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Abstract 

 

Sonic Hedgehog (Shh) signaling from the primary cilium drives cerebellar granule cell 

precursor (GCP) proliferation. Mutations of hedgehog (Hh) pathway repressors could 

cause medulloblastoma, the most prevalent and malignant childhood brain tumor that 

arises from aberrant GCP proliferation. We demonstrate that brain-specific knockout 

of a Shh pathway repressor Rab23 in mice caused mis-patterning of cerebellar folia and 

elevated GCP proliferation during early development, but with no prevalent occurrence 

of medulloblastoma at adult stage. Strikingly, Rab23-depleted GCPs exhibited up-

regulated basal level of Shh pathway activities despite reduced ciliation, and were 

desensitized against stimulations by Shh and Smoothened (Smo) agonist in primary 

GCP culture. These results illustrate dual functions of Rab23 in repressing the basal 

level of Shh signaling, while facilitating Shh signal transduction via Shh/Smo on 

primary cilium. Collectively, our findings unravel instrumental roles of Rab23 in GCP 

proliferation and ciliogenesis. Rab23’s potentiation of Shh signaling pathway through 

the primary cilium and Smo, suggests a potential new therapeutic for Smo/primary 

cilium-driven medulloblastoma.  
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Introduction 1 

 2 

Cerebellar development in mammals is highly dependent on Shh signaling. In 3 

particular, Shh signaling dictates the proliferation of granule cell precursors (GCP) 4 

(1,2). GCPs give rise to granule neurons, the most abundant neuronal type in the brain. 5 

In the developing cerebellum, GCPs receive mitotic signals from Shh ligands released 6 

from the neighboring Purkinje cells to sustain its proliferation (1,2). Besides paracrine 7 

Shh signaling, GCPs were also capable of self-regulated autocrine-induced cell 8 

proliferation (3). Perturbation of Shh pathway activity during early embryonic or 9 

postnatal development results in cerebellar dysplasia, hypoplasia as well as malignant 10 

childhood brain tumor medulloblastoma (2,4–7). For example, genetic mutations of 11 

Shh signaling components such as Patched (PTCH), Smoothened (SMO), Gpr161 or 12 

Suppressor of Fused (SUFU) are known to lead to the formation of medulloblastoma 13 

(8–11),(12).  14 

 15 

In the past decade, emergence of primary cilium as an indispensable organelle for Shh 16 

signal transduction has facilitated discoveries that recognized the seminal roles of 17 

primary cilium in cerebellar development and medulloblastoma formation. The primary 18 

cilium is a non-motile cilium found on the surface of nearly every cell. It functions 19 

primarily as an “antenna’’ on the cell membrane to receive and transduce extracellular 20 

signals. In the Shh pathway, Shh ligand binds to the Ptch receptor to release its 21 

suppression of Smo on the cell membrane. This subsequently triggers Smo and 22 

cytosolic factors such as the Gli transcription factors and SuFu to interact within the 23 

primary cilium before translocating into the nucleus to activate Shh downstream target 24 

genes (13–15). Although the exact molecular mechanism and trafficking cargoes that 25 
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mediate dynamic ciliary entry and exit of Shh signaling components remain 26 

incompletely understood, it has been well established that Shh signal transduction is 27 

inevitably deregulated in the absence of a functional primary cilium. For instance, 28 

knockout (KO) of genes known to be required for primary cilium formation (i.e. Kif3a 29 

or Ift88) diminished Shh activities in the cerebellum and contributed to the 30 

manifestation of cerebellar hypoplasia and distorted foliation due to substantial 31 

shrinkage of granule cell precursors pool (16,17).  32 

 33 

Intriguingly, recent findings have revealed that the primary cilium could exert both 34 

inducing or suppressing forces on Shh pathway and cancer progression (15,18,19). 35 

Depending on the pathogenic origin of the medulloblastoma, primary cilia could 36 

potentiate tumor growth driven by Smo, and on the other hand, inhibit tumor growth 37 

driven by Gli2 (18). Adding to the complexity of the tumor biology, the same study 38 

also showed that there are ciliated and non-ciliated sub-categories of medulloblastoma, 39 

with the ones bearing primary cilia often associated with increased Shh and Wnt 40 

pathway activities, whereas those without cilia do not exhibit Shh or Wnt pathway 41 

activation (18). Given the opposing functions of primary cilium on Shh pathway-42 

mediated tumor progression, as well as the heterogeneity in ciliation capacity among 43 

the tumor cells; the multifaceted functions of primary cilium might underlies variable 44 

patients’ responses to Smo-specific drug, Vismodegib treatment in the clinical trials 45 

that targets Shh-subtype medulloblastoma (20,21,22). Therefore, further insights on the 46 

interaction between primary cilium and the Shh pathway, and their roles in GCP 47 

proliferation would lay critical foundation for further development of effective 48 

intervention for medulloblastoma.  49 

 50 
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Rab23 is a brain-enriched small GTPase (21) known to antagonize the Shh pathway in 51 

vivo, as evidenced by developmental mouse genetic studies. In humans, mutations of 52 

RAB23 cause Carpenter syndrome, an autosomal recessive disorder characterized by 53 

aberrant skull fusion, polydactyly and branchydactyly. Other variable developmental 54 

abnormalities including heart defect, genu valgum, cornea defect, umbilical hernia, 55 

obesity, developmental delay, as well as central nervous system (CNS)-related 56 

conditions including cerebral and cerebellar malformations, hydrocephaly, intellectual 57 

disability and schizophrenia (22–29). In mouse, the Rab23-encoding open brain (opb) 58 

null allele mutant exhibited embryonic lethality at mid-gestation stage, exencephaly 59 

and ectopic neural tube ventralization (30,31), which largely recapitulated the 60 

phenotypes of other Shh repressor mutants such as Patched1 (Ptch1) and Suppressor 61 

of fused (Sufu) KOs (32–34). Nonetheless, owing to the early embryonic lethality of 62 

Rab23-null mutant in mouse, true implications of Rab23 in Shh signaling-mediated 63 

