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Abstract—In human-in-the-loop control systems, operators
can learn to manually control dynamic machines with either
hand using a combination of reactive (feedback) and predictive
(feedforward) control. This paper studies the effect of handedness
on learned controllers and performance during a continuous
trajectory-tracking task. In an experiment with 18 participants,
subjects perform an assay of unimanual trajectory-tracking
and disturbance-rejection tasks through second-order machine
dynamics, first with one hand then the other. To assess how
hand preference (or dominance) affects learned controllers, we
extend, validate, and apply a non-parametric modeling method
to estimate the concurrent feedback and feedforward elements of
subjects’ controllers. We find that handedness does not affect the
learned controller and that controllers transfer between hands.
Observed improvements in time-domain tracking performance
may be attributed to adaptation of feedback to reject distur-
bances arising exogenously (i.e. applied by the experimenter)
and endogenously (i.e. generated by sensorimotor noise).

Index Terms—feedback, feedforward, hand dominance,
human-in-the-loop control systems, sensorimotor learning and
control

I. INTRODUCTION

HUMANS interact with diverse dynamic machines and
devices such as computers, quadrotors, and cars in daily

life. These interactions give rise to a human-in-the-loop control
system where the human and the machine jointly accomplish
a task through one or more sensorimotor loops. For instance,
people learn to steer computer cursors, quadrotor drones, and
personal vehicles to track targets or follow desired trajectories
primarily by visually observing the machine and providing
input through a manual interface like a mouse, joystick, or
steering wheel, that is, by using visuomotor control [1]–[8].
Such manual interfaces often prescribe how we interact with
the system; some tasks are performed with one hand, others
require coordination between hands, and still others may use
either or both hands (e.g., the mouse, joystick, and steering
wheel, respectively). Because performance in tasks involving
fine motor control is affected by the hand used [9], we seek
to understand how human visuomotor control differs between
hands. Modeling differences in control between hands could
be used to improve bimanual interfaces or to assist unimanual
interaction when someone’s preferred hand is unavailable due
to injury, disease, or circumstance.
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Colloquially understood as the “differences between the
hands in terms of skill” [9], handedness can be quantitatively
assessed with questionnaires (e.g. the Edinburgh Handedness
Inventory [10] or Annett Handedness Questionnaire [11]) or
observed from dexterity tasks [11] when questionnaires are
difficult or unreliable to administer (such as for young chil-
dren). These assessments suggest that about 63% prefer to use
the right hand and about 7% prefer to use the left hand [11].
This means that about 70% of people have a preferred or
dominant hand that is more dexterous than the non-preferred
or non-dominant hand. Ongoing research indicates that the
observed differences in dexterity between dominant and non-
dominant hands may be due to each hemisphere of the brain
specializing for different aspects of limb movements (termed
lateralization) [12]–[14].

Studies in sensorimotor neuroscience suggest that partici-
pants learn different sensorimotor skills with their dominant
versus non-dominant hand. For instance, when performing a
reaching task under the influence of a force field applied
by a robotic manipulandum, participants learned to improve
final position accuracy for both dominant and non-dominant
hands [12]. However, initial movement direction improved
only for the participants’ dominant hand, which the researchers
attribute to changes in predictive (i.e. feedforward) control,
whereas the non-dominant hand primarily improved in final
error correction, which the researchers attribute to changes in
reactive (i.e. feedback) control. These findings suggest that
participants rely more on feedforward than feedback control
when using their dominant hand, and vice-versa when using
their non-dominant hand, for rapid reaching tasks [12], [14]–
[16].

For continuous trajectory-tracking and disturbance-rejection
tasks through (smooth non)linear machines, prior research pri-
marily focused on modeling participants using their dominant
hand [1]–[7], [17]. The results from these experiments support
the hypothesis that humans learn to use a combination of
feedback and feedforward control to reject disturbances and
track references. However, little is known about the differences
between controllers learned with different hands and whether
learned controllers transfer between hands [8].

