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Abstract

The evolution of multidrug resistance (MDR) is a pressing public health concern. Yet
many aspects, such as the role played by population structure, remain poorly understood.
Here we argue that studying MDR evolution by focusing upon the dynamical equations for
linkage disequilibrium (LD) can greatly simplify the calculations, generate more insight,
and provide a unified framework for understanding the role of population structure. We
demonstrate how a general epidemiological model of MDR evolution can be recast in terms
of the LD equations. These equations reveal how the different forces generating and propa-
gating LD operate in a dynamical setting at both the metapopulation and population level.
We then apply these insights to show how the LD perspective: (i) provides a simple interpre-
tative framework for transient evolutionary dynamics, (ii) explains equilibrium patterns of
MDR, and (iii) can be used to assess the MDR consequences of different drug prescription
strategies.
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Introduction1

Antibiotic resistance is one of the biggest current public health problems, with antibiotic resis-2

tant infections responsible for tens of thousands of deaths annually [1]. Of particular concern is3

the evolution of multidrug resistant (MDR) pathogens, that is, pathogens resistant to multiple4

classes of antibiotics. Despite its importance, understanding the evolution of MDR remains an5

ongoing challenge, as it is typically not captured by our understanding of the evolution of single6

drug resistance [for which there is a large body of theory; e.g., 2–6]. For instance, suppose we7

have two drugs, A and B , and that a fraction p AB of infections caused by the pathogen of in-8

terest are resistant to both drugs. To understand MDR evolution, we need to understand what9

determines the frequency p AB . If p A and pB are the frequency of infections resistant to drug A10

and B , and D denotes any non-random association between resistance to drugs A and B , then11

p AB = p A pB +D. (1)

If D = 0, then the evolution of resistance to each drug is independent, and so multiple drugs12

will not qualitatively alter the evolutionary dynamics of single drug resistance. However, when-13

ever D 6= 0, understanding the fitness costs and benefits of resistance to each drug in isolation14

is insufficient to understand the evolution of MDR, because doing so will not tell us what fac-15

tors govern the propagation of D . Thus the challenge of understanding MDR evolution can be16

recast as understanding the dynamics of D . As it turns out, the quantity D is referred to as link-17

age disequilibrium (LD), and it has been extensively studied in population genetics [e.g., 7–12],18

particularly as it relates to population structure [13–16]. However, there has been little attempt19

to apply these insights to MDR evolution; often the dynamics of doubly-resistant infections are20

neglected to simplify the analysis of the dynamics of single drug resistance [e.g., 3, 5, 17].21

Here we consider a simple epidemiological model of a primarily asymptomatically carried22

pathogen (e.g., Staphylococcus spp. or Enterococcus spp.) in a structured host population. We23

show how this model relates to general dynamical equations for LD [18], in turn revealing the24

role of population structure in MDR evolution. We then use these equations to show how ana-25

lyzing problems from the LD perspective: (i) provides a straightforward framework for under-26

standing transient evolutionary dynamics, which we use to explain patterns of MDR in Strep-27

tococcus pneumoniae; (ii) reveals the evolutionary logic underlying patterns of MDR at equi-28

librium, which we use to reexamine a recent paper on MDR evolution [19]; and (iii) provides29

insight on the consequences different drug prescription strategies have on MDR, which we ap-30

ply to a hospital-community setting.31

Model32

In what follows we will introduce and analyze a model of MDR evolution. We will highlight33

the most important aspects here while providing more extensive details in the Supplementary34

Material.35

Consider an asymptomatically carried pathogen in a metapopulation consisting of N host36

populations. Focus upon population X . Let SX and I X
i j denote the density of susceptible hosts37

and i j -infections, respectively, at time t , where i indicates if the infection is resistant (i = A) or38

not (i = a) to drug A and j indicates if the infection is resistant ( j = B) or not ( j = b) to drug B .39

Susceptible hosts contract i j -infections at a per-capita rate βX
i j I X

i j , where βX
i j is a rate constant,40
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while i j -infections are naturally cleared at a per-capita rateαX
i j . Hosts are treated with drugs A,41

B , or both in combination, at per-capita rates τX
A , τX

B , and τX
AB , respectively. Hosts move from42

population X to X ′ at a per-capita rate mX→X ′
. Transmission between infected hosts leads to43

superinfection with probabilityσ, in which either strain is equally likely to be the victor. Finally,44

individual infections acquire allele ` through either mutation or recombination (during super-45

infection) at per-capita rates µX
`

and ρX
`

, respectively (note that ρX
`

depends upon infection46

densities).47

From these epidemiological assumptions the change in i j -infections in population X can48

be written as the sum of four processes49

dI X
i j

dt
= (

per-capita growth︷ ︸︸ ︷
r X +1A sX

A +1B sX
B +1AB sX

AB )I X
i j +

mutation︷ ︸︸ ︷
∆µX

i j +
recombination︷ ︸︸ ︷
∆ρX

i j +

migration︷ ︸︸ ︷
N∑

k=1

(
mk→X I k

i j −mX→k I X
i j

)
, (2)

where 1` is equal to 1 if the i j -infection has allele(s) ` and 0 otherwise and ∆µX
i j and ∆ρX

i j50

denote the net change in i j -infections due to mutation and recombination (Fig. 1). To facil-51

iate comparison with previous results, we have broken the per-capita growth term into four52

components: the ‘baseline’ per-capita growth rate, r X , the (additive) selection coefficients for53

resistance to drugs A and B , sX
A and sX

B , and any epistatic interactions, sX
AB . These latter terms54

have the standard interpretation. If sX
A > 0 (resp. sX

B > 0), then resistance to drug A (resp. B)55

is selected for. If sX
AB > 0, there is positive epistasis, and the per-capita growth rate of doubly-56

resistant infections is greater than would be expected by consideration of the per-capita growth57

rate of singly-resistant infections. Thus although equation (2) is derived from a specific model,58

the partitioning is very general and applies to many epidemiological scenarios.59

While system (2) contains all of the information necessary to analyze MDR evolution, as60

currently written it is particularly opaque for providing insight. Therefore we would like to61

transform it to a form which brings to the forefront the different factors that promote or im-62

pede MDR evolution; the way to do this is by focusing upon the dynamical equations for link-63

age disequilibrium (LD). However, the inclusion of multiple populations means that doing so64

is not as simple as equation (1) would suggest since there are different scales at which LD and65

MDR can be measured. As the scale which is of most interest will depend upon the specifics66

of the problem, in what follows we will consider MDR evolution at both the population- and67

metapopulation-level.68

Population-level multidrug resistance69

To understand MDR evolution in a given population, say X , we need to understand the dynam-70

ics of the frequency of infections resistant to drug A and B , p X
A and p X

B , and the dynamics of71

population LD, D X . First, consider the dynamics of p X
A (mutatis mutandis p X

B ). Using equation72
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(2), it is straightforward to compute73

dp X
A

dt
=

direct selection︷ ︸︸ ︷
sX

A p X
A (1−p X

A )+

indirect
selection︷ ︸︸ ︷
sX

B D X +

epistasis︷ ︸︸ ︷
sX

AB p X
A (1−p X

A )
p X

AB

p X
A

+ (µX
A +ρX

A )(1−p X
A )− (µX

a +ρX
a )p X

A︸ ︷︷ ︸
mutation and recombination

−
N∑

k=1
mk→X I k

I X
(p X

A −pk
A)︸ ︷︷ ︸

migration

. (3)

where I X is the total density of infections in population X . A related formulation to equation74

