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Abstract 
Many major neuropsychiatric pathologies, some of which appear in adolescence, show 

differentiated prevalence, onset, and symptomatology across the biological sexes. 

Therefore, mapping differences in brain structure between males and females during this 

critical developmental period may provide information about the neural mechanisms 

underlying the dimorphism of these pathologies. Utilizing a large dataset collected 

through the Adolescent Brain Cognitive Development study, we investigated the 

differences of adolescent (9-10 years old) male and female brains (n = 8325) by using a 

linear Support-Vector Machine Classifier to predict sex based on morphometry and 

image intensity values of structural brain imaging data. The classifier correctly classified 

the sex of 86% individuals with the insula, the precentral and postcentral gyri, and the 

pericallosal sulcus as the most discernable features. The role of these significant 

dimorphic features in psychopathology was explored by testing them as mediators 

between sex and clinical symptomology. The results demonstrate the existence of 

morphometrical brain markers of sex difference. 

Significance Statement 

Many psychiatric pathologies express differently across the sexes. Therefore, an 
understanding of the differences in brain structure between males and females during the 
critical developmental period of adolescence may provide the insights about the 
dimorphism of clinical symptomology and the general functions of the dimorphic brain 
structures. Using machine learning, we successfully classified males and females with a 
high accuracy based on morphometry and image intensity data extracted from structural 
MRI scans. The features which significantly contributed to classification were examined 
to determine brain regions which are dimorphic during adolescence. The relevance of 
these brain regions to the expression of psychopathology symptoms was also explored. 
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Introduction 

Many major neuropsychiatric pathologies are differentiated in prevalence, 

developmental trajectory and symptomatology across the biological sexes. For example, 

it is well documented that Autism Spectrum Disorder (ASD) shows a significantly higher 

prevalence in males compared to females (Werling & Geschwind, 2013). This imbalance 

has sparked various theories regarding the differences between male and female brains 

such as extreme male brain hypothesis (Baron-Cohen, 2002) and female protection effect 

(Robinson, Lichtenstein, Anckarsater, Happe, & Ronald, 2013), among others. In 

contrast, Major Depressive Disorder (MDD) shows an inverse pattern, with an 

approximate 2:1 ratio for females over males in lifetime prevalence (Picco, 

Subramaniam, Abdin, Vaingankar, & Chong, 2017; Seedat et al., 2009). This disparity is 

observed as early as adolescence (Salk, Hyde, & Abramson, 2017) and depressive 

symptoms may differ across the sexes (Martin, Neighbors, & Griffith, 2013). It is 

therefore immediately relevant to investigate sex differences in the brain. Determining 

whether brain markers for biological sex exist in adolescence is a crucial step for 

understanding differences in brain development between males and females. Establishing 

a pattern of brain dimorphism will point us towards possible sources of these divergent 

profiles of psychopathology and will lead to further understanding of about the functions 

of the dimorphic brain structures. 

Univariate analyses have demonstrated consistent global morphological 

differences across men and women with disagreement in the magnitude and direction of 

localized differences in gray matter qualities (Kaczkurkin, Raznahan, & Satterthwaite, 

2019; Lotze et al., 2019; Ruigrok et al., 2014), leading some studies to conclude that the 
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overwhelming majority of the brain’s “mosaic” is largely overlapping between the sexes 

and localized regions of the brain are small and ultimately inconsequential (Joel et al., 

2015). However, recent advances using machine learning multivariate classification 

methods demonstrate that indeed males and females do have differentiable brain features 

(Chekroud, Ward, Rosenberg, & Holmes, 2016), with classification accuracy exceeding 

90% using structural brain imaging (Anderson et al., 2019; Chekroud et al., 2016). These 

studies have focused on samples with broad age ranges, including both pre and post-

adolescent brain scans. While age is statistically accounted for in these models, 

established nonlinearities in brain development between males and females, e.g. 

(Gennatas et al., 2017; Kaczkurkin et al., 2019), do not permit a singular profile of 

dimorphism which is applicable across the lifespan. Instead, more focused investigation 

into brain dimorphism at specific timepoints during critical developmental periods, such 

as adolescence, are warranted to answer age-specific questions regarding brain 

dimorphism across biological sex. 