The goal of this paper is to determine whether participants
learn different feedback or feedforward controllers when using
their dominant versus non-dominant hand during a visuomotor
trajectory-tracking task. We extend, validate, and apply a
nonparametric system identification method to estimate feed-
back and feedforward controllers using unpredictable reference
and disturbance signals and second-order machine dynamics.
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(b) block diagram

Fig. 1: Human-in-the-loop trajectory-tracking. (a) Human response u is obtained with a one-dimensional manual slider and
transformed through machine dynamics to produce output y, which is overlayed on a display with 1 sec of a reference trajectory
(0.5 sec preview). (b) The human H transforms reference r and output y to control u; the machine M transforms the sum of
control u and disturbance d to output y. We hypothesize that the human’s transformation is the superposition of a feedforward
F response to reference r and a feedback B response to tracking error r−y. Representative data from one trial of the linearity
experiment are shown in (c) the time-domain and (d) the frequency-domain. The frequency content of r and d are confined to
prime multiples of a base frequency (1/20 Hz). Note that the human input u has peaks at frequencies where r or d are present
(peaks in (d) bottom), but that the output y only has peaks corresponding to r, not d (peaks and absence of peaks in (d) top).

Then we experimentally assess differences in sensorimotor
learning between the dominant and non-dominant hand and
test whether controllers transfer between hands.

We previously reported preliminary methods and results
for first-order machine dynamics in a non-archival confer-
ence proceeding [4]; this paper extends those results to a
second-order system and provides additional support for the
underlying assumptions and hypotheses. More significantly,
this paper presents new results comparing learned controllers
and performance obtained with dominant and non-dominant
hands.

Specifically, we observed two groups as they learned to per-
form a unimanual trajectory-tracking and disturbance-rejection
task. One group started with their dominant right hand before
switching to their non-dominant left hand, and vice-versa for
the other group. To assess the effect of handedness on learning
and transfer, we compared (i) feedback and feedforward con-
trollers and (ii) performance obtained by the two groups with
their dominant and non-dominant hands. We demonstrate for
the first time that handedness does not affect the learned con-
troller during a continuous trajectory-tracking and disturbance-
rejection task. Additionally, we provide evidence that improve-
ments in trajectory-tracking performance may be attributed to
changes in feedback gain below the crossover frequency to
reject disturbances applied (a) externally by the experimenter,
leading to system-level performance improvements only for
the group that learned the task with their non-dominant hand
first, and (b) internally due to sensorimotor noise.

II. BACKGROUND

We adopt a tutorial expository style in this section for two
reasons. First, to support validation of the assumptions under-
lying our modeling and analysis methodology, it is important
that we explicitly state these assumptions. Second, to support

the application of our methods outside the human-in-the-loop
controls community, it is valuable to explicitly provide details
and rationale that would ordinarily be taken as ‘given’ in our
niche community. The expert reader may wish to skim or skip
this section after reviewing the following table of symbols,
returning only if questions arise in subsequent sections.

TABLE I: Table of symbols.

symbol reference meaning
u Fig. 1 human response signal
y Fig. 1 machine output signal
r Fig. 1 reference trajectory signal
d Fig. 1 input disturbance signal
M Sec. II-A machine transformation: y = M(u+ d)
H Sec. II-A human transformation: u = H(r, y)
B Sec. II-A human feedback controller
F Sec. II-A human feedforward controller
Tzx Sec. II-B LTI transformation from x to z

x̂, T̂ Sec. II-B Fourier transform of signal x, LTI system T

A. Combined Feedback and Feedforward Improves Prediction

In the laboratory, we instantiate the human-in-the-loop
system as a one-degree-of-freedom reference-tracking and
disturbance-rejection task (Fig. 1) [2]. When tasked with
tracking references r and rejecting additive disturbances d
through a linear time-invariant (LTI) [18, Ch. 3, pg. 4] system
M , humans learn to behave like an LTI system for a range of
reference and disturbance signals [2], [4], [5]. Therefore, the
human’s control u produced in response to reference r and
output y satisfies the law of superposition,

H(r, y) = H(r, 0) +H(0, y). (1)

It is conceptually useful to define the human’s feedback
response B to output y in the absence of reference and the
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feedforward response F to reference r in the absence of
output,

H(0, y) = −By (2a)
H(r, 0) = (F +B)r (2b)

so that the overall human response can be written as

u = H(r, y) = Fr +B(r − y), (3)

where e = r − y is tracking error. Using a combination of
feedback and feedforward control to model human reference
tracking has a long history in the field [1]–[6], and is a well-
known strategy to improve performance over error feedback
alone [18, Ch 8]. We emphasize, however, that certain neu-
rologic conditions like cerebellar ataxia could impair users’
ability to perform feedforward control; in such cases, feedback
alone may provide better predictions [19], [20].

Hypothesis 1. The combined feedback and feedforward model
predicts user responses better than a solely feedback model.