(3) can be found in [18] [see also 11].75

Equation (3) is partitioned into recognizable quantities. First, if resistance to drug A is selec-76

tively advantageous, sX
A > 0, then drug A resistance will increase due to direct selection whose77

strength is dictated by the genetic variance at the locus, p X
A (1− p X

A ) [18]. Second, if doubly-78

resistant infections are overrepresented in the population, D X > 0, and resistance to drug B79

is selected for, sX
B > 0, then drug A resistance will increase due to indirect selection upon re-80

sistance to drug B . Third, if epistasis is positive, sX
AB > 0, and there is genetic variance at the81

locus, drug A resistance will increase due to the disproportionate growth of doubly-resistant82

infections. Fourth, mutation and recombination will increase drug A resistance when there is83

a mutation or recombination bias towards gain of drug A resistance, µX
A > µX

a or ρX
A > ρX

a , and84

the frequency of infections sensitive to drug A exceeds the frequency of infections resistant to85

drug A, 1−p X
A > p X

A . Finally, migration acts to reduce differences between populations.86

It follows that drug B treatment alters the predicted dynamics of resistance to drug A via87

two main effects: (i) the influence of epistasis and (ii) indirect selection on resistance to drug B88

mediated through the presence of LD (D X 6= 0). Thus consider the dynamics of D X ,89

dD X

dt
=

selection︷ ︸︸ ︷
(sX

A − sX + sX
B − sX )D X −

mutation and recombination︷ ︸︸ ︷
(µX +ρX )D X

+ sX
AB p X

AB p X
ab︸ ︷︷ ︸

epistasis

−
N∑

k=1
mk→X I k

I X

(
D X −Dk − (p X

A −pk
A)(p X

B −pk
B )

)
︸ ︷︷ ︸

migration

, (4)

where sX = p X
A sX

A +p X
B sX

B +p X
AB sX

AB is the average selection for resistance, and µX and ρX are the90

total per-capita rates of mutation and recombination, respectively (e.g.,µX =µX
a +µX

A +µX
b +µX

B ).91

Equation (4) is partitioned into four key processes. First, excess selection for resistance to92

drug A (resp. B), sX
A − sX , can cause pre-existing LD (D X 6= 0) to increase or decrease. For93

example, if sX
A > sX and D X > 0 then LD will increase. This is because drug A resistant in-94

fections are fitter than the average resistant infection and so will increase in frequency. Since95

D X > 0, it is more likely this increase will occur in doubly-resistant infections, thereby increas-96

ing D X . Second, mutation and recombination removes any LD present at a rate proportional97

to the LD [11, 12]. Third, epistasis generates same-sign LD, that is, positive epistasis, sX
AB > 0,98

leads to MDR overrepresentation, D X > 0 [7, 8, 20, 21]. Positive epistasis could occur if double-99

resistance costs are less than expected [22–24] or drugs are prescribed in combination [18, 25].100

Migration is the final term of equation (4) and reveals how the metapopulation structure101

affects population LD. Like epistasis, migration does not require pre-existing LD to operate on102
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LD [9, 13–15, 26]. In particular, LD in population X will be generated whenever the frequencies103

of resistance to drugs A and B differ between population X and any other connected popula-104

tion, say X ′. If both types of resistance are more common in one population than the other,105

(p X
A −p X ′

A )(p X
B −p X ′

B ) > 0, then migration will generate positive LD in both populations, D X > 0106

and D X ′ > 0. If instead drug A resistance is more prevalent in one population, while drug B107

resistance is more prevalent in the other, migration will generate negative LD in both popula-108

tions.109

Notice the presence of the multiplier I k /I X in the final term of equation (4). If the popu-110

lations have roughly the same density of infections, then this term is unimportant. However,111

when one population, say X ′, has much fewer total infections than population X , I X ′ ¿ I X , the112

term I X /I X ′
will be very large whereas I X ′

/I X will be very small. Consequently, the ability of mi-113

gration to propagate LD will be greater in population X ′ than X , and so all else being equal we114

would predict the population with a lower density of infections will have a greater magnitude115

of LD than the population with a higher density of infections.116

The next insight shows the importance of also taking into account equation (3). In par-117

ticular, if we only inspected the migration term of equation (4) we might conclude that as the118

per-capita migration rate, mk→X , increases, so too will the ability of migration to propagate119

LD. However, the magnitude of population LD is actually maximized at intermediate migration120

rates (Fig. 2). The reason is because the quantity mk→X has two effects. On the one hand, it121

directly multiplies the migration term in equation (4) thereby magnifying migration’s potential122

role in LD build-up, while on the other hand, it also balances infection frequencies between123

populations (equation (3)), which in turn will reduce the magnitude of (p X
A − pk

A)(p X
B − pk

B ) in124

equation (4). These conflicting forces mean the magnitude of population LD tends to be maxi-125

mized when migration is neither too infrequent nor too frequent (Fig. 2).126

Metapopulation-level multidrug resistance127

Now what happens to LD and MDR evolution at the metapopulation-level? Metapopulation128

LD, or total LD, can be defined in terms of the population variables as129

Dtot ≡ D +cov(p A, pB ), (5)

that is, Dtot is the sum of the average population LD, D , and the spatial covariance between130

resistance to drugs A and B . As our goal is to understand how population structure shapes131

the dynamics of p A, pB , and Dtot, for clarity we will split the terms in the dynamical equations132

into two groups. In the first group are those terms (or processes) which are always operating,133

irrespective of population structure, and so can be expressed in terms of the metapopulation-134

level variables p` and Dtot. The second group consists of those processes which only operate if135

the populations differ (i.e., there is spatial heterogeneity). It is the latter group which is crucial136

to understanding how population structure shapes population MDR, and so will be our focus137

here.138

With this in mind, the change in frequency of infections resistant to drug A (mutatis mutan-139
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dis drug B) can be written140

dp A

dt
=

direct
selection︷ ︸︸ ︷

sA p A(1−p A)+
indirect

selection︷ ︸︸ ︷
sB Dtot+

epistasis︷ ︸︸ ︷
sAB p A(1−p A)

p AB

p A

+ (µA +ρA)(1−p A)− (µa +ρa)p A︸ ︷︷ ︸
mutation and recombination

+cov(r, p A)︸ ︷︷ ︸
heterogeneity in
‘baseline’ growth

+pB cov

(
sB ,

p AB

pB

)
︸ ︷︷ ︸

heterogeneity in
indirect selection

, (6)

where s`, r , µ`, ρ` are the average of their respective population quantities. The first four terms141

in equation (6) are the metapopulation-level analogues of the first four terms in equation (3);142

since they share the same interpretation, we do not discuss them further here. The last two143

terms, however, arise due to spatial heterogeneity in ‘baseline’ growth and selection and so are144

the consequence of population structure.145

First, spatial heterogeneity arises through differences in the ‘baseline’ per-capita growth146