In this study, we used a Support Vector Machine Classifier (SVC) to test the 

classification power of morphometrical features derived from structural T1 images of the 

ABCD sample. The Adolescent Brain Cognitive Development (ABCD) study provides a 

unique resource for characterizing the neural profile of the crucial development of 

adolescence (Hagler et al., 2019; Volkow et al., 2018). Brain morphometry and image 

intensity measures created via cortical surface reconstruction and subcortical 

segmentation using FreeSurfer’s automated pipeline (Fischl & Dale, 2000), which have 

been validated for use in children (Ghosh et al., 2010), were used as predictive features of 

biological sex. If the SVC could successfully classify biological sex significantly above 
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chance using these features, this would demonstrate that dimorphism exists in the brain 

and there are measurable brain markers of sex during this critical developmental period. 

A mediation analysis was also conducted to explore the potential markers of biological 

sex that serve as mediators between sex and clinical symptoms measured by the Child 

Behavior Checklist (CBCL) syndrome scales and the Diagnostic and Statistical Manual 

of Mental Disorders, 5th Edition (DSM5)-oriented scales (see Supplementary Methods 

for details).  

Results 

SVC performance  

Classification performance with all features and with each of the feature sets is 

shown in Table 1. An accuracy (mean ± standard deviation (SD)) of 86.3 ± 0.8% was 

obtained across the simulation of the full sample with all input features which was 

consisted of seven feature sets: cortical thickness, sulcal depth, cortical area, cortical 

volume, T1 grey matter intensity, T1 white matter intensity, and T1 gray matter and 

white matter contrast (GWC). Deep-learning did not improve performance compared to 

linear SVC: a training accuracy of 100% and test accuracy of approximately 85% were 

observed. Inspection of the precision and recall revealed no evidence of bias across sex in 

classification accuracy. Classification accuracy for all features was mostly retained after 

partitioning groups by clinical severity, and the linear SVC of the individual clinical 

tertials (low, middle, and high reported internalizing and externalizing behaviors) 

revealed similar classification accuracy across these groups (low = 82.9 ± 1.4%, med = 

83.3 ± 1.4%, high = 82.4 ± 1.5%). Therefore, the examination of the features which 

significantly contributed to classification was based on the full sample rather than the 
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stratified samples. All of the seven feature sets predicted significantly above chance level 

with a range of accuracy from 69.4% (white matter intensity) to 76.0% (cortical area).  

Features that significantly contributed to classification 

 Four features with significant positive weights (female > male, regions in red) and 

nine features with significant negative weights (male > female, regions in blue) were 

identified and are visualized in Figure 1 via the fsbrain visualization package (Schäfer, 

2020). Regions with positive weights included the right postcentral gyrus (cortical 

thickness), the left long insular gyrus and central sulcus of the insula (cortical volume), 

the left anterior segment of the circular sulcus of the insula (cortical volume), and the 

temporal pole (GWC). Regions with negative weights included the left superior occipital 

gyrus (cortical thickness), the right lingual gyrus (sulcal depth), the left posterior ramus 

of the lateral sulcus (cortical area), the left precentral gyrus (cortical volume), the right 

pericallosal sulcus (gray matter intensity and white matter intensity), the left superior 

segment of the circular sulcus of the insula (GWC), the right lateral occipito-temporal 

gyrus (GWC), and the right superior segment of the circular sulcus of the insula (GWC). 

Labels and weights of these features are presented in Table 2. Mean feature weights 

across sex are visualized in Figure 2 in order to demonstrate the difference in sensitivity 

between the machine-learning multivariate approach and univariate statistics: although 

these 13 features contributed to successful classification, not all variables are 

significantly different across groups. Some differences in feature means across groups 

would be detectable with a univariate analysis; however, many are largely overlapping or 

in unexpected directions, which would not be detectable using a univariate approach. The 

SVC is sensitive to non-linear dependencies between features, and is therefore able to 
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capture more complex dimorphism within the brain. These features alone carry 

significant classification power with an average accuracy of 70.8 ± 1.0% observed in a 

linear SVC using only these 13 features as predictors of biological sex. 