B. Response to Reference and Disturbance Superimposes

Under Hypothesis 1, the user input u is related to reference
r and error e = r − y by (3). However, it is important to
note that these two signals are qualitatively different – whereas
the reference r is externally prescribed independently from all
other signals, the error e is implicitly dependent on all other
signals through the feedback depicted in Fig. 1. Specifically,
substituting e = r− y and y =M(u+d) into (3) and solving
for u in terms of the external signals r and d, the closed-loop
user response u in Fig. 1b can be expressed as

u =
F +B

1 +BM︸ ︷︷ ︸
Tur

r +
−BM
1 +BM︸ ︷︷ ︸
Tud

d, (4)

where Tur and Tud denote the closed-loop transformations
relating reference r and disturbance d to the user input u
during the trajectory-tracking task.

Signals and LTI systems have time-domain and frequency-
domain representations as in Fig. 1(c,d), related by the Fourier
transform [21, Ch. 5]; we will adorn signal x and system
T with a “hat” ·̂ to denote the Fourier transform x̂, T̂ .
Importantly in what follows, the frequency-domain operation
performed by an LTI system is particularly simple: each
frequency component of the input is independently scaled
and phase-shifted [18, Ch. 9]. Thus, frequency-domain LTI
transformations (termed transfer functions) can be empirically
estimated by dividing Fourier transforms of time-domain input
and output signals at each frequency of interest ω,

T̂ur(ω) =
û(ω)

r̂(ω)
, T̂ud(ω) =

û(ω)

d̂(ω)
, (5)

and visualized using a Bode plot [21, Ch. 5] as in Fig. 4.
In contrast, the time-domain operation performed by an
LTI system – convolution [21, Ch. 3] – is mathematically
and computationally more complicated than frequency-domain

multiplication. For this reason, we design and analyze experi-
ments using frequency-domain representations of signals and
systems.

Hypothesis 2. The user input for reference tracking with
disturbance is consistent with a superposition of the user input
to the reference and disturbance signals presented individually.

C. Feedback and Feedforward Adapt with Experience

Under Hypothesis 2, we can solve (4) to estimate the
feedback B and feedforward F components of the human’s
controller using empirical and prescribed transforms T̂ud, T̂ur,
M̂ at each stimulus frequency ω as:

B̂(ω) =
−T̂ud(ω)

M̂(ω)(1 + T̂ud(ω))
, (6a)

F̂ (ω) =
T̂ur(ω) + M̂−1(ω)T̂ud(ω)

1 + T̂ud(ω)
=

T̂ur(ω)

1 + T̂ud(ω)
− B̂(ω).

(6b)

Previous studies on point-to-point reaching tasks suggest that
improvements in end-point accuracy can be attributed to im-
provements in initial movement (feedforward control) for the
dominant hand and improvements in error correction (feedback
control) for the non-dominant hand [12], [15], [16], possibly
due to specialization of each arm and the corresponding brain
hemisphere that controls the arm [12]–[14]. These findings
lead to the hypothesis that similar effects will be observed in
the trajectory-tracking task considered here.

Hypothesis 3. Human feedback and feedforward controllers
will adapt with practice. (a) Feedback will adapt when using
the non-dominant hand. (b) Feedforward will adapt when
using the dominant hand.

Under Hypothesis 3, we would expect that improvements
in tracking will be achieved by adaptation of the feedforward
controller when using the dominant hand, and adaptation of
the feedback controller when using the non-dominant hand.
However, the hypothesis does not speculate about how feed-
back and feedforward controllers will be adapted nor how
the adaptation will affect system-level performance in the
trajectory-tracking task.

III. EXPERIMENTAL METHODS

Two experiments approved by the University of Washington,
Seattle’s Institutional Review Board (IRB #00000909) were
conducted to:

(linearity) validate the proposed problem formulation and
(handedness) assess differences between dominant and non-

dominant hands
during sensorimotor learning and control in a continuous
trajectory-tracking task.

A. Manual Interface

Participants used a one-degree-of-freedom manual interface
to control the position of a cursor on a screen to track
a reference trajectory (Fig. 1a). The interface handle was
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attached to a linear potentiometer; the user input u was
determined by measuring the potentiometer voltage using an
Arduino Due (Arduino.cc). The linear potentiometer had
a 10 cm extent, and trials were designed such that the input
required to produce the reference trajectory was restricted to
the middle third of this physical extent. The handle geometry
changed between the linearity and handedness experiments
to improve ergonomics:

(linearity) participants used a 35 × 12 × 22 mm
(width×height×depth) rectangular handle;

(handedness) participants used a 35 × 150 mm
(diameter×height) cylindrical handle.