(i.e., r X 6= r X ′
) coupled with differences in the frequencies of drug A resistant infections (e.g.,147

p X
A 6= p X ′

A ). In particular, more productive (larger r X ) populations will have a disproportionate148

effect on the change in drug A resistance. For example, if more productive populations also149

have a greater frequency of drug A resistance, then heterogeneity increases the population fre-150

quency of drug A resistance. Heterogeneity in baseline growth could arise through a variety of151

mechanisms, such as availability of susceptible hosts, treatment rates differences, or pathogen152

traits (e.g., transmissibility and duration of carriage).153

Second, spatial heterogeneity arises through differences in indirect selection for resistance154

to drug B (i.e., sX
B 6= sX ′

B ) coupled with differences in the probability that drug B resistant infec-155

tions are also doubly-resistant (i.e., p X
AB /p X

B 6= p X ′
AB /p X ′

B ). In particular, populations experienc-156

ing greater selection for resistance to one drug will have a disproportionate effect on the change157

in frequency of infections resistant to the other drug, whenever populations differ in frequency158

of doubly-resistant infections. As an example, if populations experiencing stronger selection159

for drug B resistance also have a greater probability of drug B-resistant infections being doubly-160

resistant, heterogeneity in indirect selection increases the frequency of drug A resistance in the161

metapopulation.162

Next, the dynamics of metapopulation, or total, LD can be written as163

dDtot

dt
=

selection︷ ︸︸ ︷
(sA − s + sB − s)Dtot−

mutation and
recombination︷ ︸︸ ︷
(µ+ρ)Dtot+

epistasis︷ ︸︸ ︷
sAB pab p AB

+cov(r,D)+coskew(r, p A, pB )︸ ︷︷ ︸
heterogeneity in ‘baseline’ growth

+ ∑
`∈{A,B}

(1−p`)p`cov

(
s`,

p AB

p`

)
︸ ︷︷ ︸

heterogeneity in resistance selection

, (7)

where coskew(r, p A, pB ) is the coskewness between r , p A, and pB and we have assumed pop-164

ulation differences in mutation and recombination are negligible (see Sup. Mat. 1.2). The first165

three terms in equation (7) are the metapopulation level analogues of the first three terms of166

equation (4) and so share the same interpretation. The last two terms, however, arise due to167

spatial heterogeneity in ‘baseline’ growth and selection.168
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First, spatial heterogeneity arises through differences in the ‘baseline’ per-capita growth in169

doubly-resistant infections (r X 6= r X ′
) coupled with heterogeneities in LD (D X 6= D X ′

) or resis-170

tance frequencies (the coskewness term). The logic of the first term is clear: when population171

LD differs, more productive populations will disproprotionately contribute to total LD. For the172

second term, more productive populations with higher frequencies of resistance will tend to173

produce more doubly-resistant infections; although this need not directly effect population LD,174

it will disproportionately contribute to total LD.175

Second, spatial heterogeneity arises through differences in selection for resistance (sX
`

6=176

sX ′
`

) coupled with differences in the proportion of drug ` resistant infections that are doubly-177

resistant (p X
AB /p X

`
6= p X ′

AB /p X ′
`

). The logic here is that populations experiencing stronger selec-178

tion for resistance are more likely to see an increase in resistant infections. If this increase oc-179

curs disproportionately in doubly-resistant infections, then from equation (1) total LD will in-180

crease, whereas if this increase occurs disproportionately in singly-resistant infections, total LD181

will decrease. The magnitude of this effect is scaled by p`(1−p`) since selection cannot operate182

without genetic variation. As before, in the absence of population LD, then provided popula-183

tions experiencing stronger selection for resistance to one drug also have a greater frequency184

of infections resistant to the other drug, total LD will increase. This could occur if, for example,185

some populations experience greater treatment rates.186

As a final note, observe that in constrast to equation (4), in equation (7) the per-capita187

migration rates mk→X are nowhere to be found. The reason for this is intuitive: as migration188

does not affect the total density of infecteds, nor the resistance status of an infection, it will not189

change the quantities p AB , p A, or pB , and so cannot change total LD. As a consequence, migra-190

tion only affects total LD indirectly by reducing differences in infection frequency between pop-191

ulations, thereby dampening the magnitude (and hence effect) of cov(r, p`), coskew(r, p A, pB ),192

and cov(s`, p AB /p`) in equation (7). It follows that, all else being equal, Dtot is a decreasing193

function of the per-capita migration rate, and so is maximized when migration is infrequent194

(Fig. 2).195

Modeling the dynamics of LD: why bother?196

To this point we have focused upon developing the LD perspective to provide a conceptual un-197

derstanding of MDR evolution in structured populations. However, framing the LD perspective198

in terms of general quantities has meant this conceptual understanding is somewhat abstract.199

What we now wish to demonstrate, through the consideration of three scenarios, is how the LD200

perspective can be used to tackle practical problems. In the first scenario, we show how the LD201

perspective allows for a straightforward understanding of transient dynamics, and apply this202

insight to explain patterns of MDR observed in Streptococcus pneumoniae. In the second sce-203

nario, we show how the LD perspective helps us generalize a recent paper on equilibrium pat-204

terns of MDR. In the third scenario we show how the LD perspective generates practical insight205

into designing drug prescription strategies across populations, with a focus upon a hospital-206

community setting.207
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LD perspective explains transient patterns of MDR208

In many circumstances we are interested in the transient dynamics of MDR, whether it be to ei-209

ther understand selective sweeps [27, 28], or processes which unfold over sufficiently long time210

so as to appear in equilibrium [29], or anything in between. However, transient dynamics are211

more complex than equilibrium processes, and so pose a challenge. In certain circumstances,212

approximations can simplify the analysis. For example, if selection is sufficiently weak and re-213

combination frequent, then the LD dynamics occur rapidly relative to changes in allele fre-214

quencies, and so a quasi-linkage equilibrium approximation can be used [27, 30, 31]. Yet what215

about situations in which there are no readily available approximations? In these cases, to un-216

derstand what is (transiently) occurring requires consideration of the dynamical equations (4)217

and (7). Here we show how transient dynamics coupled with epistasis can explain the patterns218

of MDR observed in Streptococcus pneumoniae [32].219

Understanding the patterns of MDR observed in S. pneumoniae was first tackled in an im-220

portant recent paper by [19], using a metapopulation model in which each population repre-221

sents a different serotype maintained by serotype-specific host immunity [19, 33–35]. In the222

analysis of [19], they focused upon a metapopulation at equilibrium, and compared their pre-223

dictions for total (metapopulation) LD and MDR to that of the Maela data set of [32]. However,224

at equilibrium, the model of [19] predicts each serotype will be in linkage equilibrium, D X = 0,225

whereas examination of the Maela data reveals that although variation between serotypes ac-226

counts for some of the total LD, there also exists significant, unexplained serotype LD (Fig. 3).227

Can transient dynamics explain this presence of serotype LD?228

To explore this possibility, we first need to establish a scenario in which the transient dy-229

namics unfold. In particular, consider a metapopulation initially treated with drug A at suffi-230

ciently high rates such that resistance is selected for. At some point (t = 500 in Fig. 4), drug231

B is ‘discovered’ and is prescribed to patients, while owing to its reduced efficacy, prescrip-232

tion of drug A declines. The increase in drug B prescription means that for many serotypes,233

resistance to drug B is now favoured, sX
B > 0, and so we should expect drug B resistance to234

rise in frequency in the metapopulation. However, the reduction in drug A prescription means235

that for some serotypes, drug A resistance will no longer be favoured, sX
A < 0. Because drug236

A resistance has reached fixation for many serotypes, drug B resistance is often more likely237

to occur in an infection with a genetic background resistant to drug A. This will cause both238

doubly-resistant infections (which benefit from resistance to drug B) and sensitive infections239