Dimorphic features mediating the relationship between sex and clinical symptoms  

 The 13 regions identified as dimorphic were tested in parallel as potential 

mediators of the relationship between sex and clinical symptomology. The schema of the 

mediation analysis of the path from sex to brain morphometry and then to clinical 

symptomology is visualized in Figure 3a. This analysis revealed 3 unique significant 

morphometry features that served as the mediators including: GWC of the left superior 

segment of the circular sulcus of the insula on Child Behavior Checklist (CBCL) 

syndrome scales of withdrawn depressed and thought problems, CBCL total problems, 

and DSM-5-oriented scales of depression problems and stress (Figure 3b); surface area 

of the left posterior ramus of the lateral sulcus on CBCL syndrome scale of rule-breaking 

behavior and DSM-5-oriented scale of conduct problems (Figure 3c); and cortical 

volume of the left precentral gyrus and GWC of the left superior segment of circular 

sulcus of the insula on DSM-5-oriented scale of oppositional defiant problems (Figure 

3d). See Table 3 for details of the coefficients and p values.  

Discussion  

Using morphometric and image intensity values as predictors, we were able to 

classify biological sex with approximately 86% accuracy in an exceptionally large 

sample of 9-10 year-old males and females. We have also identified the 13 significant 

regional measures for the successful classification of males and females. As noted in 

prior findings relating to brain dimorphism (Anderson et al., 2019; Chekroud et al., 
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2016), local differences between the brains of males and females are not as 

inconsequential as hypothesized (Joel et al., 2015). We therefore conclude that there is 

sexual dimorphism in the human brain which is measurable during this critical 

developmental period. Contrary to previous analyses of biological sex and brain 

morphometry using machine learning (Anderson et al., 2019; Chekroud et al., 2016), the 

current study focuses exclusively on the developmental period of adolescence. This 

analysis therefore not only delineates brain markers of biological sex, but also contributes 

to the large body of research outlining unique trajectories of males and females during 

development. Our findings provide a whole-brain description of brain dimorphism which 

may be used to direct more pointed research into the relationship between brain 

dimorphism during adolescence and dimorphic clinical profiles which develop during this 

period. 

There are multiple facets of the ABCD dataset which have contributed to the 

success of this analysis. An obvious advantage is the sheer number of individuals 

included in this study. At over 8,000 included observations, our analysis methods are well 

powered to reveal brain differences. Furthermore, the quantity and diversity of input 

features derived from the FreeSurfer pipeline are advantageous for two reasons. First, 

these brain measures can indicate independent features of brain morphometry, which can 

express a multitude of biological variables from a single scan type, e.g., T1 image. The 

inclusion of seven different T1 feature types undoubtedly increases the sensitivity of this 

analysis as demonstrated by this current study. On its own, any single feature type can 

only produce classification accuracy of as high as 76.01% while the predictive power of 

the aggregate of all feature types is clearly stronger. Second, the high dimensionality of 
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the data afforded by the large diversity of features provides the benefit of more efficient 

linear separability while also not succumbing to the “curse of dimensionality” due to an 

adequate number of observations. This facet of the data structure is not to be overlooked. 

Through the possibility of linearly separating our data, we gain explainability within our 

model not afforded by other non-linear methods, e.g., kernelized SVC, while retaining 

the ability to detect nonlinear dependencies on classification based on these features with 

the high dimension SVC. Indeed, this advantage over univariate approaches is best 

understood by inspecting feature weights and feature means simultaneously. Positive or 

negative weights leading to female or male prediction do not necessarily have analogous 

differences of means. Attempting similar analyses utilizing the univariate method would 

therefore not be able to detect such differences. The “brain mosaic” is truly a complex, 

yet robustly observable, non-linear combination of features. 

The relationship between sexual dimorphism in the brain and behavioral 

dimorphism is complex and not yet fully understood (De Vries, 2004; Velasco, Florido, 

Milad, & Andero, 2019; Yagi & Galea, 2019), although there appears to be a relationship 

between neuroendocrine expression during development and the limbic system which has 

implications for risk-taking (Casey, Jones, & Hare, 2008) and clinical symptoms, such as 

anxiety (Spielberg, Schwarz, & Matyi, 2019). Several cortical regions identified by our 

analysis as being dimorphic have direct relationship with the limbic system, including 

multiple sulci in the left insula and left lateral sulcus, the circular sulcus of the right 

insula, left pre-central sulcus, and right post-right central sulcus, and right peri-callosal 

sulcus. The limbic system is implicated in sexual function (George & Lorberbaum, 

2002), and anatomical dimorphism within the limbic system in mammalian species is 
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well documented (Cahill, 2006; Madeira & Lieberman, 1995). While sex-specific 

