correlations. Afterwards, DLDTI infers the new DTIs by ranking the 115 

drug-target interaction candidates according to their proximity to the predicted 116 

subspace. 117 
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 118 

Figure 1.  The flowchart of the DLDTI pipeline. DLDTI first integrates a variety of 119 

drug-related information sources to construct a heterogeneous network and applies a 120 

compact feature learning algorithm to obtain a low-dimensional vector representation 121 

of the features describing the topological properties for each node. Next, DLDTI 122 
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determines the optimal mapping from the plenary mapping space to the prediction 123 

subspace, and whether the feature vector is close to the known correlations. 124 

Afterwards, DLDTI infers the new DTIs by ranking the drug-target interaction 125 

candidates according to their proximity to the predicted subspace 126 

 127 

Figure 2.  Schematic illustration of compact feature learning. The Node2Vec 128 

algorithm is firstly used to calculate the topology information in complex networks. 129 

Gaussian interaction profile kernel similarity (GIP) and drug structure information are 130 

then extracted by a stacked automatic encoder, and the heterogeneous information is 131 

integrated to obtain a low-dimensional representation of the feature vector of each 132 

node. The resulting low-dimensional descriptor integrates the attribute characteristics, 133 

interaction information, relationship attributes and network topology of each protein 134 

or target node in the complex network.  135 

DLDTI yields accurate DTI prediction. Firstly, the predictive performance of DLDTI 136 

was assessed using five-fold cross-validation, where randomly selected subset of 137 

one-fifth of the validated drug-target interaction were paired with an equal number of 138 

randomly sampled non-interacting pairs to derive the test set. The remaining 75% of 139 

known drug-target interaction and same number of randomly sampled non-interacting 140 

pairs were used to train the model. DLDTI was compared with three methods based 141 

on different classifiers used for DTI prediction, including DTI-ADA, DTI-KNN, and 142 
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DTI-RF [20][21][22]. The comparison revealed that DLDTI consistently outperforms 143 

the other three methods, with 0.93% higher AUC, 3.55% higher AUPR, 0.61% higher 144 

accuracy (Acc), 3.96% higher precision (Pre) than the second-best method (Fig. 3c, 145 

Fig. 3d and Fig. 3e). Compared to DTI-ADA (which predicts DTI based on the 146 

AdaBoost classifier), the DLDTI of the AUROC and AUPR was 6.96% and 7.81% 147 

higher, respectively, which could have been due to the inability of traditional machine 148 

learning to extract deeper abstract features for prediction, resulting in poor 149 

performance, while DLDTI applies a deep convolutional neural network approach and 150 

is able to capture the potential structural properties of complex networks and 151 

heterogeneous information.  152 
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Figure 3.  Performance of DLDTI. (a) ROC curves performed by DLDTI model on 154 

DrugBank dataset. (b) PR curves performed by DLDTI model on DrugBank dataset. 155 

(c) Performance comparison (AUC scores) among four different prediction model 156 

which are DTI-ADA, DTI-KNN, and DTI-RF.(d)Performance comparison (AUPR 157 

scores) among four different prediction models including DTI-ADA, DTI-KNN, and 158 

DTI-RF.(e)Performance comparison (Acc., F1, Pre., Rec. scores) among DTI-ADA, 159 

DTI-KNN, and DTI-RF prediction models. 160 

Enrichment analysis suggested that TMPZ might affect signal transduction 161 

pathways involved in platelet activation 162 

To elucidate the potential function of TMPZ on atherosclerosis, the predicted results 163 

from DLDTI model were uploaded to the search tool for retrieval of interacting 164 

genes/proteins database (STRING, Version 11) (https://string-db.org/) [23] to 165 

determine over-represented Kyoto Encyclopedia of Genes (KEGG) pathways and 166 

Genomes Gene Ontology (GO) categories. GO analysis demonstrated that 31.4% of 167 

genes were involved in signal transduction (Supplemental Table 1). As shown in Table 168 

1, phosphoinositide 3-kinase (PI3K)/Akt signaling pathway, neuroactive 169 

ligand-receptor interaction, mitogen-activated protein kinase (MAPK) signaling 170 

pathway, calcium signaling pathway, repressor activator protein 1 (Rap1) signaling 171 

pathway, cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) signaling 172 

pathway, and cyclic adenosine monophosphate (cAMP) signaling pathway were the 173 

top-ranked results of KEGG enrichment. It is noteworthy that ADP-mediated platelet 174 

activation via purinergic receptors included almost all signal transduction pathways 175 

shown in Table 1 [24][25]. Interestingly, among the 288 predicted targets of TMPZ on 176 

atherosclerosis, 190 proteins were also involved in the platelet activation process 177 