CNS development beyond the mid-gestation stage are not known.  64 

 65 

Genetic study revealed that Rab23 represses Hh activities via Gli2 and promotes the 66 

proteolytic cleavage of Gli3 into its cleaved repressor form (31). In addition, Rab23 67 

also appeared to regulate Hh pathway activity through Smo. Concomittant deletion of 68 

Smo in the Rab23-null mutant has partially weakened Shh activation level in the neural 69 

tube as compared to that of Rab23 mutant (31). Besides, a molecular study in  70 

mammalian cell line model reported that Rab23 mediates the protein turnover dynamics 71 

of Smo in the primary cilium, although it was not clear as to how this may influence 72 

Shh pathway activity(35). Another in vitro study further revealed that Rab23 73 

antagonizes the nuclear translocation of Gli1 transcription activator to impede Shh 74 

pathway activation (36). Taken together, these findings suggest that Rab23 casts 75 
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multiple actions in the modulation of Hh signaling cascade. However, how it 76 

orcheastrates Shh pathway in the context of GCP proliferation and medulloblastoma 77 

formation remains to be determined. 78 

 79 

Although independent studies have implicated the functions of Rab23 in primary cilium 80 

formation and ciliary trafficking, its role in ciliogenesis remains obscure due to 81 

inconsistent observations from different cell types. For instance, overexpression of the 82 

dominant-negative form, Rab23DN perturbed ciliation in the immortalized retinal 83 

pigmented epithelial cells (37). Supporting this observation, a recent study has 84 

identified that the GDP-GTP exchange factors (GEF) of Rab23 namely Inturned and 85 

Fuzzy, were localized to the primary cilium at proximal end, and played essential role 86 

in the primary cilia formation of human and mouse cells(38). The same study 87 

demonstrated that depletion of GEF (i.e. Intu and Fuzz), or Rab23 perturbed primary 88 

cilium formation in culture IMCD3 cells. On the contrary, Rab23-/- mouse embryo 89 

showed unaltered node cilia during early development(39). Taken together, these data 90 

suggest that Rab23’s action in the primary cilium formation is possibly operating in a 91 

context-dependent manner. In the IMCD3 cells that have morphologically normal 92 

primary cilium, Rab23 forms protein complex with Kif17 and Dopamine receptor 1 93 

(D1R), and it was required for their ciliary localization (40,41). These findings 94 

indicated that Rab23 plays crucial roles in ciliary protein targeting. Despite the known 95 

function of Rab23 in primary cilium formation and Hh signaling, as well as the long 96 

perceived function of primary cilium-dependent Hh signaling in GCP proliferation, 97 

whether Rab23 is required for the primary cilium formation in the CNS and cerebellar 98 

GCP is not known. Moreover, how Rab23 may mediate primary cilium-dependent Shh 99 
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signal transduction, and its impact on GCP proliferation and cerebellar development 100 

remain to be further characterized.   101 

 102 

In this study, we demonstrate that conditional KO of Rab23 in the developing mouse 103 

brain at E10.5 resulted in abnormal cerebellar foliation, as well as unexpected opposing 104 

changes in the cerebellar sizes and Shh activities during embryonic and postnatal 105 

cerebellar development. Interestingly, our data suggest that loss of Rab23 did not casue 106 

medulloblastoma despite an increase in the basal level of Shh pathway activities and 107 

GCP proliferation. We found that KO of Rab23 affected ciliation in GCP, and rendered 108 

the cells less responsive to pathway activation by Shh and Smo agonist. These results 109 

suggest that the Rab23-KO GCPs have an attenuated response to paracrine Shh stimuli 110 

from primary cilium. Taken together, we have uncovered novel functions of Rab23 in 111 

GCP proliferation, acting both positively and negatively via Shh signaling. Our results 112 

indicate that Rab23 represses basal level of Shh signaling pathway activities, while 113 

facilitates Smo-mediated Shh pathway activation in a primary cilium-dependent 114 

manner.  115 

 116 

 117 

Results 118 

 119 

Rab23 dictates proper cerebellar morphogenesis and development 120 

In order to investigate the functions of Rab23 in central nervous system (CNS) 121 

development, mouse bearing Nestin-cre (Nes) was crossed with Rab23-floxed (42) 122 

homozygous mutant to achieve conditional knock-out (CKO) of Rab23 in the neural 123 

progenitor cells at approximately embryonic (E) day 10.5. Gross morphological 124 
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examination of the whole brain isolated from Nes-CKO mutant revealed noticeable 125 

cerebellar enlargement at earlier developmental stages (i.e. postnatal (P) day one and 126 

four) but appeared smaller at later adult stage as compared to the control (Rab23f/f) 127 

counterpart (Fig. 1A-B, E, yellow asterisk). Histological examination of the mid-sagital 128 

cerebellar sections by hematoxylin-eosin (H&E) staining revealed cerebellar dysplasia 129 

in Nes-CKO brains. This was consistently observed at P1, P4 and adult stages (Fig. 1C-130 

D, F). Disrupted patterning of the cerebellar folia was more prominent at the caudal 131 

region. Moreover, the external granular layer (EGL) at the posterior lobules appeared 132 

thicker and disorganized as compared to the control group (Fig. 1C-D, red arrows). In 133 

the adult mutant, the posterior cerebellar folia were irregularly formed and lack 134 

distinctive laminar layering of molecular layer (ML), Purkinje cell layer (PCL) and 135 

internal granule layer (IGL) (Fig 1F). Taken together, these data indicate that a loss of 136 