investigations exist between cortico-limbic circuitry and clinical symptoms during 

adolescence (Mohamed Ali, Vandermeer, Sheikh, Joanisse, & Hayden, 2019), it is still 

important to uncover evidence linking brain dimorphism present during adolescence to 

the development of clinical symptoms which are commonly observed or developed 

during this developmental period. Therefore, relating the regional measures identified as 

dimorphic within this sample to differences in clinical symptomology and behavioral 

clinical precursors is a necessary step in outlining which may underly the development of 

dimorphic clinical profiles across in adolescence and beyond. We observed several 

possible relationships between sex and clinical symptomology, mediated by the 

dimorphic brain regions uncovered by our classification analysis. The results of this 

analysis point towards two main regions with implications for dimorphic symptomology: 

posterior ramus of the lateral sulcus, and most prominently, the GWC within the insula. 

The necessity of the insula has been demonstrated through lesion studies showing 

significant disruption of addictive behaviors (Naqvi, Rudrauf, Damasio, & Bechara, 

2007), cognitive control (Wu et al., 2019) and acquisition of taste aversion (Roman & 

Reilly, 2007). GWC is thought to reflect the differential myelination of the cerebral 

cortex and subjacent WM (Norbom et al., 2019), and individual differences in GWC 

within the insula, cingulate and pre/post central cortices are associated with both mental 

health and general cognitive functioning in adolescents (Norbom et al., 2019).  

The insula is a multifaceted region responsible for a diversity of functions (Flynn, 

1999): the insula is central to autonomic and visceral information processing and their 

integration, highlighted by its subcortical, limbic, and brain stem connections. Its cortical 
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connections are predominantly with other neocortical areas. Insular-cortical and sub-

cortical connections, especially with the thalamus and basal ganglia, underscore the 

posterior insula’s role in somatosensory, vestibular, and motor integration. The circular 

sulcus outlines the circumference of the insula, separating it from the temporal, frontal 

and parietal lobes. Indeed, the many structural connections of the insula underly its role 

as a hub for various specialized functions including attention, cognitive, affective and 

regulatory functions (Menon & Uddin, 2010). Recent evidence has placed the insula as 

an important component of emotional processing in the brain (Gu, Hof, Friston, & Fan, 

2013). The insular cortex has also been shown to have a role in social processing (Spagna 

et al., 2018), predicting social emotions in others (Lamm & Singer, 2010) and is 

necessary for empathetic pain perception (Gu et al., 2012). The functional integration of 

cognitive, regulatory and affective functions within this region (Kurth, Zilles, Fox, Laird, 

& Eickhoff, 2010) supports a process known as interoceptive awareness (Gu, Liu, Van 

Dam, Hof, & Fan, 2013; Wang et al., 2019). It is posited that interoceptive awareness 

gives rise to various motivations and drives, as well as emotional and affective 

experiences through the maintenance of homeostatic balance within the body (Khalsa et 

al., 2018). The insula is therefore a possible source of disfunction in affective and 

emotional disorders which have close relationships with the body (Khalsa et al., 2018; 

Paulus & Stein, 2010). The roles of the insula presented here provide theoretical backing 

to the results of our exploratory analysis, which demonstrates a mediating role of GWC 

in the circular sulcus of the insula between sex and several dimensions of clinical 

symptomology. It is therefore relevant to carefully consider the individual differences 
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within the insular cortex across sex and the possible role this region plays in the 

dimorphic development and profiles of psychopathology. 

Materials and Methods 

Demographics of the sample 

The ABCD study is the largest project of its kind to investigate the 

neurobehavioral development of adolescents with multimodal brain imaging data 

collected from an exceptionally large sample of 9-10 year old children (n = 11875) 

(Casey et al., 2018). In addition, the ABCD dataset was created in part to identify early 

markers of substance abuse and other mental health problems (Barch et al., 2018; Lisdahl 

et al., 2018) with recruitment protocols reflecting the intention to include a large number 

of children who show early signs of externalizing and internalizing symptoms (Loeber et 

al., 2018). The ABCD dataset is a well-controlled and thorough resource, and therefore is 

optimal for analysis of sex differences during this critical age range using machine 

learning. 