(Supplemental Table 2). Therefore, it was assumed that the anti-atherosclerosis 178 

potential of TMPZ could be largely attributed to its inhibition of purinergic 179 

receptor-dependent platelet activation, which involves signal transduction pathways 180 

such as PI3K/Akt. Based on the predicted result, clopidogrel, an anti-platelet drug 181 

widely used in the clinical application, was chosen as the positive control. 182 
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Table 1 KEGG pathway enrichment analysis of DLDTI results 183 

Class KEGG term Count P value 

Signal transduction PI3K-Akt signaling pathway 36 2.49E-17 

 Neuroactive ligand-receptor interaction 32 6.04E-17 

 MAPK signaling pathway 29 1.08E-13 

 Calcium signaling pathway 26 1.01E-15 

 Rap1 signaling pathway 22 2.99E-11 

 cGMP-PKG signaling pathway 20 2.99E-11 

 cAMP signaling pathway 16 3.83E-07 

Metabolism Metabolism of xenobiotics by 

cytochrome P450 

23 4.27E-20 

 Steroid hormone biosynthesis 17 1.28E-14 

 Retinol metabolism 15 5.89E-12 

Immune system Complement and coagulation cascades 21 3.06E-17 

 Th17 cell differentiation 15 1.77E-09 

Others Regulation of actin cytoskeleton 16 6.90E-07 

 Gap junction 15 2.74E-10 

 Fluid shear stress and atherosclerosis 15 2.91E-08 

Validation 184 

Ldlr-/- hamsters developed severe hyperlipidemia and atherosclerosis lesions 185 

when fed with HFHC diet 186 

Before dietary induction, genotypes were determined by PCR analysis. Using ear 187 

genomic DNA, 194-nucleotide deletion (Δ194) was detected in homozygous (-/-) 188 

hamsters (Figure 4a). After feeding them on high-fat and high-cholesterol (HFHF) 189 
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diet for 16 weeks, low-density lipoprotein receptor knock-out (Ldlr-/-) hamsters 190 

developed severe hyperlipidemia. As an antiplatelet medication, clopidogrel did not 191 

influence circulating levels of Total cholesterol (TC), triglyceride (TG), high-density 192 

lipoprotein (HDL) and non-HDL (Figure 4b, 4c, 4d and 4e). Compared with 193 

vehicle-treated hamsters, decreased levels of TC (p<0.05) and non-HDL (p<0.05) 194 

were observed in TMPZ-treated group (Fig. 4b and 4d). However, TMPZ did not 195 

influence TG or HDL levels.  196 

 197 

Figure 4. Genotyping and lipid parameters between different groups. (a).PCR analysis 198 

was performed using ear genomic DNA from WT (+/+) and homozygote (−/−) with 199 

the Δ194 deletion. The concentrations of plasma TC (b), HDL(c), non-HDL(d) and 200 

TG(e) were measured in WT, vehicle, TMPZ and clodipogrel groups at the endpoint 201 
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of this experiment. Differences were assessed by unpaired student t’s test or 202 

Mann-Whitney test. * p<0.05 versus Vehicle, **p<0.01 versus Vehicle. ##p<0.01 203 

versus WT. All data were expressed as mean ±standard error (SEM) 204 

TMPZ ameliorated atherosclerosis lesion progression 205 

The en face analysis demonstrated that vehicle-treated hamsters developed significant 206 

atherosclerotic lesions (mean value 28.38%) throughout the whole aorta. However, 207 

atherosclerotic lesions induced by the same dietary manipulation in TMPZ- and 208 

clopidogrel-treated groups were significantly decreased (mean value 10.02% and 209 

mean value 17.47%, respectively) (Figure 5a and 5b). It’s noteworthy that the lesion 210 

area in TMPZ-treated group was also less than that in clopidogrel-treated group 211 

(Figure 5b). As the blank control group, WT hamsters on chow diet did not develop 212 

any lesions throughout the aorta. 213 

Similar to the en face analysis, the HFHC fed vehicle group  had significantly 214 

increased lesion areas (mean area 29.58×104 μm2) in aortic roots compared to the 215 

blank controls measured by image analysis of Oil Red O staining, and either TMPZ 216 