B. Unpredictable Stimuli

Reference and disturbance signals were constructed as a
sum of sinusoidal signals with distinct frequencies. Each
frequency component’s magnitude was normalized by the fre-
quency squared to ensure constant signal power, and the phase
of each frequency component was randomized in each trial
to produce pseudorandom time-domain signals as in Fig. 2.
A similar stimulus design procedure was employed in [5] to
produce unpredictable reference and disturbance signals, and
in [1] to produce unpredictable disturbance signals. However,
to prevent harmonics from confounding user responses at
different frequencies, we adopted the procedure from [22] that
restricts stimuli frequency components to prime multiples of
a base frequency (1/20 Hz in our experiments). Each trial
consisted of two periods of the periodic stimuli (40 sec total)
after a 5 sec ramp-up. The number of prime multiples changed
between the linearity and handedness experiments to balance
the experiment design:

(linearity) first seven prime multiples of base frequency;
(handedness) first eight prime multiples of base frequency.

C. Trajectory-Tracking Task

User input u was transformed through a second-order sys-
tem with damping to produce output y:

M : ÿ + ẏ = u+ d, M̂ :
1

s2 + s
. (7)

In all experiments, 1 second of reference r was displayed with
0.5 second preview, participants were tasked with adjusting
their control input u to make a cursor positioned at y track the
reference, and the user’s input u was modified by an additive
disturbance d to determine the machine output y =M(u+d).

1) Conditions for Linearity Experiment: Three different
types of conditions were presented to the user in the order
shown in TABLE II to test the superposition principle (1),
which states that the output produced by a LTI system in
response to a sum of inputs (r and d in our case) should equal
the sum of the outputs produced in response to the individual
inputs [18, Ch. 3]. In disturbance-only trials (condition (0, d)),
where the reference r was constant (zero) and the disturbance
d was non-constant, we expect user input u to be produced
solely by feedback B: u = H(0, y) = −By. In reference-
only trials (condition (r, 0)), where the reference r was non-
constant and the disturbance d was zero, we expect user

input u to be produced by a combination of feedforward
F and feedback B: u = H(r, y) = Fr + B(r − y). In
reference-plus-disturbance trials (condition (r, d)), where both
signals were non-constant, we expect user input to be produced
by a combination of feedback and feedforward. However,
the frequency components of reference and disturbance were
distinct in these trials as in Fig. 2 (bottom) to distinguish the
user’s response to both signals.

TABLE II: Conditions for linearity experiment (cf. Fig. 2).

Order 1 2 3 4 5
Condition (r, d) (0, d) (r, d) (r, 0) (r, d)
# Trials 2 10 2 10 10
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Fig. 2: Conditions for linearity experiment (cf. TABLE II). To
assess whether the human’s response to external reference r
superimposes with the response to external disturbance d, we
empirically estimated transfer functions using data from four
experimental conditions: disturbance-only ((0, d), upper left);
reference-only ((r, 0), upper right); reference and disturbance
interleaved at different frequencies ((r, d), bottom left, right).
The magnitude of r̂ is denoted with solid lines and filled
circles, while dashed lines and open circles denote that of
M̂d; insets show corresponding time-domain signals r, Md.

2) Conditions for Handedness Experiment: To assess the
effects of handedness on feedback and feedforward control,
participants were divided into two groups. All participants
were right-handed, so we refer to the dominant hand as the
“right” hand and the non-dominant hand as the “left” hand.
The first group completed 30 (r, d) trials with their dominant
right hand, then 30 (r, d) trials with their non-dominant left
hand (Group RL). The second group completed the same
number of trials, but with their non-dominant left hand first,
followed by their dominant right hand (Group LR).

D. Data Analyses

User input u, reference r, disturbance d, and output y
were sampled at 60 Hz and converted to frequency-domain
representations using the fast Fourier transform (FFT). Data
were analyzed using Python3.5.

1) Hypothesis 1: Feedback B was estimated for each
participant by applying (6a) to data from disturbance-only
trials (condition (0, d)) and averaging across trials; similarly,
feedforward F was estimated for each participant by apply-
ing (6b) to data from reference-only trials (condition (r, 0)),
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using B estimated from disturbance-only trials and averaging
across trials. These controller estimates were used to predict
user input u by applying (4) to data from disturbance-plus-
reference trials (condition (r, d)). The coefficient of determina-
tion R2 [23, Sec. 1.3] was used to assess prediction accuracy.