Parcellated structure MRI data of 11,533 participants were provided in the ABCD 

dataset release 2.0. We have applied the following exclusion criteria to the data: (1) 

participants with no T1 scan passing raw data quality control; (2) participants not passing 

the FreeSurfer quality control; (3) participants with missing data for T1 related 

morphometric or intensity features; (4) participants with missing data for cognitive and 

clinical measures. The final sample consisted data from 8325 participants (mean ± SD) 

age = 119.07 ± 7.48 months), including 4308 males (age = 119.15 ± 7.46 months) and 

4017 females (age = 118.99 ± 7.50 months). The difference in age (a strong influence on 

brain morphometry) between male and female groups was not significant, t(8325) = 0.95, 
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p = 0.34, with a Bayes Factor value of 0.04. Demographic information for the included 

participants was reported in Supplementary Table 1. 

MRI data of the sample 

Fully preprocessed morphometric and image intensity values of the structural T1 

images were provided by the ABCD study (Hagler et al., 2019), and were included as the 

predictive features in this analysis (see Supplementary Matierials for MRI acquisition 

details). Morphometric and image intensity measures were created from structural T1 

images via cortical surface reconstruction using FreeSurfer’s automated pipeline (Fischl 

& Dale, 2000). Labels for cortical gray matter and underlying white matter voxels were 

assigned based on surface-based nonlinear registration to the Destrieux atlas (Destrieux, 

Fischl, Dale, & Halgren, 2010). Morphometric measures included four categories: 

cortical thickness, cortical surface area, cortical volume, and sulcal depth. While these 

measures are correlated, they indicate different facets of gray matter integrity, and some 

(surface area/thickness) are genetically independent (Winkler et al., 2010). Image 

intensity measures included three categories: average gray matter intensity, average white 

matter intensity, and the average contrast along the gray-white boundary: GWC = (white 

– gray)/(white + gray). Intensity measures were included because they provide 

independent information relative to morphometry and likely reflect local influences on 

morphometry (Westlye et al., 2009). Additionally, GWC is a sensitive measure of local 

variation in tissue integrity and myelin degradation (Uribe et al., 2018), which likely 

reflects a unique biological signal which varies significantly with age (Vidal-Pineiro et 

al., 2016) and may have increased clinical sensitivity relative to cortical thickness 

(Makowski et al., 2019). Each category of feature was provided for each of the 148 
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regions of interest (ROIs, 74 ROIs for each hemisphere). An average across ROIs in the 

left hemisphere, an average across ROIs in the right hemisphere, and an average across 

all ROIs for each morphometric measure were also included as the predicting features.  

Clinical Measures 

 The Achenbach System of Empirically Based Assessment (ASEBA) is one of the 

assessments of mental health in the ABCD dataset, which comprises the CBCL and the 

DSM-5-oriented scales (see Supplementary Matierials for more details). The CBCL is a 

parent-reported scale used with children 6 to 18 years old (CBCL/6-18), which is made 

up of eight empirically-based syndrome scales: anxious/depressed, withdrawn depressed, 

somatic complaints, thought problems, attention problems, rule-breaking behavior, and 

aggressive behavioral. Those scales group into three composite scales: internalizing 

(sums the first three scales), externalizing (sums the last two scales), and total problems 

(sums all scales). The DSM-5-oriented scales include nine diagnostic categories: 

depression problems, anxiety disorders, somatic problems, attention deficit/hyperactivity 

problems (ADHD), oppositional defiant problems, conduct problems, sluggish cognitive 

tempo, obsessive-compulsive problems, and stress. In our included sample, 74.76% of 

participants provided this clinical data within 6 months of scanning; 16.60% completed 

within 6-12 months, and 8.64% completed between 12-18 months. Both raw scores and 

the age normed t-scores of each of these measures were provided in the ABCD dataset. 