(mean area 13.25×104 μm2) or clopidogrel (mean area 16.99×104 μm2) treatment 217 

reduced the lipid-rich areas (Figure 5c and 5d).  218 

Under the stimulation of adhesion molecules, monocytes infiltrate into the intima and 219 

differentiate into macrophages [26]. Besides macrophage accumulation, diminished 220 

smooth muscle cells (SMC) could also exacerbate the formation of unstable plaques 221 

[27]. To determine the components of atherosclerosis lesions in the aortic root, 222 

immunohistochemical staining for macrophages and SMC was performed [28]. 223 

Histopathological evaluation of macrophages accumulation revealed differences in 224 

CD68-positive areas between the groups. As shown in Figure 5e and 5f, the 225 

percentage of macrophage positive staining in lesions was increased by 226 

atherosclerosis progression in the vehicle-treated group. WT group (mean value 227 

1.48%) had significantly fewer macrophage accumulation than vehicle-treated group 228 

(mean value 6.65%). Infiltrated macrophages in lesions were significantly decreased 229 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 3, 2020. ; https://doi.org/10.1101/2020.07.31.230763doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.31.230763


 

 

12

by TMPZ (mean value 2.52%) or clopidogrel (mean value 3.07%) treatment. As 230 

shown in Figure 5g and 5h, besides macrophage infiltration, the percentage of a-SMA 231 

positive staining was diminished in Ldlr-/- hamsters (mean value 9.27%) compared 232 

with the WT hamsters (mean value 16.76%). Administration TMPZ (mean value 233 

16.50%) or clopidogrel (mean value 16.09%) for 8 weeks could ameliorate SMC 234 

reduction in atherosclerosis lesions. 235 

236 

 237 

Figure 5. Histological analysis. (a) Representative images of en face analysis. n=6.  238 

(b) Quantitative analysis of lesion areas in whole aortas. Differences were assessed by 239 

unpaired student t’s test. (c) Representative images of Oil Red O staining of aortic 240 

root sections. (d) Quantitative analysis of lesion areas in aortic root sections. (e) 241 

Representative images of macrophage (CD68) analysis (b) Quantitative analysis of 242 

lesions area in macrophage analysis. (f) Representative images of SMC (SMA) 243 
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analysis (g) Quantitative analysis of lesions area in SMC. Differences were assessed 244 

by unpaired student t’s test. * p<0.05 versus Vehicle, **p<0.01 versus Vehicle. 245 

#p<0.05 versus clopidogrel. Scale bar=250μm. n=3. All data were expressed as mean 246 

±SEM. 247 

TMPZ inhibited signaling transduction in ADP-mediated platelet activation 248 

In addition to the surrogates of platelet activation, calcium and cAMP signaling are 249 

also essential in signal transduction. Downstream from Gq signaling, protein kinase C 250 

(PKC) activation results in the formation of inositol triphosphate (IP3), which leads to 251 

an elevation of intracellular calcium [24]. Calcium mobilization is also required for 252 

the phosphorylation of Akt (also known as protein kinase B) in PI3K/Akt signaling 253 

pathway [29]. In response to ADP, Gi signaling activation mediates the inhibition of 254 

AC, resulting in the diminished synthesis of cAMP. The inhibitory effect of Gi on 255 

cAMP synthesis could cause platelet activation [25].  256 

Figure 6 shows that fura-2/AM is a membrane-permeant calcium indicator. The ratio 257 

of F340/F380 is directly correlated to the amount of intracellular calcium. The data 258 

revealed that TMPZ and clopidogrel markedly inhibited calcium mobilization, as 259 

detected using fluorescence mode of Synergy H1 microplate reader. Moreover, 260 

TMPZ-and clopidogrel-treated groups showed a higher concentration of cAMP in the 261 

active platelets. These findings indicate that TMPZ and clopidogrel could inhibit 262 

calcium mobilization and elevate intracellular concentration of cAMP, thereby 263 

inhibiting platelet activation. 264 

As the major downstream effector of PI3K, Akt plays an essential role in the 265 

regulation of platelet activation. Stimulation of platelets with ADP could result in Akt 266 

activation, which was indicated by Akt phosphorylation [29]. The protein expressions 267 

of PI3K, Akt, and p-Akt in the top-ranked signal transduction pathway were measured 268 

to validate the predicted pathways. ADP-induced P2Y12 receptor activation could 269 

cause PI3K dependent Akt phosphorylation, a critical positive regulator pathway for 270 

signal amplification. There was no difference in PI3K expression levels between WT, 271 
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vehicle, TMPZ, and clopidogrel groups (Figure 6c). Phosphorylation of Akt was 272 

inhibited by TMPZ or clopidogrel administration when compared with vehicle-treated 273 

group. It is noteworthy that phosphorylation of Akt did not differ between WT, TMPZ 274 

and clopidogrel groups, which indicates that platelet activity in atherosclerosis 275 

hamsters treated with TMPZ or clopidogrel could be comparable to that in healthy 276 

ones (Figure 6d). These findings indicate that TMPZ and clopidogrel could attenuate 277 