(which have lost resistance to drug A but have yet to gain resistance to drug B) to rise to high240

frequencies. As more time elapses, in the serotypes for which drug A sensitivity and drug B241

resistance is favoured, doubly-resistant and sensitive infections will be replaced by infections242

singly-resistant to drug B . Depending upon the mutation/recombination rates, this process243

can take enormous amounts of time, generating long periods of apparent stasis in which the244

population appears to be in equilibrium (see the first row of Fig. 4).245

Although this process will generate significant transient total LD due to the covariance in246

resistance frequency across serotypes, in equation (4) there is nothing generating serotype LD247

since migration (i.e., antigenic recombination) is infrequent. This leaves epistasis as the re-248

maining (deterministic) force capable of generating serotype LD. Indeed, the addition of epis-249

tasis can generate significant, transient LD within serotypes as the transient selective sweeps250

are ongoing (Fig. 4). Thus transient dynamics coupled with epistasis can explain the significant251

within-serotype LD observed in Streptococcus pneumoniae. Critically, in all cases in Figure 4,252
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the LD at both the metapopulation and serotype level is transient, and the final state is linkage253

equilibrium. How population structure maintains LD at equilibrium is the focus of the next254

example.255

LD perspective explains equilibrium patterns of MDR256

The paper by [19] focused upon MDR evolution in a metapopulation consisting of independent257

host populations (so migration is restricted, mX→X ′ ≈ 0). They found that at equilibrium, pop-258

ulation differences could lead to MDR overrepresentation (Dtot > 0), and that populations with259

a longer duration of pathogen carriage were more likely to exhibit MDR, a result they attributed260

to an increased likelihood of antibiotic exposure. Here we show how employing the LD per-261

spective: (i) reveals the evolutionary logic behind what populations differences maintain LD at262

equilibrium, and (ii) using these insights allows us to generalize the results to a broader range263

of scenarios, beyond variation in duration of carriage. For simplicity, we will assume there is no264

epistasis.265

There are two required conditions to maintain total LD at equilibrium. First, some mech-266

anism needs to maintain resistance diversity (variation in p X
A and p X

B ) in the metapopulation.267

There are variety of ways in which this could occur [19, 35–38], but [19, 35] assume it is due to268

population differences in the conditions favouring resistance evolution. Since there is no mech-269

anism maintaining within-population diversity, this implies that at equilibrium D X = 0, and so270

from equation (5) it follows that Dtot = cov(p A, pB ). Thus the second condition required for total271

LD is that p A and pB covary. Specifically, whenever p X
A and p X

B (or their dynamical equations,272

(3)), are uncorrelated, the metapopulation will be in linkage equilibrium. From equation (3)273

we see that if the additive selection coefficients, sX
A and sX

B , are uncorrelated, then so too are274

the dynamics of p X
A and p X

B , and so cov(p A, pB ) = 0. Hence only when population differences275

generate correlations between the selection coefficients will they generate LD.276

Using this insight, why are populations with a longer duration of carriage associated with277

MDR? And should we expect associations between MDR and any other population attributes?278

Our primary focus is whether (and how) the selection coefficients are correlated. It is straight-279

forward to compute (see Sup. Mat. 1.4.2),280

sX
A =−(βX

ab −βX
Ab)SX − (αX

Ab −αX
ab)+τX

A , (8)

where we have used slightly different notation from [19]. Now, consider a scenario in which281

both the treatment rates and the parameters controlling the (additive) costs of resistance (e.g.,282

βX
ab −βX

Ab and αX
Ab −αX

ab) are uncorrelated (this is one of the scenarios presented in Figure 4283

of [19]). From equation (8), the only remaining source of correlation is susceptible density, SX ,284

which plays a role whenever there are explicit transmission costs, βX
Ab <βX

ab . At equilibrium, SX
285

is determined by pathogen traits such as transmission and duration of carriage, such that ‘fitter’286

populations (i.e., those in which pathogens are more transmissible or have longer duration of287

carriage) will more substantially deplete susceptibles. By reducing SX , ‘fitter’ populations lower288

the transmission costs for resistance to either drug, and so double-resistance is more likely to289

be selectively advantageous, even when treatment rates are uncorrelated. In turn, this over-290

representation of doubly-resistant infections will generate total LD.291

Thus although variation in duration of carriage can lead to MDR evolution and LD through292

its effect upon susceptible density (Fig. 5a), it is neither necessary (the same pattern can be pro-293

duced by variation in transmissibility; Fig. 5b) nor sufficient (variation in duration of carriage294
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has no effect without explicit transmission costs, Fig. 5c). More broadly, if there are more than295

two drugs, then provided that there are explicit transmission costs for resistance to each drug,296

susceptible density will generate a correlation between all the selection coefficients, which in297

turn will yield the pattern of ‘nestedness’ observed by [19]. What is critical for this effect to298

be prominent, however, is that there is clear differentiation in population susceptible density,299

and that the parameters controlling cost of resistance (i.e., βX
ab −βX

Ab), are large enough so as to300

ensure a strong correlation amongst selection coefficients.301

LD perspective helps identify drug prescription strategies limiting the evolu-302

tion of MDR303

Owing to its practical relevance for public health, often we are interested in the consequences304

different antibiotic deployment strategies across/between populations can have. The popu-305

lations of interest could correspond to physically distinct groups such as a hospital and its306

broader community, or different geographical regions (e.g., countries). From a public health307

perspective, when considering different antibiotic deployment strategies, a variety of factors308

must be considered, but in general the goal is to successfully treat as many people as possible,309

thereby reducing the total burden [3, 39]. In this circumstance, the LD in the metapopulation310

and/or populations can provide important information about the likelihood of treatment suc-311

cess. In particular, for a given population frequency of drug A and drug B resistance, negative312

LD (MDR underrepresentation) increases the likelihood that if treatment with one drug fails313

(due to resistance), treatment with the other drug will succeed. On the other hand, positive314

LD (MDR overrepresentation) increases the likelihood of treatment failure, since a greater pro-315

portion of resistant infections are doubly-resistant and so cannot be successfully treated with316

either drug.317

Equations (4) and (7) show that to generate negative LD, drugs should be deployed in a pop-318

ulation specific fashion, that is, drug A should be restricted to some populations and drug B319

restricted to the remaining populations [see also 18, 19]. Doing so will create a negative co-320

variance in selection, such that resistance to drug A (resp. drug B) will be favoured in some321

populations and disfavoured in the others. This negative covariance in selection will give rise322

to negative LD and MDR underrepresentation. This outcome can occur even when drugs have323

to be prescribed at a higher rate in some populations (e.g., some populations are higher risk324

groups). If instead drugs are deployed indiscriminately across populations, and in addition,325

some populations require more frequent antibiotic prescription, this will yield a positive co-326

variance of selection and so generate positive LD and MDR (Fig. 2).327

As an application of this principle, suppose there are two populations corresponding to a328

‘hospital’ and a ‘community’. In this scenario, the three most commonly debated antibiotic329

deployment strategies are: cycling, in which drugs are temporally rotated in the hospital; mix-330

ing, in which hospital patients are randomly assigned different antibiotics; and combination331

therapy in which drugs are prescribed to patients in combination [e.g., 3–5, 17, 39–41]. There332

are two relevant points that hold irrespective of which antibiotic deployment strategy is used.333

First, antibiotics are prescribed at significantly higher rates in hospitals than in the community.334

Second, because the focal bacteria are commensal all that differs between strategies is what335

drug(s) people are prescribed and not the treatment rate. In this scenario, we immediately see336

the problems that can arise (Fig. 6). Because the treatment rate is higher in the hospital than in337

the community, both mixing and combination therapy will generate a greater relative selective338
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advantage for both types of resistance in the hospital. In turn, this will generate a positive co-339

variance of selection, leading to positive LD and MDR overrepresentation. On the other hand,340

if we cycle the drugs between the hospital and the community, such that if drug A is deployed341

in the hospital, drug B is deployed in the community, this will generate a negative covariance342

in selection, leading to MDR underrepresentation. Note that this logic could equally be applied343

if we were considering a network of hospitals; since in that case if we have (say) N hospitals,344

the LD of the metapopulation is still the average population LD plus the covariance [26]. Thus345

although cycling can be either the best or worst option for single drug resistance [17] (see also346

Fig. 6), by generating negative LD it can lead to MDR underrepresentation and improved clini-347

cal outcomes.348

Conclusions349

The evolution of multidrug resistant pathogens is a pressing health concern, and is a topic350

which is increasingly gaining attention from evolutionary biologists and mathematical mod-351

ellers alike. However, the typical process in studying the problem of MDR is to introduce a352

model of the form of (2), and then either proceed to a numerical analysis of these equations or353

simplify the model further by neglecting the dynamics of double resistant infections [3, 5, 17].354