Classification with Support Vector Machine  

SVC is a classification algorithm that attempts to find a hyperplane which best 

separates binary classes in hyperspace of predictive features. The above mentioned four 

categories of morphometry measures and three categories image intensity values derived 
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from ABCD’s pipeline were used as predictive features for binary classification of sex 

within this sample. A total of 1057 features were standardized across all participants and 

entered into a linear SVC via the scikit-learn machine learning library (Pedregosa et al., 

2011) in Python to predict the sex of each individual (parameter C = 0.01). The target 

variable sex was coded as “1” for females and “0” for males. Classification decisions in 

linear SVC are computed through a linear combination of weights and input data: y� = 

wTx+b. If the result y� is positive, the target class (female) is output as prediction; 

negative values of y� lead to non-target (male) class prediction. Therefore, positive 

weights can be interpreted as contributing to target class decisions and negative weights 

can be interpreted as contributing to non-target class decisions. This facet of linear SVC 

calculation was utilized in a subsequent analysis to determine multivariate features which 

influenced the classification of both females and males, and therefore represent 

dimorphic brain regions. The performance of the SVC was assessed using a simulation 

method of 10,000 iterations using cross validation. That is, the classifier was trained on a 

random subset of the data (80% of observations) and tested on the remaining subset (20% 

of observations) for each independent iteration of the simulation. Classification metrics 

(accuracy, precision, recall) and calculated feature weights for each iteration were 

recorded across this simulation. 

Two additional analyses were conducted to verify the above linear SVC approach. 

First, linear SVC performance was compared to deep-learning to examine whether 

improved classification performance can be achieved through non-linear machine 

learning. All features were included. A fully connected dense network created using 

TensorFlow 2 (Abadi et al., 2016) (2 hidden layers, each size 128, Relu activation, output 
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= size 2, softmax activation; loss = sparse categorical cross-entropy, optimized with 

Adam, batch normalized) was trained and tested on an identical split (80% train, 20% 

test). Second, as children who exhibit internalizing and externalizing symptoms were 

specifically recruited for this sample (Loeber et al., 2018), these demographics are 

overrepresented and may influence classification performance. To ensure no bias in 

classification due to differences in internalizing and externalizing severity, the linear 

SVC simulation procedure with all features included was reproduced on three tertiles of 

the original dataset: low, middle and high levels of reported internalizing and 

externalizing behaviors (internalizing + externalizing raw score; Low: 0-3, Medium: 3-

10, High: 10-83). Lastly, we identically applied the above SVC procedure to each of the 

seven input feature sets to evaluate the individual importance and contribution of these 

different feature types.  

Determination of significant contributing features 

An advantage of linear SVC is that non-zero feature weights may be interpreted 

as contributing to successful classification (Géron, 2017). A second simulation was 

conducted using a permutation method to assess the importance of observed feature 

weights for successful classification: mean observed (empirical) feature weights from the 

first simulation (averaged across the 10,000 iterations) were compared to null 

distributions of feature weights. These null distributions of feature weights were created 

by replicating the SVC procedure using random assignment of classification labels (sex) 

over a second simulation of 10,000 iterations. Mean empirical weights outside a 95% 

confidence interval for each feature (Bonferroni corrected: n = 1057; mean ± 4.069 SD) 
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determined by the null distribution of sample weights were considered to be significant 

contributors to successful classification.  

Clinical implications of sexually-dimorphic brain features 

Exploring dimorphism in the brain may lead to insights regarding dimorphism 

within well documented differences in clinical symptomology and development across 

sexes. Using the brain features uncovered by the linear SVC, we performed an 

exploratory investigation assessing the role of these dimorphic brain regions in mediating 

the relationship between sex and clinical symptomology. For each of the clinical 

measures, we performed a mediation analysis with all significant dimorphic features 

identified by linear SVC as potential parallel mediators (M) for the effect of biological 

sex (X) on the clinical measure (Y). Significant indirect effects (X→M→Y) were 

computed using a bias-corrected, non-parametric bootstrap method (Hayes & Rockwood, 

2017) via the Pingouin statistical package (Vallet, 2018). Significant indirect effects were 

reported regardless of significance of direct or total effect (Loeys, Moerkerke, & 

Vansteelandt, 2014). A liberal threshold (p < 0.05, uncorrected) was adopted for this 

exploratory analysis as we aimed to demonstrate the potential role of dimorphic regions 

in clinical symptomology. 
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Figures and Tables 

 
Table 1. Support vector machine (SVM) classification performance 

Precision Recall Accuracy 
Feature category Male Female Male Female Mean SD 
Cortical thickness 0.73 0.72 0.74 0.71 72.55% 0.99% 