Akt signaling, thereby blocking the platelet activation induced by 278 

ADP.279 

 280 

Figure 6. Signaling transduction in ADP-mediated platelet activation. (a) Intracellular 281 

calcium concentration. (b) Intracellular cAMP concentration. Western blot analyses of 282 

the expression of PI3K (c), Akt (d) and p-Akt (d). Differences were assessed by 283 

unpaired student t’s test with or without Welch’s corrections. ** p<0.01 versus 284 

Vehicle, * p<0.05 versus Vehicle. n=4-6. All data were expressed as mean ±SEM. 285 

Discussion 286 
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In summary, this study provides a novel DTI model and validates its efficacy via a 287 

novel atherosclerosis model. This DLDTI model could provide an alternative to the 288 

high-throughput screening of drug targets. The proposed approach simultaneously 289 

fuses the topology of complex networks and diverse information from heterogeneous 290 

data sources and copes with the noisy, incomplete, and high-dimensional nature of 291 

large-scale biological data by learning the low-dimensional and rich depth features of 292 

drugs and proteins. The low-dimensional descriptors learned by DLDTI capture 293 

attribute characteristics, interaction information, relational properties, and network 294 

topology attributes of each drug or target node in a complex network. The 295 

low-dimensional feature vectors were used to train DLDTI to obtain the optimal 296 

mapping space and to infer new DTIs by ranking drug-target interaction candidates 297 

based on their proximity to the optimal mapping space. New DTIs were inferred by 298 

integrating drug- and protein-related multiple networks, to demonstrate DLDTI’s 299 

ability to integrate heterogeneous information and that deep neural networks are 300 

capable of extracting drug and target networks and that deep features of attributes can 301 

effectively improve the prediction accuracy. This work also proved that TMPZ 302 

administration could attenuate atherosclerosis lesions, characterized by diminished 303 

lipid deposition, macrophage accumulation, and increased SMC percentage. 304 

Moreover, TMPZ could inhibit platelet activation by inhibiting Akt’s phosphorylation 305 

and calcium mobilization and increasing intracellular cAMP concentration.    306 

The current study proposes a learning-based framework called DLDTI for identifying 307 

the association of drug targets. The structural characteristics of drug and the 308 

characteristics of the protein properties were firstly extracted. An automatic 309 

encoder-based model was then proposed for feature selection. Using this feature 310 

representation, a convolutional neural network architecture was proposed for 311 

predicting the DTI. The advantages of DLDTI were demonstrated by comparing it 312 

with three different methods. Experiments on DTI showed that the performance of 313 

DLDTI was better than that of the alternative method, which shows that the proposed 314 

learning-based framework was properly designed.  315 
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Furthermore, in the validation study of the DLDTI model, we used TMPZ (a drug 316 

with known structure) to explore its effects on atherosclerosis in vivo. Consistent with 317 

previous studies [16][17][18], the results revealed that TMPZ could ameliorate the 318 

phenotyping of atherosclerosis in Ldlr-/- hamsters, a novel atherosclerosis model 319 

[30][31]. Diminished lipid deposition and macrophage accumulation, and increased 320 

percentage of SMC were observed in TMPZ- and clopidogrel-treated hamsters, in 321 

comparison with vehicle-treated animals. Interestingly, it was found that the majority 322 

of potential pathways of TMPZ on atherosclerosis were also involved in signal 323 

transduction of platelet activation. From the initial endothelial dysfunction in the early 324 

stage to the destabilized plaques in the advanced stage, platelet plays a pivotal role 325 

[32]. Activated platelets act as the key trigger for rupture-prone plaque formation. 326 