This is because models of MDR evolution rapidly become intractable, a problem which is par-355

ticularly acute when incorporating aspects of population structure. Here we have argued that356

a more insightful and simplifying approach is the ‘linkage disequilibrium perspective’: after357

specifying the model of interest, as in (2), it is desirable to transform the model into the form358

of equations (3), (4), (6), and (7), which brings to the forefront the role played by linkage dis-359

equilibrium for MDR evolution in structured populations. Using the linkage disequilibrium360

perspective leaves us better equipped to determine what factors are responsible for generating361

MDR, and their generality. Moreover, taking such an approach leads to a more straightforward362

comparison with existing models and results.363
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1 Supplementary Material461

Here we provide more comprehensive details on the different equations, variables, and defini-462

tions used in the main text.463

Our focus is on an asymptomatically carried bacteria species in a metapopulation consist-464

ing of N populations. Focus upon an arbitrarily chosen population X . Let SX and I X
i j denote465

the density of susceptible hosts and i j -infections, respectively, at time t , where i indicates if466

the infection is resistant (i = A) or not (i = a) to drug A and j indicates if the infection is re-467

sistant ( j = B) or not ( j = b) to drug B . Susceptible hosts contract i j infections at a per-capita468

rate βX
i j I X

i j , where βX
i j is a rate constant, while i j -infections are naturally cleared at a per-capita469

rate αX
i j . Hosts in population X are treated with antibiotics A, B , or both in combination, at470

per-capita rates τX
A , τX

B , and τX
AB , respectively. Hosts move from population X to population X ′

471

at a per-capita rate mX→X ′
.472

The resistance profile of an infection changes through two processes. First, there may be473

de novo mutation, and so let µX
`

be the per-capita rate at which an infection in population X474

acquires allele ` through mutation. Second, a i j -infection may be superinfected by a k`-strain475

[42, 43]; in this circumstance recombination may occur. Specifically, k`-strains are transmitted476

to i j -infections at rate βX
k`I X

k`I X
i j , whereupon with probability σ superinfection occurs. In the477

event of superinfection, with probability 1−ρ, recombination does not occur, in which case with478

equal probability the i j -infection either remains unchanged or becomes a k`-infection. With479

probability ρ, recombination does occur, in which case with equal probability the i j -infection480

becomes either an i`- or k j -infection. Because our focus is upon the role of population struc-481

ture, we do not allow for coinfection or within-host competitive differences based upon resis-482

tance profiles [e.g., 38] but these are straightforward extensions. Moreover, at this stage we do483

not make any further specification of the dynamics of uninfected hosts, be they susceptible or484

recovered, as doing so is not essential for a qualitative understanding of MDR evolution.485

Rather than immediately writing down the set of differential equations corresponding to486

these epidemiological assumptions, we instead group the terms based upon the four biological487

processes that are occurring. In particular, the change in I X
i j can be written as the sum of:488

(1) The net change due to mutation, denoted ∆µX
i j . As an example, focus upon the change489

in Ab-infections in population X due to mutation, ∆µX
Ab . These infections can increase490

through mutation in one of two ways: (i) ab-infections acquiring allele A at rate µX
A I X

ab or491

(ii) AB-infections acquiring allele b at rate µX
b I X

AB . On the other hand, I X
Ab infections are lost492

due to mutation whenever they (i) acquire allele a at a per-capita rate µX
a , or (ii) acquire al-493

lele B at a per-capita rateµX
B . Combining this information gives the change in Ab-infections494

in population X as495

∆µX
Ab =µX

A I X
ab +µX

b I X
AB − (µX

a +µX
B )I X

Ab , (9)

which is mathematically equivalent to496

∆µX
Ab =µX

A (I X
ab + I X

Ab)+µX
b (I X

Ab + I X
AB )−µX I X

Ab , (10)

where µX ≡µX
a +µX

A +µX
b +µX

B is the per-capita mutation rate in population X . The only dif-497

ference between the two formulations is interpretation: equation (9) shows only mutations498

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2020. ; https://doi.org/10.1101/2020.07.31.230896doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.31.230896
http://creativecommons.org/licenses/by-nc-nd/4.0/


which lead to a change in state, whereas equation (10) shows all possible mutations, even499

those which do not. This is why the per-capita loss term, µX , in (10) can be considered the500

total per-capita mutation rate in population X . More generally, we can write ∆µX
i j as501

∆µX
i j ≡µX

i (I X
a j + I X

A j )+µX
j (I X

i b + I X
i B )−µX I X

i j . (11)

(2) The net change due to recombination, denoted∆ρX
i j . Let ρX

`
be the per-capita rate at which502

infections gain allele ` through recombination. For example, consider ρX
A . In particular,503

i j -infections are challenged by strains carrying allele A at rate (βX
Ab I X

Ab +βX
AB I X

AB )I X
i j . With504

probability σ, a superinfection event occurs. Given an superinfection event, with probabil-505

ity ρ recombination happens, in which case with probability 1/2 the recombinant strain A j506

will replace the i j infection. Thus507

ρX
A = ρσ

2
(βX

Ab I X
Ab +βX

AB I X
AB ), (12)

and i j -infections acquire allele A in population X at rate ρX
A I W

i j . Therefore the change in508

i j -infections in population X due to recombination is509

∆ρX
i j ≡ ρX

i (I X
a j + I X

A j )+ρX
j (I X

i b + I X
i B )−ρX I X

i j (13)

where ρX is the per-capita rate of recombination in population X , that is,510

ρX ≡ ρσ∑
k`
βX

k`I X
k` = ρX

a +ρX
A +ρX

b +ρX
B .

(3) The net change due to host migration between populations,511

−
N∑

k=1
mX→k I X

i j +
N∑

k=1
mk→X I k

i j . (14)

(4) The net change due to per-capita growth,512

r X
i j ≡βX

i j SX −αX
i j −1a(i )τX

A −1b( j )τX
B − (1−1AB (i j ))τX

AB − (1−ρ)
σ

2

∑
k`

(βX
k`−βX

i j )I X
k`,

where 1`(k) is an indicator variable and is equal to 1 if `= k and 0 otherwise.513

With these four processes in hand, the dynamics of infection densities are given by the system514

of 4N differential equations515

dI X
i j

dt
=∆µX

i j +∆ρX
i j −

N∑
k=1

(mX→k I X
i j −mk→X I k

i j )+ r X
i j I X

i j , X = 1,2, ..., N , i ∈ {a, A}, j ∈ {b,B}.

(15)
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1.1 Population LD and MDR516

In what follows, we provide more details for the calculations of population LD and MDR. First,517

the frequency of infections with allele(s) ` or k` in population X are518

p X
A =

∑
` I X

A`

I X
, p X

B =
∑
` I X

`B

I X
, and p X

k` =
I X

k`

I X
, (16)

where I X =∑
i j I X

i j is the total density of infections in population X . Using these definitions, the519

standard measure of linkage equilibrium in population X is520

D X = p X
AB −p X

A p X
B , (17)

which is mathematically equivalent to521

D X = p X
AB p X

ab −p X
Ab p X

aB . (18)

The three dynamical equations of interest for studying MDR in population X are522

dp X
A

dt
= sX

A p X
A (1−p X

A )+ sX
B D X + sX

AB p X
A (1−p X

A )
p X

AB

p X
A

+ (µX
A +ρX

A )(1−p X
A )− (µX

a +ρX
a )p X

A

−
N∑

k=1
mk→X I k

I X
(p X

A −pk
A),

dp X
B

dt
= sX

B p X
B (1−p X

B )+ sX
A D X + sX

AB p X
B (1−p X

B )
p X

AB

p X
B

+ (µX
B +ρX

B )(1−p X
B )− (µX

b +ρX
b )p X

B

−
N∑

k=1
mk→X I k

I X
(p X

B −pk
B ),

dD X

dt
= (sX

A − sX + sX
B − sX )D X − (µX +ρX )D X + sX

AB p X
AB p X

ab

−
N∑

k=1
mk→X I k

I X

(
D X −Dk − (p X

A −pk
A)(p X

B −pk
B )

)
.