Sulcal depth 0.74 0.73 0.75 0.71 73.21% 0.10% 

Cortical area 0.77 0.75 0.76 0.76 76.01% 0.94% 

Cortical volume 0.76 0.74 0.76 0.75 75.20% 0.95% 

White matter intensity 0.70 0.69 0.72 0.67 69.38% 1.02% 

Gray matter intensity 0.72 0.71 0.73 0.69 71.37% 1.01% 

GWC 0.71 0.71 0.74 0.68 71.01% 1.02% 

All features 0.87 0.86 0.87 0.86 86.33% 0.77% 

Note: SD: standard deviation. GWC: contrast along the gray-white boundary. 
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Table 2. Weights significantly contributed to the SVC of males and females 

Region L/R Measure 
Empirical 
weight 

Female > Male (positive)    
Postcentral gyrus R Cortical thickness 0.1701 
Long insular gyrus & central sulcus of 

insula 
L Cortical volume 0.2140 

Anterior segment of the circular 
sulcus of the insula 

L Cortical volume 0.1138 

Temporal pole R GWC 0.2056 
    
Male > Female (negative)    
Superior occipital gyrus L Cortical thickness -0.0814 
Lingual gyrus R Sulcal depth -0.1420 
Posterior ramus of the lateral sulcus L Cortical area -0.1216 
Precentral gyrus L Cortical volume -0.1599 
Pericallosal sulcus R WM intensity  -0.2548 
Pericallosal sulcus R GM intensity -0.2067 
Superior segment of the circular 

sulcus of the insula 
L GWC -0.2518 

Lateral occipito-temporal gyrus R GWC -0.0943 
Superior segment of the circular 

sulcus of the insula 
R GMC -0.2206 

Note: L: left hemisphere. R: right hemisphere. GWC: contrast along the gray-white 
boundary. WM: White Matter, GM: Gray Matter 
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Table 3. Results of exploratory mediation analysis for clinical symptomology  

Y M Path Coefficient 
Uncorrected 

p value 

CBCL Withdrawn 
Depression 

Superior segment of the 
circular sulcus of the insula 

c -0.0015 <0.001 
b 25.6589 0.037 

a+b -0.0363 0.040 

CBCL Thought 
Superior segment of the 
circular sulcus of the insula 

c -0.0015 <0.001 
b 25.451 0.040 

a+b -0.0375 0.024 

CBCL Rule breaking 
left posterior ramus of the 
lateral sulcus 

c -90.4366 <0.001 
b -0.0007 0.083 

a+b 0.0676 0.028 
CBCL Aggression Superior segment of the 

circular sulcus of the insula 
c -0.0015 <0.001 
b 23.4542 0.037 

a+b -0.0319 0.032 
CBCL Total 
Problems 

Superior segment of the 
circular sulcus of the insula 

c -0.0015 <0.001 
b 50.9212 0.033 

a+b -0.0731 0.032 

DSM Depression 
Superior segment of the 
circular sulcus of the insula 

c -0.0015 <0.001 
b 26.9807 0.028 

a+b -0.039 0.02 

DSM Oppositional 
Disorder 

Left precentral gyrus 
c -576.8721 <0.001 
b -0.0001 0.171 

a+b 0.0687 0.044 

 
Superior segment of the 
circular sulcus of the insula 
 

c -0.0015 <0.001 
b 26.8547 0.017 

a+b -0.0364 0.02 

DSM Conduct 
Disorder 

left posterior ramus of the 
lateral sulcus 

c -90.4366 <0.001 
b -0.0008 0.059 

a+b 0.0831 0.016 

CBCL Stress 
Superior segment of the 
circular sulcus of the insula 

c -0.0015 <0.001 
b 29.4708 0.019 

a+b -0.042 0.012 
Note. Path a: Sex on Brain region. Path b: Brain region on clinical. Path c: Sex on 
clinical, accounting for path a+b, e.g. total effect. Total mediation effect (indirect effect): 
path a+b 
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Figure Captions 

Figure 1. Visualization of all brain regions with significant weights leading to successful 

support vector classification (SVC), independent of feature type. Red color signifies 

positive weight and therefore positive class contribution (female > male). Blue color 

signifies negative weight and therefore negative class contribution (male > female). 

Figure 2. Univariate descriptive statistics (means and standard errors) of the 13 features 

identified in the SVC across sex.  

Figure 3. (a) Diagram of the multiple tested paths in the exploratory mediation analysis. 