2) Hypothesis 2: We computed frequency-domain rep-
resentations of the transformation from disturbance d and
reference r to input u (T̂ud, T̂ur, respectively) at each stimulus
frequency using (4). We performed a Wilcoxon signed-rank
test with confidence threshold α = 0.05 to assess whether the
magnitudes and phases of T̂ud and T̂ur from the (0, d) and
(r, 0) trials were similar to those obtained from the (r, d) trials.
The Wilcoxon signed-rank test is a non-parametric paired t-
test for data that is not normally distributed [24, Sec. 5.7],
selected here due to the small expected sample size of less
than ten participants.

3) Hypothesis 3: We assessed the performance of each
participant using time-domain tracking error computed as the
mean-square error (MSE) between the reference r and output
y over time t:

‖r − y‖2 =
∑

t∈[0,40]

|r(t)− y(t)|2. (8)

Changes in performance over time were assessed by applying
the Wilcoxon signed-rank test with α = 0.05 to the average
performance of each individual over the first and last five trials
with each hand.

To assess whether a transformation T changed with practice,
we averaged the magnitude of the frequency-domain represen-
tation T̂ at stimulus frequencies ω ∈ {0.10 Hz, 0.15 Hz},

|T̂ | = 1

2

(
|T̂ (0.10 Hz)|+ |T̂ (0.15 Hz)|

)
, (9)

averaged this quantity over the first and last five trials with
each hand for each participant, and applied the Wilcoxon
signed-rank test with α = 0.05. We only included the first
two stimulated frequencies in (9) since the other stimulated
frequencies exceeded the crossover frequency1 observed in
our population, and prior work indicates (and our results
corroborate) that reference-tracking and disturbance-rejection
performance degrades at frequencies higher than crossover.

This procedure was applied to the estimated human feed-
forward F̂ and feedback B̂ transformations, as well as the
system-level transformations T̂yd and T̂yr − 1. Our focus on
the latter two transformations is motivated by the observations
that the disturbance is rejected if T̂yd = 0 and the reference is
tracked if T̂yr = 1. However, we note that T̂yr = T̂yd(F̂ + B̂)
(assuming F and B are LTI), so it is not possible for the user
to simultaneously achieve T̂yd = 0 and T̂yr = 1 (assuming F̂
and B̂ have finite magnitude).

IV. RESULTS

We recruited participants from the greater University of
Washington community: 7 for the linearity experiment, and
an additional 18 (9 male, 9 female; age 18-32; height 145-
190 cm; weight 48-98 kg) for the handedness experiment.2

1Frequency where gain of loop transfer function L̂ = B̂M̂ equals 1 [2].
2Demographics were not recorded for the linearity experiment.

The participants had no reported neurological or motor im-
pairments and all were daily computer users.

A. Combined Feedback and Feedforward Improves Prediction

We tested Hypothesis 1 with the linearity experiment
to determine whether a combined feedback-plus-feedforward
(B + F ) model improves prediction compared to a feedback-
only (B) model (Fig. 3). Predictions for both models were best
(R2 closer to 1) below crossover frequency (0.25 Hz), and
decreased in accuracy (R2 closer to 0) at higher frequencies,
suggesting that the linear system models developed are more
accurate at lower frequencies. There was no significant differ-
ence in prediction accuracy between the B and B+F models
for any specific frequency (p > 0.05). However, when we
averaged model R2 values across all frequencies for each par-
ticipant, we found that across the participant population, B+F
better predicted user input than B (Z = 354.0, p = 0.01). This
finding suggests that user inputs u in response to references
r and disturbances d are better predicted with a combined
feedback-plus-feedforward (B + F ) model than a feedback-
only (B) model.

0.1 0.15 0.25 0.35 0.55 0.65 0.85
frequency (Hz)

0.0

0.2

0.4

0.6

0.8

1.0

co
effi

ci
en

t
of

de
te

rm
in

at
io

n
(R

2
)

B B + F

all

∗

Fig. 3: Predictive accuracy of models, linearity experiment.
Distribution (median, interquartile) of coefficient of determi-
nation (R2) between human inputs u and predictions from
feedback-only (B) and feedback-plus-feedforward (B + F )
models. There was no significant difference between the B
and B+F model prediction accuracy at any specific frequency
(p > 0.05), but the average R2 values across all frequencies
was significantly higher for the B+F model than the B model
(Z = 0.0, p = 0.02; indicated with ∗).