(19)

System (19) contains a number of quantities that we now define in more detail. First, the523

(additive) selection coefficient for resistance to drugs A and B in population X are defined as524

sX
A = r X

Ab − r X
ab and sX

B = r X
aB − r X

ab , (20)

respectively, while epistasis in population X is sX
AB = r X

AB +r X
ab −r X

Ab −r X
aB . It follows that we can525

write each of the per-capita growth rates, r X
i j , as526

r X
i j = r X +1A(i )sX

A +1B ( j )sX
B +1AB (i j )sX

AB . (21)

This is why r X
ab = r X can be thought of as ‘baseline’ per-capita growth. We define the average527

selection for resistance in population X as528

sX = sX
A p X

A + sX
B p X

B + sX
AB p X

AB . (22)

Note that the average per-capita growth rate in population X is therefore r X + sX , that is, aver-529

age per-capita growth rate is the sum of the ‘baseline’ per-capita growth rate and the average530

selection for resistance.531
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1.2 Metapopulation LD and MDR532

Next, consider metapopulation (or total) LD and MDR. First, the metapopulation level equiva-533

lents of equations (16) are534

p A =
N∑

k=1

I k∑N
j=1 I j

pk
A, pB =

N∑
k=1

I k∑N
j=1 I j

pk
B , and pi j =

N∑
k=1

I k∑N
`=1 I`

pk
i j . (23)

The standard measure of linkage disequilibrium at the level of the total population is535

Dtot = p AB −p A pB . (24)

which in terms of the population level variables is536

Dtot ≡
∑N

k=1 I k Dk∑N
j=1 I j

+
∑N

k=1 I k pk
A pk

B∑N
j=1 I j

−
∑N

k=1 I k pk
A∑N

j=1 I j

∑N
`=1 I`p`

B∑N
j=1 I j

= D +cov(p A, pB ) (25)

where D is the average population LD and cov(p A, pB ) is the covariance between resistance to537

drug A and resistance to drug B .538

Using these variables, the three dynamical equations for studying metapopulation MDR are539

540

dp A

dt
= sA p A(1−p A)+ sB Dtot + sAB p A(1−p A)

p AB

p A

+ (µA +ρA)(1−p A)− (µa +ρa)p A +cov(r, p A)+pB cov

(
sB ,

p AB

pB

)
,

dpB

dt
= sB pB (1−pB )+ sADtot + sAB pB (1−pB )

p AB

pB

+ (µB +ρB )(1−pB )− (µb +ρb)pB +cov(r, pB )+p Acov

(
sA,

p AB

p A

)
,

dDtot

dt
= (sA − s + sB − s)Dtot − (µ+ρ)Dtot + sAB pab p AB +cov(r,Dtot)+coskew(r, p A, pB )

+ ∑
`∈{A,B}

(1−p`)p`cov

(
s`,

p AB

p`

)
+ (1−p A)ΛAa −p AΛa A + (1−pB )ΛBb −pBΛbB .

(26)
Note that in the equation dDtot/dt , there are terms involving Λi j which do not appear in the541

main text. These terms are542

ΛAa = cov

(
µA +ρA,

paB

1−p A

)
and Λa A = cov

(
µa +ρa ,

p AB

p A

)
, (27)

while543

ΛBb = cov

(
µB +ρB ,

paB

1−pB

)
and ΛbB = cov

(
µb +ρb ,

p AB

pB

)
. (28)

Thus the expression544

(1−p A)ΛAa −p AΛa A + (1−pB )ΛBb −pBΛbB (29)

18

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2020. ; https://doi.org/10.1101/2020.07.31.230896doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.31.230896
http://creativecommons.org/licenses/by-nc-nd/4.0/


in the equation dDtot/dt is the effect upon Dtot of spatial heterogeneity in mutation and re-545

combination rates (µX
`
6= µX ′

`
and/or ρX

`
6= ρX ′

`
) coupled with differences in the proportion of546

infections with allele i (e.g., i = A or i = a) that are resistant to the other drug ( j = B). In par-547

ticular, populations in which infections are more likely to acquire resistance through muta-548

tion/recombination disproportionately effect total LD through an increase in doubly-resistant549

infections. However, these terms are likely to be quite small because they require that substan-550

tial differences in mutation/recombination rates exist between populations. Since these terms551

are unlikely to be a significant contributor to the dynamics of Dtot, we ignore them in the main552

text.553

There remains a number of other quantities in system (26) that we now define in more detail.554

First, the probability that an infection resistant to drug ` is found in population X is555

I X∑N
j=1 I j

p X
`

p`
. (30)

For example, if we apply our variable definitions, it is straightforward to show that556

I X∑N
j=1 I j

p X
A

p A
= I X

Ab + I X
AB∑N

k=1(I k
Ab + I k

AB )
. (31)

Next, to compute the metapopulation-level selection coefficients, and mutation/recombination557

rates, we need to compute the weighted average of the population quantities, where the weights558

are the probability that an infection of a particular type is in population X (calculated above).559

Applying this logic, the metapopulation-level selection coefficients and epistasis are560

s` =
N∑

k=1

I k∑N
j=1 I j

pk
`

p`
sk
` and sAB =

N∑
k=1

I k∑N
j=1 I j

pk
AB

p AB
sk

AB . (32)

The average selection for resistance in the metapopulation is561

s = sA p A + sB pB + sAB p AB . (33)

The per-capita mutation and recombination rates follow similarly. Recall that µ` and ρ` are the562

per-capita rates at which infections gain allele `. Thus, for example,563

µA =
N∑

k=1

I k∑N
j=1 I j

1−pk
A

1−p A
µk

A and µa =
N∑

k=1

I k∑N
j=1 I j

pk
A

p A
µk

a . (34)

Similar calculations can be made to arrive at µB , µb , and the various ρ`. The total per-capita564

mutation and recombination rates are565

µ=µa +µA +µb +µB and ρ = ρa +ρA +ρb +ρB . (35)

1.3 Covariance and coskewness566

Finally, we also use a number of covariance terms and a coskewness terms. Let E[c] denote the567

expectation of the quantity c. Then applying the definition of covariance, we have568

cov(p A, pB ) = E[p A pB ]−E[p A]E[pB ]

=
N∑

k=1

I k∑N
j=1 I j

pk
A pk

B −
(

N∑
k=1

I k∑N
j=1 I j

pk
A

)(
N∑

k=1

I k∑N
j=1 I j

pk
B

)
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Following the same procedure, we can calculate cov(r, p A) and cov(r,Dtot). When the covari-569

ance involves quantities that also specifically depend upon particular allele(s), the only differ-570

ence is that when computing the expectation the probability used is the probability that an571

allele ` is in population X . For example,572

cov

(
sA,

p AB

p A

)
= E

[
sA

p AB

p A

]
−E[sA]E

[
p AB

p A

]
=

N∑
k=1

I k∑N
j=1 I j

pk
A

p A
sk

A

pk
AB

pk
A

−
(

N∑
k=1

I k∑N
j=1 I j

pk
A

p A
sk

A

)(
N∑

k=1

I k∑N
j=1 I j

pk
A

p A

pk
AB

pk
A

)

=
N∑

k=1

I k∑N
j=1 I j

sk
A pk

AB

p A
−

(
N∑

k=1

I k∑N
j=1 I j

pk
A

p A
sk

A

)(
N∑

k=1

I k∑N
j=1 I j

pk
AB

p A

)

=
N∑

k=1

I k pk
AB∑N

j=1 I j
(sk

A − sA).