Current evidence shows that platelet hyperactivity is associated with a prothrombotic 327 

state and increases the incidence of recurrent cardiovascular events among patients 328 

with coronary artery disease [33]. Over the past decade, it has been found that 329 

platelets can be activated by various stimuli like collagen, thrombin, and ADP. Based 330 

on the pathway analysis of predicted results, this work focused on signal transduction 331 

in ADP-mediated platelet activation (Table 1). The results revealed that the activated 332 

signal transductions, characterized by increased calcium mobilization, decreased 333 

cAMP concentration and increased phosphorylation of Akt were observed in ex vivo 334 

platelets from vehicle-treated hamsters. Platelets from TMPZ- and clopidogrel-treated 335 

hamsters showed increased cAMP level and diminished calcium mobilization and 336 

phosphorylation of Akt.  337 

Future studies will focus on solving “cold-start” problem, which is faced by all 338 

algorithms that apply collaborative filtering technology. In the current study, the top 339 

three feature vectors with the highest scores are weighted by 60%, 30%, and 10%, 340 

respectively, based on the similarity of protein sequences and the similarity of drug 341 

structures, to obtain new interaction feature vectors to solve the cold start problem. In 342 

addition, to validate the study, the top-ranked pathways of signal transduction 343 

involved in platelet activation were examined, although reduced TC and non-HDL 344 
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levels and diminished macrophage accumulation in lesions were also observed. These 345 

effects also could also contribute to the diminished total lesions area and be the topic 346 

of our following research. 347 

Materials and Methods 348 

Prediction experiments 349 

Human drug-target interactions database 350 

The current study used the DrugBank (http://www.drugbank.ca) established by 351 

Wishart et al. as the benchmark [34]. The chemical structure of each drug in SMILES 352 

format was extracted from the DrugBank. This study used drugs that satisfied the 353 

human target represented by a unique EnsemblProt login number. In summary, 904 354 

drugs and 613 unique human targets (proteins) were linked to construct a drug-target 355 

interaction network  of positive samples, while a matching number of unknown 356 

drug-target pairs (by excluding all known DTIs) was randomly selected as negative 357 

samples. 358 

Feature representation 359 

Gaussian interaction profile kernel similarity for drugs and targets. According to 360 

previous studies, drug similarity can be determined by calculating their nuclear 361 

similarity through Gaussian interaction profile kernel similarity (GIP) [35][36]. The 362 

GIP similarity between drug  and drug  is defined as follow: 363 

 364 

Where, the binary vector  and  are the i-th and j-th row vectors of the 365 

drug-target interaction network .  is the kernel bandwidth and is computed by 366 

normalizing the original parameter : 367 
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 368 

Similarly, the GIP similarity for targets can be defined as follows: 369 

 370 

Where, the binary vector  and  are the i-th row and the j-th column 371 

vector of the drug-target interaction network , respectively.  is the kernel 372 

bandwidth and is computed by normalizing the original parameter : 373 

 374 

Protein sequence feature. The sequences for drug targets (proteins) in Homo sapiens 375 

were downloaded from STRING. The k-mer algorithm was used to count 376 

Subsequence information in protein sequences and used as a feature vector to solve 377 

alignment issues presented by differences in sequence length [37]. 378 

Drug structure feature. Morgan and circular fingerprints were used to map the 379 

structure information of drugs to feature vectors based on SMILES for drugs 380 

downloaded from the DrugBank database. 381 

Graph embedding-based feature for drugs and targets. Graph data is rich in 382 

behavioral information about nodes, which can be used as a comprehensive descriptor 383 

for drugs and targets [38]. To map a high-dimensional dense matrix like graph data to 384 
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a low-density vector, a Graph Factorization algorithm [39] was hereby introduced. 385 

Graph factorization (GF) is a method for graph embedding with time complexity 386 

O(|E|). To obtain the embedding, GF factorizes the adjacency matrix of the graph to 387 

minimize loss functions as follow: 388 

 389 

Where,  is the regularization coefficient.  and  are the adjacency matrix with 390 

weights and factor matrix, respectively.  is the set of edges, which includes i and j. 391 

The gradient of the function  with respect to  is defined as follow: 392 

 393 

Where,  is the set of neighbors of node  and the Graph Factorization algorithm, 394 

graph embeddings and targets in the drug-target interaction network can be obtained 395 

to describe their behavioral information. 396 

Stacked Autoencoder 397 

Since DLDTI integrates heterogeneous data from multiple sources, including protein 398 

sequence, drug structure, and drug-target interaction network information, the 399 

integrated biological data is characterized by noise, incompleteness and has 400 

high-dimension. Therefore, stack autoencoder (SAE) was used to establish the 401 

optimal mapping of drug space to target space to obtain low dimensional drug Feature 402 

vector [40][41]. SAE can be defined as follows: 403 

 404 
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 405 

Where  and  are encoding and decoding function, respectively.  and  are 406 

the relational parameters between two layers, respectively.  and  are vectors of 407 

bias parameters. The activation function used is ReLU: 408 

 409 

Convolutional neural network 410 

Convolutional neural networks were proposed by Lecun et al. in 1989[42]. 411 

Subsequently, they have performed well in image classification, sentence 412 

classification, and biological data analysis. In this study, convolutional neural 413 

networks were used to train supervised learning models to predict potential 414 

drug-target interactions. They were also chosen as supervised learning models to 415 

study deep features and predict potential drug targets interaction. The model used has 416 

convolutional and activation, Maxpooling, fully connected and softmax layers. Their 417 

roles are to extract depth features, down-sample, and classify samples, respectively. 418 