Rab23 resulted in defects in cerebellar folia patterning during postnatal CNS 137 

development. 138 

 139 

Depletion of Rab23 disrupted cerebellar radial glial scaffold and innervations of 140 

granule cells 141 

The disorganized laminar layering, as well as the cerebellar folia anomaly prompted 142 

further examination of the Bergmann glial (Bg) scaffold, which acts as the 143 

cytoarchitectural scaffold to aid in neuronal migration and lamination (43–45). We used 144 

antibodies against Nestin and glial fibrillary acidic protein (GFAP) to immunolabel 145 

radial glia and the Bg scaffold at early postnatal and later adult stages respectively. In 146 

the Rab23f/f (control) group, radial fibers of Bg at P1, P4 and P15 appeared 147 

perpendicularly aligned and extended from the cell bodies at the lower ML and PCL 148 

towards the pial surface of the cerebellum. In contrast, the processes of Nes-CKO 149 
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mutant Bg in the disrupted lobules appeared tangled and misaligned, with some of them 150 

unable to extend processes to the pial surface, thus indicating an impairment of the Bg 151 

scaffold (Fig. 2A-C). Additionally, hyperplastic lesion-like ectopic nuclei accumulation 152 

were detectable at the pial surface in P4 (Fig 2B, asterisk) and adult cerebellum (Fig. 153 

2D, white arrows). In line with this defect, the NeuN-positive granule cells in the adult 154 

mutant were aberrantly localized to the pial surface and the ML instead of the deeper 155 

IGL. In addition, a subpopulation of the granule cells was randomly scattered at the 156 

posterior region, concomitant with a loss of laminar structure. The cell soma of GFAP-157 

positive astrocytes/Bg were also found to be ectopically misplaced at the pial surface 158 

and ML, indicating a misalignment of radial glial scaffold at the adult stage (Fig. 2D, 159 

D’, D”). These data indicate that an abnormal glial scaffold in Nes-CKO mutants may 160 

hinder proper invagination and migration of granule cells to the deeper IGL during early 161 

postnatal cerebellar development.   162 

 163 

Given the defective radial glial scaffold and ectopic accumulation of granule cells at 164 

the pial surface and ML, we asked if the inward radial migration of granule cell at the 165 

earlier embryonic and postnatal stages was affected. Anti-Pax6 antibody was used to 166 

immunolabel both amplifying granule cell precursors (GCP) transiently residing in the 167 

EGL (source of granule cells), and the early inwardly migrated post-mitotic granule 168 

cells in the granular layer at E15.5 (46). The Pax6-expressing granule cells in the 169 

control group were more well-dispersed and scattered further into the deeper granule 170 

layer. Conversely, Rab23-depleted granule cells appeared less dispersed and are largely 171 

confined to the region adjacent to the EGL (Fig. 3A, yellow dotted lines). Because all 172 

granule cells arise from the EGL and innervate the inner granular layer as they undergo 173 

maturation, we quantified the innervation/migration rate by counting the number of 174 
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Pax6-positive cells that have populated the inner granular layer (innervated) against 175 

total Pax6-positive cells. Indeed, the proportion of innervated granule cells in the Nes-176 

CKO mutant appeared markedly reduced compared to the control counterpart (Fig. 3B), 177 

suggesting an impaired or delayed innervation. In addition, a two-hour EdU-pulse 178 

labeling assay was used to track all early innervated progenitor cells. The proportion of 179 

EdU-labelled cells that have innervated (from EGL – magenta arrows, and VZ – yellow 180 

arrows) the granular layer was scored against all EdU-labelled cells. Similarly, Rab23-181 

depleted cells showed a lower percentage of innervated cells in the granular layer (Fig. 182 

3C).  183 

 184 

For the postnatal stage, we examined the migration of granule cells by 48 hours EdU-185 

pulse labelling for P5 to P7. The percentages of cell innervation in different lobules 186 

were then analyzed by quantifying the percentages of EdU-labelled cells residing in the 187 

EGL, ML and IGL of each lobule. In agreement with the results from the embryonic 188 

stage (Fig. 3A-C), the proportions of mutant cells reaching IGL were greatly reduced, 189 

concomitant with an increase in the percentage of cells that are accumulated in the EGL 190 

(Fig. 3D-E). Taken together, these data suggest that deletion of Rab23 caused a 191 

misalignment of the radial glial scaffold, leading to perturbations in granule cells 192 

innervation and lamination. As a result, the cerebellar laminae and folia could not be 193 

properly formed during postnatal cerebellar development.  194 

 195 

Rab23-ablation caused thickened EGL and enhanced GCP proliferation, but no 196 

discernible tumorigenesis  197 

In view of the thickened EGL observed in H&E staining, as well as the enlarged 198 

cerebellum of Nes-CKO at P1 and P4, a more detailed analysis of cell proliferation is 199 
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warranted. We performed co-immunolabeling of Pax6 and Calbindin to visualized GCP 200 

and Purkinje cells respectively. At P1, there was an overall increase in the number of 201 

Pax6-expressing GCPs in the Nes-CKO mutant compared to the control. Besides, the 202 

Pax6-labelled EGL in Nes-CKO appeared greatly thickened, more so near the posterior 203 

folia (Fig. 4A, white asterisks). On the other hand, the Calbindin-expressing Purkinje 204 

cells in the mutant PCL appeared to be lower in density and more sparsely distributed 205 

as compared to the more densely aligned Purkinje cell layer in the control counterpart 206 

(Fig. 4B), implying a perturbed PCL lamination.  207 

 208 

Two hours EdU-pulse labelling was performed on E15.5 and P4 animals to probe GCP 209 

proliferation in further details. Compared to the control, the pools of EdU-positive 210 

proliferative cells are substantially expanded in the EGL of Nes-CKO mutant at both 211 

time points (Fig. 4C-D, red and yellow double heads arrows), indicating aberrantly 212 

enhanced GCP proliferation during both embryonic and postnatal cerebellar 213 

development. These phenotypes were further confirmed by a quantification of EdU-214 

positive nuclei in the EGL at E15.5, which revealed a significant up-regulation of 215 

proliferative cells in the mutant EGL as compared to the control group (Fig. 4E).  216 

Accordingly, another cell proliferation marker, Ki67, and a GCP-specific marker Atoh1, 217 

also showed markedly elevated expression levels in the cerebellar tissue of Nes-CKO 218 

mutants (Fig. 4F). Taken together, these data suggest that depletion of Rab23 219 

potentiated GCP proliferation during early cerebellar development. Excessive GCP 220 

proliferation often give rise to medulloblastoma (47),(48,49). Given this, one would 221 

expect the development of medulloblastoma at a later postnatal stage. However, we did 222 

not find detectable manifestation of medulloblastoma in adult mutant animals, despite 223 
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the occurrence of hyperplastic lesions-like tissue clumps at P4 (Fig.  1F, 2B-asterisk, 224 