The indirect path (Sex → Brain Feature → Clinical Scale) tests the parallel mediation 

effect of all dimorphic brain regions outlined our analysis on the Sex-Clinical Scale 

relationship, visualized in b, c, d. (b) GWC of the left superior segment of the circular 

sulcus of the insula on Child Behavior Checklist (CBCL) syndrome scales of withdrawn 

depressed and thought problems, CBCL total problems, and DSM-5-oriented scales of 

depression problems and stress; (c) surface area of the left posterior ramus of the lateral 

sulcus on CBCL syndrome scale of rule-breaking behavior and DSM-5-oriented scale of 

conduct problems; (d) and cortical volume of the left precentral gyrus and GWC of the 

left superior segment of circular sulcus of the insula on DSM-5-oriented scale of 

oppositional defiant problems.  
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Figure 1.  

Dimorphic brain regions identified by SVM 
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Figure 2. 

Morphometric and 

intensity feature 

values in 

dimorphic regions 

across sex 
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Figure 3. 

Mediation analysis schema and results  
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Supplementary Information 

Clinical questionnaires 

Clinical symptomology was assessed using the Achenbach System of Empirically 

Based Assessment (ASEBA), which comprise the Child Behavior Checklist (CBCL) and 

DSM-5-oriented scales (DSM-5) (T. M. Achenbach, Dumenci, & Rescorla, 2003). The 

CBCL (Thomas M. Achenbach, 1991; Thomas M. Achenbach & Rescorla, 2001) is a 

parent-completed rating scale of behavior which qualifies internalizing and externalizing 

behaviors. Though empirically derived, these scales have weak relationship to the 

diagnostic standards of the DSM, and thus the DSM-5 oriented scales were created 

(Ebesutani et al., 2010).  

MRI acquisition parameters 

Structural MRI data were downloaded from ABCD Data Release 2.0 (3/26/2019) 

which were collected from participants of the ABCD study (for the outline, see Casey et 

al. (2018)). To increase scanner completion, participants completed pre-scan training in a 

mock-scanner. During scan-time, a child friendly movie was turned on as the child 

entered the scanner and remained on during acquisition of the localizer and 3D T1 scan. 

For the structural scan, 3D T1-weighted magnetization-prepared rapid acquisition 

gradient echo scan was obtained (176 slices at 256 × 256 mm field of view; 1.0 mm 

isotropic, flip angle = 8.0°. Total acquisition time = 7 min and 12 sec).   
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Supplementary Tables 

 

Supplementary Table 1. Demographics of Adolescent Brain Cognitive Development 
(ABCD) sample 

  Gender  
Race Male Female Male + Female 

White 3348 (38.82%) 3026 (35.08%) 6374 (73.90%) 
Black/African American 948 (11.00%) 909 (10.54%) 1857 (21.53%) 
American Indian 145 (1.68%) 143 (1.66%) 288 (3.34%) 
Alaska Native 4 (0.05%) 1 (0.01%) 5 (0.06%) 
Native Hawaiian 1 (0.01%) 7 (0.08%) 8 (0.10%) 
Guamanian 4 (0.05%) 0 (0) 4 (0.05%) 
Samoan 15 (0.17%) 2 (0.02%) 17 (0.20%) 
Pacific Islander 51 (0.60%) 14 (0.16%) 65 (0.75%) 
Asian Indian 79 (0.92%) 37 (0.43%) 116 (1.34%) 
Chinese 56 (0.65%) 74 (0.86%) 130 (1.51%) 
Filipino 56 (0.65%) 51 (0.59%) 107 (1.24%) 
Japanese 27 (0.31%) 32 (0.37%) 59 (0.68%) 
Korean 35 (0.41%) 39 (0.45%) 74 (0.86%) 
Vietnamese 20 (0.23%) 28 (0.32%) 48 (0.56%) 
Asian: Other 39 (0.45%) 32 (0.37%) 71 (0.82%) 
Other 306 (3.55%) 288 (3.34%) 594 (6.89%) 
Refuse to Answer 25 (0.29%) 19 (0.22%) 44 (0.51%) 
Don’t Know 30 (0.35%) 36 (0.42%) 66 (0.77%) 
Note: Demographics of ABCD sample based on parent questionnaire. Columns will not 
summate to total subject number, because responses for a child’s race are not mutually 
exclusive. Percentages may therefore be interpreted as the percentage of sample which is 
identified by parent as a given race. 
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