The convolutional layer is one of the most important parts of the CNN and aims to 419 

learn the deep characteristics of the input vectors, which is defined as follows; 420 

 421 

Where;  is the input feature of length , is the number of kernels, 422 

, and W is a weight vector of length . The feature map  is 423 

then put into the activation function ReLU, which is defined as follow: 424 
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 425 

The ReLU function increases the nonlinear relationship between the layers of the 426 

neural network, saves computation, solves the problem of gradient disappearance, and 427 

reduces the interdependence of parameters to mitigate the problem of overfitting. 428 

The convolutional and maximum pooling layers can extract important features from 429 

the input vectors. The output of all kernels was then concatenated into a vector and 430 

fed to the fully-connected layer . Where;  is the output of Maxpooling 431 

layer and  is the weight matrix. Finally, the softmax layer scored the input vectors 432 

as a percentage. 433 

Pathway analysis of predicted results from DLDTI  434 

Atherosclerosis-related gene sets were downloaded from GeneCards 435 

(https://www.genecards.org/) [43]. After using retrieve tool on Uniprot database 436 

(https://www.uniprot.org/), different identifiers from Drug Bank and GeneCards were 437 

converted to UniProtKB. Based on intersection of potential targets of TMPZ from 438 

DLDTI model and confirmed target proteins of atherosclerosis, the matched targets 439 

were regarded as the predicted targets of TMPZ on atherosclerosis. The predicted 440 

targets were uploaded to STRING for KEGG pathway and GO analysis.  441 

Validation experiments 442 

Ldlr-/- hamsters 443 

This study was approved by the Animal Ethics Committee of Xiyuan Hospital and 444 

strictly adhered to the principles of laboratory animal care (NIH publication 445 

No.85Y23, revised 1996). Male, 8-week aged and Ldlr-/- hamsters were provided by 446 

the health science center, Peking University. The Ldlr-/- genotype was confirmed 447 

using polymerase chain reaction analysis of DNA extracts from ears [31]. After one 448 

week of acclimatization, they were fed on HCHF diet containing 15% lard and 0.5% 449 

cholesterol (Biotech company, China) for eight weeks. The Ldlr-/- hamsters were then 450 
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randomly divided into three groups according to their weights (n=8 per group) and 451 

orally administered with a mixture of volume vehicle (distilled water), 452 

tetramethylpyrazine (32mg/kg/d) and clopidogrel (32mg/kg/d) drugs for eight weeks. 453 

Wild type golden Syrian hamsters (n=8) purchased from Vital River Laboratory 454 

(Charles River, Beijing, China) were fed on a standard chow diet as healthy control. 455 

All hamsters were maintained on a 12-hour light/12-hour dark cycle with free access 456 

to water.  457 

Finally, the hamsters were fasted for 12h and anesthetized through intraperitoneal 458 

injection of 1% sodium phenobarbital (70mg/kg). Blood samples were taken from 459 

abdominal aortas, and plasma was separated by centrifugation for 10 min at 2700×g. 460 

TC, TG, and HDL were determined using commercially available kits (BIOSINO, 461 

China).  462 

Oil red O staining 463 

As described previously [31][44], anesthetized hamsters were perfused with 0.01M 464 

PBS through the left ventricle. In brief, hearts and whole aortas were placed in 4% 465 

paraformaldehyde solution overnight and transferred to 20% sucrose solution for one 466 

week. Hearts were then fixed into OCT compound and cross-sectioned (8 um per 467 

slice). The atherosclerotic lesions in aortic root were stained with 0.3% Oil red O 468 

solution (Solarbio, China), rinsed with 60% isopropanol and distilled water and 469 

counterstained with hematoxylin. The results were represented by the percentage 470 

positive area of total area (en face analysis) and net lesion area (aortic root sections). 471 