D-white arrows).   225 

 226 

Shh signaling is differentially perturbed in the developing cerebellum 227 

Previous genetic studies have reported that Rab23 negatively regulates Shh signaling  228 

(30,50). As Shh signaling is the key signaling pathway that modulates GCP 229 

proliferation (1,2,51,52), we reasoned that it is likely a  main factor driving aberrant 230 

GCP proliferation in the Rab23-deficient cerebellum. To address this possibility, we 231 

examined the expressions of Gli transcription factors, which are downstream effectors 232 

of Shh signaling in CNS development. The Shh signaling activities in cerebellar tissue 233 

were examined in both embryonic E15.5 and late postnatal P15. In accordance with the 234 

increased CGP proliferation in Nes-CKO at E15.5 and P4, Shh signaling pathway 235 

activities were robustly up-regulated at E15.5, as shown by an increase in Gli1 and Gli2 236 

expressions compared to the control group (Fig. 5A). Intriguingly, at P15, the 237 

expression level of Gli1 transcripts was significantly down-regulated in the Nes-CKO 238 

mutant cerebellum, despite up-regulated levels of Gli2, Gli3, Ki67 and Atoh1 (Fig. 5B). 239 

Because Gli1 activates Shh-regulated genes, and its expression is dependent on both 240 

Gli2 and Gli3, it could serve as the ultimate readout of Shh signaling pathway activitity 241 

(C Brian Bai & Joyner, 2001; C Brian Bai, Stephen, & Joyner, 2004; Lee, Platt, 242 

Censullo, & Ruiz i Altaba, 1997). We also compared the expression profile of Gli1 243 

transcripts at embryonic and postnatal stages. Compared to the control group which 244 

exhibited relatively unaltered Gli1 transcript level between E15.5 and P15, the Nes-245 

CKO mutant showed a significant reduction in Gli1 transcript level at P15 compared to 246 

its embryonic stage (Fig. 5C). Given the perturbed Shh signaling pathway activities, we 247 

further examined if the Shh transcripts were affected. Interestingly, Shh transcripts level 248 
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in the Nes-CKO appeared largely unchanged at both developmental time points (Fig. 249 

5A-B), implying that the mutant cerebellar tissues are not short of Shh stimulants 250 

despite the greatly mis-patterned cerebellum. Taken together, these data show that the 251 

Shh signaling activities in the Nes-CKO mutants were initially enhanced during 252 

embryonic cerebellar patterning, but became down-regulated at later postnatal time 253 

point as compared to the control counterpart. Notably, this correlated well with the 254 

differential changes in the cerebellar size as aforementioned (Fig. 1A-B, E). Together, 255 

these results revealed that Shh signaling pathway activities were differentially 256 

perturbed as a result of Rab23 deficiency during embryonic and postnatal stages of 257 

cerebellar patterning. 258 

 259 

Rab23 could regulate Shh signaling in the GCP at basal level as well as in a cilium-260 

dependent manner 261 

The alterations of Shh signaling pathway activities on GCP in the whole cerebellar 262 

tissues could be a secondary effect resulting from abnormal changes in the 263 

cellular/tissue composition. We ruled out this possibility by monitoring Shh signaling 264 

in primary GCP culture isolated from P7 cerebellar tissue. Primary culture data show 265 

that Rab23-KO GCP indeed exhibited elevated expressions of Gli1 mRNA at the basal 266 

level, indicating an over-activation of Shh pathways in the Nes-Cre mutant GCP. 267 

Accordingly, primary culture of mutant GCP also displayed potentiated cell 268 

proliferation, as illustrated by the up-regulation of Atoh1 and Ki67, as well as an 269 

increase in the percentage of EdU-positive proliferative cells (Fig. 6A-C). Furthermore, 270 

Shh pathway over-activation and cell proliferation were significantly inhibited by co-271 

expressing Rab23 wild-type cDNA, or its constitutive active form, Rab23QL, in the KO 272 

GCP (Fig. 6A-C), suggesting that the effects observed were indeed due to the loss-of 273 
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Rab23 gene functions. Together, these results suggest a negative role for Rab23 in 274 

regulating Shh signaling-mediated GCP proliferation.  275 

 276 

Previous findings have demonstrated that primary cilium is required for Shh signaling-277 

mediated CGP proliferation during cerebellar development (16,17). Rab23 has also 278 

been reported to be involved in ciliogenesis and ciliary signaling in other cell types 279 

(40,41,56). Therefore, it is conceivable that the impact of Rab23 on GCP proliferation 280 

was exerted through changes to the primary cilia. We examined primary cilia 281 

morphology in the E15.5 and P15 cerebellar GCP by immunolabeling of Arl13b, a 282 

primary cilium-specific marker. Interestingly, Arl13b immunostaining showed that the 283 

Rab23-depleted GCPs exhibited a significantly reduced number of cells bearing 284 

primary cilium, whereas nearly all GCPs in the control counterpart showed positive 285 

staining of Arl13b (Fig. 6E).  This finding is further strengthened by the analysis of 286 

primary cilia in primary GCP culture isolated from P7 cerebellar tissues, whereby the 287 

Rab23-deleted GCPs in culture similarly displayed a significant reduction of ciliation, 288 

which could be reversed by co-expressing Rab23 wild-type cDNA, or the constitutive 289 

active Rab23QL (Fig 6D). Taken together, our data provide the first indication that 290 

Rab23 influences ciliogenesis in the cerebellar GCP in vivo. Importantly, these results 291 

also hinted at a novel cilium-dependent role of Rab23 in coordinating Shh pathway and 292 

GCP proliferation.  293 

 294 

Given the perturbations in primary cilia morphology, we hypothesized that Rab23-KO 295 