The covariance terms involving the recombination and mutation rates follow similarly, with573

the appropriate exchanges of variables. Finally, we have the coskewness term, which can be574

calculated as575

coskew(rab , p A, pB ) = E
[
(rab −E[rab])(p A −E[p A])(pB −E[pB ])

]
= cov(r, p A pB )−pB cov(r, p A)−p Acov(r, pB ).

1.4 Specific examples576

1.4.1 Transient dynamics and MDR in Streptococcus pneumoniae577

Here we use a variant of the model originally proposed by [19, 35] in which the populations578

represent different serotypes. ‘Migration’ between serotypes occurs via antigenic recombina-579

tion with probability m, given transmission between hosts infected with different serotypes has580

occurred. Resistance is gained and lost through unbiased mutation at a per-capita rate µ and581

there is no recombination of resistance loci.582

Applying these assumptions and using the notation presented with our model from the583

main text, this yields584

dI X
i j

dt
=

(
βX

i jν(I , X )S −αX
i j −1a(i )τA −1b( j )τB − (1−1AB (i j ))τAB

)
I X

i j

+µ
(∑
`

(I X
` j + I X

i`)−4I X
i j

)
+m

N∑
k=1

(βX
i j −βk

i j )I X
i j I k

i j (36)

where585

ν(I , X ) =
1−

 ∑
i j I X

i j∑N
k=1

∑
i j I k

i j

− 1

N

ω (37)

is a balancing function intended to mimic the stabilizing effect adaptive host immunity has586

upon serotype diversity (ω controls the strength of this effect; see [35]). Note that the treatment587

rates are assumed to be independent of serotype.588
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If we let r X
i j denote the per-capita growth term of an i j -infection belonging to serotype X589

(the first term in brackets in equation (36)), we can partition this as590

r X
i j = r X +1A(i )sX

A +1B ( j )sX
B +1AB (i j )sX

AB (38)

where591

r X =βX
abν(I , X )S −αX

ab −τA −τB −τAB

sX
A =−(βX

ab −βX
Ab)ν(I , X )S − (αX

Ab −αX
ab)+τA

sX
B =−(βX

ab −βX
aB )ν(I , X )S − (αX

aB −αX
ab)+τB

sX
AB = (

βX
ab +βX

AB −βX
Ab −βX

aB

)
ν(I , X )S − (αX

ab +αX
AB −αX

Ab −αX
aB )+τAB

(39)

For simplicity we keep total population size constant, and so set S = 1−∑N
k=1

∑
i j I k

i j .592

The simulations in Figure 4 assume the metapopulation is initially treated at per-capita593

rates (τA,τB ,τAB ) = (0.12,0,0), until t = 500 when these rates switch to (τA,τB ,τAB ) = (0.07,0.1,0).594

Other parameters values used are n = 15, ω= 4, βX
ab −βX

Ab = βX
ab −βX

aB = 0.2, αX
Ab −αX

ab =αX
aB −595

αX
ab = 0.05, µ= 10−8, and m = 10−8. Finally, because Streptococcus serotypes differ based upon596

duration of carriage and transmissibility, and there is evidence of a positive correlation between597

the two [44, 45], αX
ab was chosen to assume evenly spaced parameter values from αX

ab = 0.2598

to αX
ab = 1, while βX

ab was chosen to assume evenly spaced parameter values from βX
ab = 3 to599

βX
ab = 3.5. Cost epistasis is assumed to solely effect transmissibility. When there is positive epis-600

tasis, βX
AB +βX

ab−βX
Ab−βX

aB = 0.05, whereas for negative epistasis, βX
AB +βX

ab−βX
Ab−βX

aB =−0.05.601

1.4.2 Equilibrium analysis of metapopulation consisting of independent populations602

This is a version of one of the models presented in [19]. The metapopulation consists of N603

populations. The populations are independent (i.e, there is no migration between populations),604

and each population is assumed to be of fixed size 1 so SX = 1−∑
i j I X

i j . Resistance is gained and605

lost through unbiased mutation occurring at rate µ and there is no recombination. Therefore606

dI X
i j

dt
=

(
βX

i j SX −αX
i j −1a(i )τX

A −1b( j )τX
B − (1−1AB (i j ))τX

AB

)
I X

i j +µ
(∑
`

(I X
` j + I X

i`)−4I X
i j

)
. (40)

If we let r X
i j denote the per-capita growth term of an i j -infection in subpopulation X (the first607

term in brackets in equation (40)), we can partition this as608

r X
i j = r X +1A(i )sX

A +1B ( j )sX
B +1AB (i j )sX

AB (41)

where609

r X =βX
abSX −αX

ab −τX
A −τX

B −τX
AB

sX
A =−(βX

ab −βX
Ab)SX − (αX

Ab −αX
ab)+τX

A

sX
B =−(βX

ab −βX
aB )SX − (αX

aB −αX
ab)+τX

B

sX
AB = (

βX
ab +βX

AB −βX
Ab −βX

aB

)
SX − (αX

ab +αX
AB −αX

Ab −αX
aB )+τX

AB

(42)

This notation and formulation differs from that of [19, 35] in that they assumed costs were mul-610

tiplicative, that is,611

βX
ab =βX , βX

Ab =βX c X
βA

, βX
aB =βX c X

βB
, βX

AB =βX c X
βA

c X
βB

(43)
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and612

αX
ab =αX , αX

Ab = αX

c X
αA

, αX
aB = αX

c X
αB

, αX
AB = αX

c X
αA

c X
αB

(44)

where 0 ≤ c X
β`

≤ 1 and 0 ≤ c X
α`

≤ 1. The problem with multiplicative costs is apparent when we613

compute epistasis,614

sX
AB =βX (1− c X

βA
)(1− c X

βB
)SX −αX (1− c X

αA
)(1− c X

αB
)

c X
αA

c X
αB

+τX
AB . (45)

Here we can see that for the model of [19], only when there are no costs of resistance and no615

combination treatment will there be no epistasis. Thus transmission costs will produce positive616

epistasis and duration of carriage costs will produce negative epistasis in the model of [19].617

In Figure 5 we consider three scenarios; whenever possible we choose parameter values618

to agree with those of Figure 4 in [19]. In each scenario we assume there are 20 independent619

populations, that the per-capita mutation rate is µ= 10−10, and there is no epistasis, sX
AB = 0. In620

subplot 5a, we set βX
ab = 2, while duration of carriage varies by population from αX

ab = 0.25 to621

αX
ab = 1.75. In subplot 5b we setαX

ab = 0.5, while transmission varies by population fromβX
ab = 1622

to βX
ab = 3. In both subplots 5a and 5b, αX

Ab = αX
aB = αX

ab , while βX
ab −βX

Ab = βX
ab −βX

aB = 0.1.623

Finally in subplot 5c, βX
ab =βX

Ab =βX
aB = 2, while duration of carriage varies by population from624

αX
ab = 0.25 to αX

ab = 1.75, with αX
Ab −αX

ab =αX
aB −αX

ab = 0.05.625

1.4.3 Constrasting drug prescription strategies in a hospital-community setting626

When we model the hospital and community, we use equation (2) and assume the susceptible627

host density is controlled by628

dSX

dt
= θX −dSX −mX→X ′

SX +mX ′→X SX ′ −∑
i j
βX

i j I X
i j SX

+∑
i j

(αX
i j −d)I X

i j +
∑
i j

(
τX

A 1a(i )+τX
B 1b( j )+τX

AB (1−1AB (i j ))
)