Images were analyzed with Image J [45].  472 

Immunohistochemistry analysis 473 

Analysis of atherosclerotic plaque cell composition was determined by 474 

immunohistochemistry analysis of the aortic root. Macrophages and SMC were 475 

stained with CD68 (BOSTER, BA36381:100) antibody and a-SMA antibody 476 

(BOSTER, A03744, 1:100), as reported previously in hamster researches [31]. Then 477 

biotinylated second antibody (Vector Laboratories, ABC Vectastain, 1:200) were used 478 

for incubation under 2% normal blocking serum. The cryosections were visualized 479 
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using 3,3-diaminobenzidine (Vector Laboratories, DAB Vectastain). The results were 480 

represented by the percentage positive area of the total cross-sectional vessel wall 481 

area in the aortic root sections and analyzed using Image J [45].  482 

Washed platelet preparation 483 

Blood per hamster, 3 to 4 mL was collected from abdominal aortas into a tube 484 

containing an acid-citrate-dextrose anticoagulant (83.2mM D-glucose, 85mM 485 

trisodium citrate dihydrate, 19mM citric acid monohydrate, pH5.5). Platelet-rich 486 

plasma (PRP) was prepared after centrifugation at 300×g for 10min in room 487 

temperature. For washed platelet preparation, PRP was centrifuged at 1500×g for 488 

2min. After collecting supernatant consisting of platelet-poor plasma into another 489 

centrifuge tube, the remaining PRP was washing three times, and the pellet was 490 

re-suspended in a modified Tyrode buffer (2.4mM HEPES, 6.1mM D-glucose, 491 

137mM NaCl, 12mM HaHCO3, 2.6mM KCl, pH7.4).  492 

Assessment of platelet activity 493 

Washed platelets were loaded with fura-2/AM(5μM, Molecular Probe) in the presence 494 

of Pluronic F-127 (0.2μg/mL, Molecular Probe) and then incubated at 37� for 1 hour 495 

in the dark [46]. Platelets were washed and re-suspended in Tyrode buffer containing 496 

1mM calcium. After activation of ADP (20μM, Sigma), intracellular calcium 497 

concentration was measured using a fluorescence mode of Synergy H1 microplate 498 

reader (Biotek, USA). Excitation wavelengths was alternated at 340 and 380 nm. 499 

Excitation was measured at 510 nm. TritonX-100 and EGTA were used for calibration 500 

of maximal and minimal calcium concentrations, respectively. Washed platelets were 501 

activated by ADP and then lysed by 0.1M HCl on ice. According to the 502 

manufacturer’s instructions, the level of intracellular cAMP was determined by 503 

ELISA (Enzo Life Sciences, ADI-900-066). 504 

Western blot analysis 505 

Washed platelets from each group were lysed with radioimmunoprecipitation assay 506 

(RIPA) buffer with the presence of protease and phosphatase inhibitor mixtures on ice 507 

(Solarbio, China). Lysates were separated by 10000×g centrifugation for 10 min at 4�. 508 
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Total protein concentrations were determined by BCA method. Equal amounts of total 509 

protein (40μg) were resolved in SDS-PAGE and electroblotted. The nitrocellulose 510 

membranes were blocked with 5% skimmed milk at room temperature for 2 hours and 511 

incubated with primary antibodies targeting PI3K(CST, 4257T, 1:500), Akt(CST, 512 

9272, 1:2000), p-Akt(CST,2965,1:1000) and GADPH (Abcam, ab8245, 1:5000) 513 

overnight at 4�. The membranes were then incubated with the HRP-conjugated 514 

anti-rabbit antibody for 1 hour at 37�, followed by enhanced chemiluminescence 515 

detection.  516 

Statistical analysis 517 

All data were expressed as mean ±standard error (SEM). Shapiro-Wild test and 518 

Levene’s test were used for determining normality of data distribution and 519 

homogeneity of variances, respectively. An unpaired student’s t-test was used to 520 

compare data among different groups when data were normally distributed, and 521 

variances were equal among the groups. Unpaired t test with Welch’s correction was 522 

used when there was unequal standard deviation among groups. Mann-Whitney test 523 

was used for nonparametric test. All p-values less than 0.05 were considered 524 

statistically significant. All statistical analyses were performed using GraphPad Prism 525 

8.0 (GraphPad, United states). 526 
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Figure legends 697 