GCP may be compromised in primary cilium-dependent Shh signal transduction. In 296 

order to address this hypothesis, primary GCP cultures were subjected to Shh ligand 297 

stimulation in vitro. Despite its higher basal level of Shh signaling activities as 298 
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compared to control (Fig. 6A), Rab23-KO GCP showed markedly weaker response to 299 

Shh ligand stimulation, as illustrated by a lower fold-increase in the expression of Gli1 300 

mRNA as compared to the control counterpart (Fig. 6F). Rab23-KO GCPs also 301 

exhibited lower fold-enhancement in cell division as compared to the control group, in 302 

which the expression of Ki67, as well as Atoh1 were both significantly lower than 303 

control group upon Shh ligand stimulation (Fig. 6F). To check if the Shh signaling 304 

occurs through Smo, GCP cultures were treated with a Smo agonist that promotes its 305 

localization to the cilium. Control GCPs exhibited robust elevation Gli1 expression 24 306 

hours after SAG treatment (Fig. 6G). Conversely, Rab23-KO GCPs’ response to SAG 307 

induction was significantly compromised, as shown by lower expression level of Gli1 308 

(Fig. 6G), thus implying a desensitization to Shh signaling at the level of primary cilium 309 

and Smo. Together, these data demonstrated that silencing Rab23 impaired ciliation 310 

and GCP’s response to Shh or Smo stimulations, thereby impeding Shh-mediated GCP 311 

proliferation. These suggest a novel positive role of Rab23 in modulating primary 312 

cilium-dependent Shh signaling and GCP expansion during early cerebellar 313 

development.  314 

 315 

Discussion 316 

 317 

Fine tuning Shh signaling during cerebellar development is essential to facilitate a 318 

temporally and spatially-defined transit amplification of granule cell precursors (GCP) 319 

to ensure proper patterning and growth of the cerebellar folia (2,57–59). We have 320 

demonstrated here that Rab23 has a role in the patterning and growth of cerebellar folia 321 

during early cerebellar development. Deletion of Rab23 resulted in foliation anomalies 322 

due to dramatically perturbed radial glial scaffold formation, granule cells lamination 323 
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and GCP proliferation. This study presents Rab23 as a novel regulator of GCP 324 

proliferation, remarkably, acting both positively and negatively via the Shh signaling 325 

pathway. Excitingly, our data showed for the first time that Rab23 has a role in primary 326 

cilium-dependent Shh signal transduction during cerebellar development. This 327 

demonstration is made possible as the brain-specific KO of Rab23 in our genetic model 328 

did not result in mid-gestation lethality in mice as compared to a global loss of Rab23 329 

in the open brain mutant.  330 

 331 

Previous examination of primary cilia in the node of 2 to 6 somite stage Rab23-null 332 

embryo reported largely unaltered morphology and similar overall percentage of 333 

ciliation as compared to the control (39). Interestingly, unlike the node cilia, our data 334 

revealed defective ciliation in the Rab23-null GCP during embryonic and early 335 

postnatal cerebellar development. siRNA-mediated knockdown studies performed on 336 

different cell lines have reported inconsistent conclusions with regards to the role of 337 

Rab23 in ciliogenesis (40,41,56,60). These discrepancies suggest that the functions of 338 

Rab23 in primary cilia could vary in a context or cell-type specific manner. Our data 339 

supported a GCP-specific role of Rab23 in ciliogenesis in vivo. In line with the in vivo 340 

data, primary culture of Rab23-KO GCPs also showed deficiencies in ciliation and 341 

compromised response to Shh ligand and SAG-mediated Smo activation, implicating a 342 

disrupted primary cilium-dependent Shh signaling. 343 

 344 

Mutations of Shh pathway repressor genes, including Ptch1, Gpr161 and Sufu, 345 

commonly lead to the development of medulloblastoma(9,10,61,62) via Gli1 346 

upregulation (63). We showed that loss of Rab23, unlike other Shh repressors, did not 347 

promote the development of medulloblastoma despite the basal level up-regulation of 348 
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Gli1 expression in the GCPs. We further showed that the overall amount of Shh ligands 349 

in Rab23-deleted cerebellar tissues remained relatively similar to that of control at both 350 

embryonic and postnatal stages, suggesting a sufficient source of Shh stimulants in the 351 

KO cerebellar tissue environment. Given the above, we deduce that one possible 352 

explanation for an absence of tumorigenicity is the defective primary cilium in Rab23-353 

KO GCPs. The compromised response to primary cilium-dependent Shh activation may 354 

lead to insufficient paracrine pathway stimulations to drive tumor formation in the 355 

Rab23-KO cerebellum. This is in line with the indispensable role of primary cilium for 356 

medulloblastoma formation (18,64).  357 

 358 

Harboring the primary cilium defect in GCP, Rab23-KO cerebellum partially 359 

phenocopied other ciliopathy mutants, which often exhibit severe cerebellar size 360 

shrinkage, abnormal foliation and reduced GCP proliferation due to impaired Shh 361 

signaling (16–18,64). In this regard, the postnatal Nes-CKO displayed profoundly mis-362 

patterned folia, and smaller cerebellum at later adult stage, similar to other ciliopathy 363 

mutants. Nevertheless, in contrast to most ciliopathy mutants, Shh signaling in the 364 

Rab23-KO mutant was not completely inhibited. Instead, there was a ligand-365 

independent upregulation of Shh pathway at basal level, which underlies the increase 366 

in GCP proliferation and transiently enlarged cerebellum at earlier postnatal stages. 367 

Rab23 was known to influence Gli2 and Gli3 expression at the transcript level (65) and 368 

it could also antagonize Gli1’s nuclear translocation and transcriptional activation in 369 

cytosolic compartment in the absence of ligand stimulation (36). Given the ligand-370 

independent function of Rab23 in Shh pathway, it is therefore plausible that the Shh 371 

pathway in GCP became over-activated due to a basal increase in Gli activations in the 372 

absence of Rab23 function. However, limited by the incompetency to respond to Smo 373 
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activation from cell/cilium membrane (Fig 6F-G), Rab23-deficeint GCP could not 374 

reach or sustain the full capacity of ectopic Shh pathway activation, causing them less 375 

susceptible to tumor formation as compared to other repressors such as Ptch1 and Sufu 376 

mutants that are not known to exhibit primary cilium defect.  377 

 378 

Previous work has demonstrated that Rab23 maintains the overexpressed-Smo protein 379 

turnover in the primary cilium of MDCK cells upon Shh stimulation (66), however, the 380 

underlying mechanism, and how this regulation would affect Shh signaling output 381 

remain elusive. Our data show that Rab23-depleted GCPs were less responsive to a 382 