I X
i j (46)

where θX is the influx of new hosts and d is the background mortality rate.629

In the hospital/community model, we assume population C is the ‘community’ and popu-630

lation H is the ‘hospital’. Therefore we let θH = 0, and mC→H = m/
∑

i j I C
i j be the rate at which631

individuals are admitted to the hospital, which is independent of population size. Individuals632

exit the hospital at a constant rate mH→C , so they spend on average 1/mH→C time units in hos-633

pital (assuming background mortality is low). The specification of the migration rates in this634

way allows us to ensure the ‘community’ is always much larger than the ‘hospital’.635

Parameters used in Figure 6 are βX
ab = 2, βX

ab −βX
Ab =βX

ab −βX
aB = 0.4, αX

ab = 0.1, αX
Ab −αX

ab =636

αX
aB −αX

ab = 0.02, d = 0.01, θC = 0.2, θH = 0, mH→C = 0.5, m = 0.2, µ= 10−7, σ= 0.637
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I X
AB

I X
ab

I X
Ab I X

aB

µX
a +ρX

a

µX
A +ρX

A

µX
B +ρX

B

µX
b +ρX

b

r X + sX
A + sX

B + sX
AB

r X + sX
A r X + sX

B

r X

migration,∑N
k=1 mX→k I X

i j

migration,∑N
k=1 mk→X I k

i j

r X =βX
ab SX −αX

ab −τX
A −τX

B −τX
AB + σ(1−ρ)

2

∑
i j (βX

ab −βX
i j )I X

i j

sX
A =−(βX

ab −βX
Ab )

(
SX + σ(1−ρ)

2 I X
)
− (αX

Ab −αX
ab )+τX

A

sX
B =−(βX

ab −βX
aB )

(
SX + σ(1−ρ)

2 I X
)
− (αX

aB −αX
ab )+τX

B

sX
AB = (βX

AB +βX
ab −βX

Ab −βX
aB )

(
SX + σ(1−ρ)

2 I X
)

−(αX
AB +αX

ab −αX
Ab −αX

aB )+τX
AB

Figure 1: Schematic of the dynamics of system (2). The metapopulation consists of N con-
nected populations. Each population has four possible types of infections, linked by one-step
mutation or recombination (blue and red arrows), whose per-capita rates are independent of
genetic background. The ‘baseline’ per-capita growth rate of sensitive infections is r X , the ad-
ditive selection coefficients for drug A and B resistance are sX

A and sX
B , respectively, while sX

AB
denotes any epistatic interactions. In the inset, we compute these quantities for the specific
model introduced in the main text.
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Figure 2: The effect of migration upon LD at equilibrium depends upon the scale at which LD
is measured. Here we show equilibrium LD in a metapopulation consisting of four populations.
Two scenarios are shown. In the first scenario, drug A is prescribed in two populations and
drug B is prescribed in the other two populations at the same rate; this yields cov(p A, pB ) < 0.
Because we assume costs of resistance to either drug are identical, all the populations have
identical LD. In the second scenario, drug A and drug B are prescribed in the same two popu-
lations while the other two populations receive no drugs; this yields cov(p A, pB ) > 0. Since the
drugs are prescribed unequally across populations, the LD observed in each of the two pairs of
populations diverge.
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Figure 3: Linkage disequilibrium for different drug pairs in Streptococcus pneumoniae. Data
is from the Maela data set of [19, 32]. The red circles are the observed population LD, Dtot,
the blue diamonds are the average LD across serotypes, D , and the black circles are the LD of
each serotype, D X . We have restricted the data to serotypes involving 100 or more samples
(serotypes 14, 6A/C, 6B, 15B/C, 19F, 23F). The drugs considered are: A = chloramphenicol, B =
clindamycin, C = erythromycin, D = penicillin, E = sulphatrimethoprim, and F = tetracycline.
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Figure 4: Transient dynamics and epistasis can explain patterns of LD in Streptococcus pneu-
moniae. In all simulations, serotypes differ based upon duration of carriage and transmissibil-
ity. Hosts are initially treated with drug A at a rate of τA = 0.12 per month. At t = 500 (months),
drug B is introduced, and drug A prescription reduced, (τA,τB ) = (0.07,0.1). In the first row,
there is no epistasis, while in the second row there is negative epistasis and in the third row,
there is positive epistasis. The thin multicoloured lines denote the within-serotype dynamics.
In all cases, at equilibrium both the serotypes and the metapopulation will be in linkage equilib-
rium, however, transient LD occurs on sufficiently long timescales so as to appear permanent.
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Figure 5: Duration of carriage is one of many potential explanations for MDR overrepresen-
tation at equilibrium. Variation in duration of carriage across independent populations can
lead to linkage disequilibrium (subplot a), but it is neither necessary (b), nor sufficient (c).
We simulate 1000 populations (blue bars), each consisting of 20 independent populations in
which treatment rates for each population are randomly chosen to be either τmax = 0.075 or
τmin = 0.025 with equal probability while simultaneously satisfying cov(τA,τB ) = 0. The dashed
red line is the mean LD across the simulations for each scenario. In subplot a, duration of
carriage varies across populations and there are transmission resistance costs; in subplot b,
transmission varies and there are transmission resistance costs; while in subplot c, duration
of carriage varies and there are no transmission costs. These simulations diverge slightly from
those of [19] in that their model always includes epistasis (see Sup. Info.), whereas here we only
consider nonepistatic scenarios.
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Figure 6: Different antibiotic prescription strategies generate different patterns of LD at equi-
librium. Here we focus upon a population divided into a community and a hospital. Individu-
als enter the hospital at a fixed rate and spend a fifth of the time in the hospital that it takes to
naturally clear a sensitive infection. The hospital/community size split corresponds to 20 beds
per 1000 people, while individuals in the hospital receive antibiotics at 15x the rate they do in
the community. We integrate system (2) until equilibrium is reached.
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Symbol Description

I X
i j Density of i j -infections in population X , where i = A (resp. i = a) if

infection is resistant (resp. sensitive) to drug A and j = B (resp. j = b)
if infection is resistant (resp. sensitive) to drug B .

I X Density of total infections in population X .

p X
`

, p` Frequency of infections resistant to drug(s) ` in population X and the
metapopulation, respectively.

D X , Dtot, D Linkage disequilibrium in population X , the metapopulation, and
the average across populations, respectively.

mX→X ′
Per-capita rate at which hosts migrate from population X to X ′.

r X , r Per-capita growth rate of sensitive infections in population X and
metapopulation (or ‘baseline’ per-capita growth rate).

sX
`

, s` Additive selection coefficient for drug ` in population X and the
metapopulation, respectively.

sX
AB , sAB Epistatic effect of being doubly-resistant in population X and the

metapopulation, respectively.

∆µX
i j , ∆ρX

i j Net change in i j -infections in population X due to mutation or re-
combination, respectively.

µX
`

, µ` Per-capita rate at which mutations generate allele `.

ρX
`

, ρ` Per-capita rate at which recombination leads to gain of allele `.

sX , s Average selection for resistance of any type.

cov(F,G) Covariance between the quantities F and G , that is, cov(F,G) =
E[FG]−E[F ]E[G], where E[c] denotes the expectation of quantity c.

coskew(F,G , H) Coskewness between the quantities F , G , H , that is, coskew(F,G , H) =
E[(F −E[F ])(G −E[G])(H −E[H ])].

Table 1: Notation used in main text. In all cases, a quantity indexed with a superscript X is the
population X quantity, whereas the absence of a superscript X implies the quantity is for the
metapopulation.
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