Figure 1.  The flowchart of the DLDTI pipeline. DLDTI first integrates a variety of 698 

drug-related information sources to construct a heterogeneous network and applies a 699 

compact feature learning algorithm to obtain a low-dimensional vector representation 700 

of the features describing the topological properties for each node. Next, DLDTI 701 

determines the optimal mapping from the plenary mapping space to the prediction 702 

subspace, and whether the feature vector is close to the known correlations. 703 

Afterwards, DLDTI infers the new DTIs by ranking the drug-target interaction 704 

candidates according to their proximity to the predicted subspace 705 

Figure 2.  Schematic illustration of compact feature learning. The Node2Vec 706 

algorithm is firstly used to calculate the topology information in complex networks. 707 

Gaussian interaction profile kernel similarity (GIP) and drug structure information are 708 

then extracted by a stacked automatic encoder, and the heterogeneous information is 709 

integrated to obtain a low-dimensional representation of the feature vector of each 710 

node. The resulting low-dimensional descriptor integrates the attribute characteristics, 711 
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interaction information, relationship attributes and network topology of each protein 712 

or target node in the complex network.  713 

Figure 3.  Performance of DLDTI. (a) ROC curves performed by DLDTI model on 714 

DrugBank dataset. (b) PR curves performed by DLDTI model on DrugBank dataset. 715 

(c) Performance comparison (AUC scores) among four different prediction model 716 

which are DTI-ADA, DTI-KNN, and DTI-RF.(d)Performance comparison (AUPR 717 

scores) among four different prediction models including DTI-ADA, DTI-KNN, and 718 

DTI-RF.(e)Performance comparison (Acc., F1, Pre., Rec. scores) among DTI-ADA, 719 

DTI-KNN, and DTI-RF prediction models. 720 

Figure 4. Genotyping and lipid parameters between different groups. (a).PCR 721 

analysis was performed using ear genomic DNA from WT (+/+) and homozygote (−/−) 722 

with the Δ194 deletion. The concentrations of plasma TC (b), HDL(c), non-HDL(d) 723 

and TG(e) were measured in WT, vehicle, TMPZ and clodipogrel groups at the 724 

endpoint of this experiment. Differences were assessed by unpaired student t’s test or 725 

Mann-Whitney test. * p<0.05 versus Vehicle, **p<0.01 versus Vehicle. ##p<0.01 726 

versus WT. All data was expressed as mean ±standard error (SEM) 727 

Figure 5. Histological analysis. (a) Representative images of en face analysis. (b) 728 

Quantitative analysis of lesion areas in whole aortas. Differences were assessed by 729 

unpaired student t’s test. (c) Representative images of ORO staining of aortic root 730 

sections. (d) Quantitative analysis of lesion areas in aortic root sections. (e) 731 

Representative images of macrophage (CD68) analysis (b) Quantitative analysis of 732 

lesions area in macrophage analysis. (f) Representative images of SMC (SMA) 733 

analysis (g) Quantitative analysis of lesions area in SMC. Differences were assessed 734 

by unpaired student t’s test. * p<0.05 versus Vehicle, **p<0.01 versus Vehicle. 735 

#p<0.05 versus clopidogrel. Scale bar=250μm. All data was expressed as mean ±736 

SEM. 737 

Figure 6. Signaling transduction in ADP-mediated platelet activation. (a) Intracellular 738 

calcium concentration. (b) Intracellular cAMP concentration. Western blot analyses of 739 
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the expression of PI3K (c), Akt (d) and p-Akt (d). Differences were assessed by 740 

unpaired student t’s test with or without Welch’s corrections. ** p<0.01 versus 741 

Vehicle, * p<0.05 versus Vehicle. All data was expressed as mean ±SEM. 742 

Table 743 

Table 1 KEGG pathway enrichment analysis of DLDTI results 744 

Class KEGG term Count P value 

Signal transduction PI3K-Akt signaling pathway 36 2.49E-17 

 Neuroactive ligand-receptor interaction 32 6.04E-17 

 MAPK signaling pathway 29 1.08E-13 

 Calcium signaling pathway 26 1.01E-15 

 Rap1 signaling pathway 22 2.99E-11 

 cGMP-PKG signaling pathway 20 2.99E-11 

 cAMP signaling pathway 16 3.83E-07 

Metabolism Metabolism of xenobiotics by 

cytochrome P450 

23 4.27E-20 

 Steroid hormone biosynthesis 17 1.28E-14 

 Retinol metabolism 15 5.89E-12 

Immune system Complement and coagulation cascades 21 3.06E-17 

 Th17 cell differentiation 15 1.77E-09 

Others Regulation of actin cytoskeleton 16 6.90E-07 

 Gap junction 15 2.74E-10 

 Fluid shear stress and atherosclerosis 15 2.91E-08 

 745 
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