Smo agonist (SAG). As SAG activates Shh signaling pathway by facilitating Smo 383 

translocation to the cilium axoneme, the compromised response observed in mutant 384 

cells could possibly cause by the lack of intact and functional primary cilium for Smo-385 

mediated signaling transduction, and/or impaired maintenance of Smo turnover in the 386 

primary cilium of Rab23-KO GCP. Our data suggest that the cilium malformation could 387 

be the underlying reason. However, the relatively short cilia in GCP cells was 388 

technically difficult for detection or quantification of the cilium localization of Smo in 389 

primary GCP. We are therefore not able to ascertain if the ciliary turnover/trafficking 390 

of Smo protein is affected in the mutant GCP. Nevertheless, given its previous 391 

implicated role on Smo protein turnover in MDCK cells (66), Rab23 could potentially 392 

mediate the Smo recycling in primary cilium to influence Shh pathway.  393 

 394 

Taken together, our findings suggest that Rab23 confers dual functions in regulating 395 

Shh signaling and GCP proliferation; it potentiates primary cilium and Shh/Smo-396 

dependent signaling cascade, while antagonizing basal level Gli transcriptional 397 

activation. Our data thus present a previously unappreciated aspect of Rab23 in 398 
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mediating Shh signaling upstream of Smo. This study sheds new light into the genetic 399 

and mechanistic insights underpinning Shh signaling-mediated GCP proliferation and 400 

cerebellar development.  401 

  402 

Materials and Methods 403 

 404 

Animals.  Rab23-floxed animal was generated by Ozgene Pty Ltd. Conditional Rab23-405 

floxed allele was designed by flanking exon 4 for Rab23 gene with loxP sites. Nestin-406 

Cre (Jackson Lab cat. no. 003771) was a kind gift from Shawn Je H.S. form Duke-Nus 407 

Medical School. All animals were housed in Specific Pathogen Free (SPF) animal 408 

facility at Duke-NUS Medical School, Singapore. All animal related procedures were 409 

carried out in compliance to animal handling guidelines and protocol approved by 410 

IACUC Singhealth, Singapore. 411 

 412 

Expression vectors.  For in vitro viral transduction assay, Rab23 over-expression or 413 

cDNA were cloned into lentiviral pFUGW backbone. Wild-type (WT) Rab23 414 

overexpression construct, previously described full-length Rab23 sequence (67)  was 415 

sub-cloned into pFUGW vector driven by Ubc promoter. All plasmids were amplified 416 

according to the recommended protocol using Endofree® plasmid purification kit 417 

(Qiagen, Germany).  418 

Viral transduction and culturing of mouse primary GCP. For viral transduction of 419 

primary GCP, self-inactivating murine lentiviruses were prepared according to 420 

previously described protocol (42). GCP culture method was modified from standard 421 

protocol. Briefly, P7 cerebellar tissues dissected were cut into small pieces and digested 422 

in digestion buffer (EBSS / Papain, 1000 times dilution factor (Worthington 423 
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Biochemical Corporation cat#:3126) / 0.1 mg/ml DNaseI (Roche cat#:11284932001) / 424 

5.5 mM cysteine-HCL) for 15 mins at 37 C prior to dissociation into single cells. 425 

Digestion was terminated by resuspension in 10 % FBS/culture medium. Suspension 426 

culture was passed through 70 μm cell strainer (Corning cat#352350) to remove 427 

undigested tissue clumps. Dissociated single-cell GCPs were plated on poly-D-lysine 428 

(Sigma Aldrich cat#: P6407) coated culture plates at the desired cell densities in 429 

Neurobasal (Gibco®, Life Technologies, USA) medium containing B27 supplement, 430 

200uM GlutaMAXTM-I (Gibco®, Life Technologies, USA), sodium pyruvate (1 mM), 431 

penicilin/streptomycin and KCl (250 μM). Half of the culture medium was refreshed 432 

every other day. Viral transduction was performed 2 to 3 hours after culture while 433 

replacing fresh culture medium. The efficiencies of overexpression were validated by 434 

real-time QPCR assay of DIV7 culture. For SAG stimulation, 0.2 μM of SAG (Cayman 435 

Chemical, cat#: 11914-1) was added to the DIV 1 culture 24 hours prior to total RNA 436 

extraction.  Equal volume of DMSO was added as the untreated negative control group. 437 

For Shh stimulation, 2 μg/ml of Shh (Stem Cell Technologies, cat#: 78065) was added 438 

to the DIV 1 culture 24 hours prior to total RNA extraction. 439 

 440 

EdU-pulse labelling assays. EdU labeling assay was carried out according to the 441 

manufacturer’s protocol. Click-iT ® EdU Alexa FluorTM 647 Imaging Kit 442 

(ThermoFisher Scientific, cat #: C10340).  For GCP culture labeling, 10 μM Edu was 443 

added to the culture and incubated for 3 hours before fixation. For E15.5 embryos 444 

labelling, 0.25 mg EdU was injected intraperitoneally into the pregnant mice 2 hours 445 

before fixing the embryo. For postnatal animals, 25ug EdU was injected 446 

subcutaneously 2 hours prior to brain fixation.   447 

 448 
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Cryosectioning, immunohistochemistry and imaging. Mice were perfused with saline 449 

followed by fixative in 4 % paraformaldehyde (Sigma Aldrich cat#:P6148) / 450 

HistoChoice (Amresco, cat#: H120) mixture of 1:1 ratio, and whole brains extracted 451 

were post-fix at 4 °C for 2 hours, saturated in 30 % sucrose in 0.12 M phosphate buffer 452 

and subjected to cryosection at 20 μm thickness. All cerebellar tissues were sectioned 453 

at sagital angle and mounted on pre-coated glass slides (Superfrost® Plus, 454 

Fisherbrand®). Mid-sagital sections were selected for immunostaining. Antibodies and 455 

the dilution factor used were: Pax6 (Covance, 1:1000), Nestin (Sigma, 1:800), NeuN 456 

(Milipore, 1:800), GFAP (Milipore, 1:1000), Arl13b (Proteintech, 1:1000). For histo-457 

immunostaining, tissue sections were incubated at 100 °C for 10 mins in pH 6 10 mM 458 

sodium citrate buffer with 0.05 % Tween-20 for antigen retrieval, washed twice with 459 

phosphate buffer saline (PBS), blocked 1 hour in 1 % BSA/2 % horse serum/0.3 % Tx-460 

100 and incubated 4°C overnight with primary antibodies diluted in blocking buffer. 461 

After 3 times of 5 minutes washes with PBS, tissue sections were incubated with 462 

secondary antibodies (Alexa Fluor®, Life Technologies, USA) for 1 hour (hr) at room 463 

temperature. Tissue sections were mounted in mounting media after 3 times PBS 464 

washes. Fluorescence images were taken using Zeiss LSM710 confocal system.   465 

 466 

Real-time quantitative PCR. Total RNA was extracted using Qiagen’s RNeasy Mini 467 

Kit. Equal amount of total RNAs from each sample were subjected to reverse 468 

transcription to produce cDNA. Equal volume of cDNA was used to perform 469 

quantitative PCR assay using SYBR® Select Master Mix (Applied BiosystemsTM 470 

#4472908). Standard QPCR protocol was carried out according to manufacturer’s 471 

instruction manual. Primers used were: mouse GAPDH: F-5’-472 

TTCACCACCATGGAGAAGGC-3’, R-5’- GGCATGGACTGTGGTCATGA-3’; 473 
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mouse Rab23: F-5’-AGGCCTACTATCGAGGAGCC-3’, R-5’-474 

TTAGCCTTTTGGCCAGTCCC-3’; mouse Gli1:  F-5’-475 

CCCATAGGGTCTCGGGGTCTCAAAC-3’, R-5'-476 



A-3’; mouse Gli2: F-5’-CATGGTATCCCTAGCTCCTC-3’, R-5’-478 

GATGGCATCAAAGTCAATCT-3’; mouse Gli3: F-5’-479 

CATGAACAGCCCTTTAAGAC-3’, R-5’-TGATATGTGAGGTAGCACCA-3’; 480 

mouse Ptch1: F-5'-TGCTGTGCCTGTGGTCATCCTGATT-3’, R-5'-481 

CAGAGCGAGCATAGCCCTGTGGTTC-3’; mouse Atoh1: F-5’-482 

AGTCAATGAAGTTGTTTCCC-3’, R-5’-ACAGATACTCTTATCTGCCC-3’; 483 

mouse Ki67: F-5’-CATTGACCGCTCCTTTAGGTATGAAG-3’, R-5’-484 

TTGGTATCTTGACCTTCCCCATCAG-3’. 485 

 486 
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 499 

Figure 1. Nestin-Cre-driven knock-out of Rab23 causes expanded cerebellar size 500 

and abnormal foliation.   501 

A) Representative whole mount images of control and Nes-CKO mutant brains 502 

showing gross morphology of mouse cerebellum at P1, P4 and P15.  503 

B) P4 cerebellar sizes as determined by measuring 2D surface area of cerebellum on 504 

images captured at similar angle. Control, n = 6; CKO, n = 4 Statistical significance, 505 

unpaired student t-test. P value **  0.01. Error bars depict SE 506 

C-D) Representative images showing H&E staining of control and Nes-CKO cerebellar 507 

sagital sections of P1 (C) and P4 (D) animals. Red arrows highlight morphological 508 

changes in the external granule layer of Nes-CKO compared to the control.  509 

E) Representative image showing whole brain of 2 months adult mice. Yellow asterisk 510 

shows smaller cerebellum of Nes-CKO mutant compared to the control. 511 

F) Representative images showing H&E staining of sagital cerebellar sections of 10 512 

months adult mice. 513 

 514 

Figure 2. KO of Rab23 perturbs radial glial scaffold formation and causes partial 515 

loss of cerebellar laminar structure 516 

A-B) Representative images showing immunostaining of Nestin (red) on P1 (A) and P4 517 

(B) sagital cerebellar tissue sections to illustrate radial glial scaffold.  518 

C) Representative images showing immunostaining of GFAP (red) on P15 sagital 519 

cerebellar tissue sections to illustrate radial glial scaffold.  520 

D) Representative images showing co-immunostaining of NeuN and GFAP on ten 521 

months adult cerebellum to illustrate cerebellar cytoarchitecture, laminar layers and 522 

glial cells.  523 
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D’-D”) Close up images showing NeuN-positive granule neurons and GFAP-positive 524 

glial cells at the internal granule layer and pial surface.  525 

 526 

Figure 3. Depletion of Rab23 leads to GCP migration defect  527 

A) Representative images showing immunostaining of Pax6 on E15.5 sagital sections 528 

of cerebellar primordium to illustrate the GCPs residing in the EGL and early inward 529 

migrating GCPs. White arrows show inward migration paths. EGL, external granular 530 

layer; RL, rhombic lip 531 

B) Quantification of the proportion of innervated Pax6+ GCPs against all Pax6-labelled 532 

GCPs. 2 to 3 sections (~50-100 μm apart) of the cerebellar primordium were counted 533 

for each animal.  Control, n = 3; CKO, n = 3. Statistical significance, unpaired student 534 

t-test. P value *  0.05. Error bars depict SE 535 

C) Representative image and graph showing two-hours EdU labelled progenitors in the 536 

cerebellar primordium.  Magenta arrows show migration paths of progenitors from 537 

EGL, yellow arrows show migration paths of progenitors from VL. Control, n = 3; 538 

CKO, n = 3. 2 to 3 sections (~50-100 μm apart) were counted for each animal. Statistical 539 

significance, unpaired student t-test. P value ***  0.001. Error bars depict SE 540 

D) Representative images showing cerebellar lobules of 48 hours Edu-labelled cells 541 

from P5-P7 to illustrate proportions of cells innervated the IGL after 48 hours of pulse-542 

chase labeling. EGL, external granular layer; ML, molecular layer; ICL, internal 543 

granule layer. 544 

E) Quantification of the proportion of Edu-labelled cells in each laminar layer as 545 

indicated. Control, n = 3; CKO, n = 3. Statistical significance, two-way ANOVA, 546 

Bonferroni posttests. P value ***  0.001, ** 0.01, * 0.05. Error bars depict SE 547 

 548 
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Figure 4. Rab23-deficient cerebellum exhibited thickened EGL and elevated GCP 549 

proliferation  550 

A-B) Representative images showing co-immunostaining of Pax6 (green) and 551 

Calbindin (red) on P1 sagital sections of cerebellum to illustrate the GCPs and Purkinje 552 

cells layers. Asterisks show a thickened EGL layer in Nes-CKO cerebellum compared 553 

to the control.  554 

C-D) Representative images showing two-hours EdU labelled dividing progenitors in 555 

the E15.5 (C) and P4 (D) cerebellum. Double headed arrows highlight expanded pools 556 

of dividing cells in the Nes-CKO EGL as compared to the control counterparts.  557 

E) Quantification of the percentages of 2 hours Edu-labelled proliferative cells in the 558 

EGL at E15.5. 2 sections (~100 μm apart) of the cerebellar primordium were counted 559 

for each animal. Control, n = 3; CKO n = 3. Statistical significance, unpaired student t-560 

test. P value ***  0.001. Error bars depict SE 561 

F) Graphs illustrating the fold change of the gene expression levels of E15.5 cerebellar 562 

tissues quantified by real-time quantitative PCR. Control, n = 4; CKO n = 4. Nes-CKO 563 

values were normalized to its respective control group. Statistical significance, unpaired 564 

student t-test. P value ***  0.001. Error bars depict SE 565 

 566 

Figure 5. Shh activity is differentially perturbed in the embryonic and postnatal 567 

cerebellar tissues. 568 

A) Graphs illustrating the fold change of the gene expression levels of E15.5 cerebellar 569 

tissues quantified by real-time quantitative PCR. Control, n = 4; CKO n = 4. Nes-CKO 570 

values were normalized to its respective control group. Statistical significance, unpaired 571 

student t-test. P value **  0.01. Error bars depict SE. n.s., not significant.  572 
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B) Graphs illustrating the fold change of the gene expression levels of P15 cerebellar 573 

tissues quantified by real-time quantitative PCR. Nes-CKO values were normalized to 574 

its respective control group. Control, n = 3; CKO n = 4. Statistical significance, 575 

unpaired student t-test. P value ***  0.001. Error bars depict SE. n.s., not significant.  576 

C) Graphs illustrating the basal level Gli1 expression profiles of E15.5 and P15 577 

cerebellar tissues quantified by real-time quantitative PCR. E15.5 Control, n = 4; CKO 578 

n = 4; P15 Control, n = 3; CKO n = 4. Statistical significance, one-way AVONA, 579 

Bonferroni’s Multiple Comparison Test. P value ***  0.0001. Error bars depict SE. 580 

n.s., not significant.  581 

 582 

Figure 6. Rab23 regulates ciliogenesis and Shh signaling in the GCPs. 583 

A) Graphs showing gene expression levels of P7 GCPs primary cultures harvested at 584 

DIV 7. Lentiviral carrying the over-expression constructs as indicated were transduced 585 

into the primary cultures at Day 0, 2 to 3 hours after seeding cells. Quantifications 586 

depict 4 independent experiments. Statistical significance, one-way AVONA, 587 

Bonferroni’s Multiple Comparison Test. P value ***  0.0001; ** 0.01, * 0.05. Error 588 

bars depict SE.  589 

B-C) Representative images (B) and graph (C) showing three-hours EdU labelled 590 

(magenta; blue: DAPI) dividing progenitors in P7 GCPs primary cultures of each 591 

indicated groups fixed at DIV 7. Cell proliferation was determined by the percentages 592 

of Edu-labelled cells out of total number of DAP-positive nuclei in each image taken. 593 

For quantification of each batch, 3 fluorescence images were randomly taken from each 594 

respective group as indicated. Quantifications depict 3 independent experiments. 595 

Statistical significance, one-way AVONA, Bonferroni’s Multiple Comparison Test. P 596 

value ***  0.0001; ** 0.01. Error bars depict SE.  597 
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D) Quantification of the percentages of ciliation in P7 GCPs primary cultures at DIV7 598 

determined by counting the number of cells bearing Arl13B-labelled primary cilium 599 

against all DAPI-positive nuclei in each image taken. For quantification of each batch, 600 

3 fluorescence images were randomly taken from each respective group as indicated. 601 

Quantifications depict 3 independent experiments. Statistical significance, one-way 602 

AVONA, Bonferroni’s Multiple Comparison Test. P value ***  0.0001; ** 0.01. 603 

Error bars depict SE.   604 

E) Representative images showing immunostaining of Arl13B on E15.5 (top) and P15 605 

(bottom) sagital sections to illustrate the primary cilia of GCPs residing in the EGL. 606 

EGL, external granular layer; ML, molecular layer. 607 

F-G) Graphs showing gene expression levels of P7 GCPs primary cultures treated with 608 

Shh (F) and SAG (G) on DIV 1 respectively. Total RNAs were extracted from DIV 2 609 

culture, 24 hours after the respective treatments. Quantifications depict double delta Ct 610 

values of 3 independent experiments. Delta Ct values of the treated groups were 611 

normalized to its respective untreated group, which gave double delta Ct values as 612 

plotted. Statistical significance, unpaired student t-test. P value ***  0.0001; ** 0.01. 613 

Error bars depict SE.   614 
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