B. Response to Reference and Disturbance Superimposes

We tested Hypothesis 2 with the linearity experiment to
determine whether user input u in response to disturbance-only
(0, d) or reference-only (r, 0) conditions was consistent with
user input in response to disturbance-plus-reference conditions
(r, d) (Fig. 4). The magnitude and phase of the transfer func-
tions from d and r to u (T̂ud and T̂ur, respectively) estimated
from these different conditions were indistinguishable at most
stimulus frequencies (p > 0.05; exceptions denoted with †
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in Fig. 4), indicating that participants’ response to reference
and disturbance signals approximately satisfied the law of
superposition.
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Fig. 4: Transfer function estimates in linearity experiment.
Distributions (median, interquartile) of transfer functions
T̂ud (left), T̂ur (right) estimated from disturbance-only or
reference-only trials, (0, d) or (r, 0), and reference-plus-
disturbance trials (r, d), for the conditions in TABLE II
and Fig. 2. Statistically significant differences (p < 0.05) in
distribution magnitude or phase at each frequency indicated
with †.

C. Feedback and Feedforward Adapt with Experience

We tested Hypothesis 3 with the handedness experiment
(Fig. 5 and Fig. 6).

We assessed whether task performance changed with prac-
tice using time-domain reference tracking error ‖r − y‖2
from (8), finding that performance improved rapidly within
the first five trials and then did not change significantly, even
after switching hands, regardless of which hand was used
first (Fig. 6a). Performance improved significantly between
the first and last five trials with the first hand (trials #1–
5 and #26–30; Group RL: Z = 0.00, p = 0.007; Group
LR: Z = 0.00, p = 0.007), and did not change significantly
between the last five trials with the first hand and the first five
trials of the second hand (trials #26–30 and #31–35; Group
RL: Z = 21.0, p = 0.86; Group LR: Z = 19.0, p = 0.68).

To determine whether improvements in ‖r − y‖2 could
be attributed to changes in feedforward or feedback control,
we assessed whether feedback B or feedforward F control
changed with practice using the mean magnitude of the
frequency-domain representation |B̂| or |F̂ | from (9). The
mean magnitude of the feedback controller increased with
practice for both groups (Z = 3.0, p = 0.02 in both) between
the first and last five trials with the first hand, and did not
change when switching to the second hand (p > 0.05). There
was no change in the mean magnitude of the feedforward
controller across all conditions (p > 0.05) (Fig. 7).

We observed system-level performance improvements at the
first two stimulated frequencies (0.10, 0.15 Hz) solely for
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Fig. 5: Tracking error from handedness experiment. Distri-
butions (median, interquartile) of time-domain tracking error
‖r−y‖2 for 60 trials, with a switch between dominant (right;
red circles) and non-dominant (left; blue squares) hands after
trial 30, for two groups of 9 participants: (top) right then left
(Group RL); (bottom) left then right (Group LR). Summary
statistics in Fig. 6 use data from first five and last five trials
with each hand, highlighted with light and dark gray boxes.

Group LR (Fig. 6). Group LR significantly decreased both
|T̂yr − 1| (Z = 4.0, p = 0.028) and |T̂yd| (Z = 0.0,
p = 0.007) through experience with their first (left) hand,
indicating significant improvements in reference tracking and
disturbance rejection. This improved performance persisted
even after switching from the left hand to the right hand,
suggesting some transfer of knowledge between hands.

Although we saw significant improvements in tracking
performance with practice, we only observed modest or no
improvements in system-level performance at stimulated fre-
quencies. These results led us to consider user response at
non-stimulated frequencies, since any such response degrades
tracking performance. For both user groups, the magnitude of
the user response at non-stimulus frequencies below crossover
(0.25 Hz) decreased significantly between the first and last five
trials with the first hand (trials #1–5 and #25–30) (Fig. 8). This
attenuated response transferred between hands.

V. DISCUSSION

Prior work demonstrated that people adapt feedback and
feedforward controllers differently with the dominant and
non-dominant hands during rapid reaching tasks [12], [14]–
[16]. However, little is known about how handedness affects
learned controllers in continuous trajectory-tracking tasks such
as the one considered in this study. When subjects reach
to targets, feedback and feedforward control are assumed
to be episodic: the initial ballistic motion is attributed to
solely feedforward control (since sensorimotor delays preclude
feedback) whereas corrective motions in the latter stage of the
reach are attributed to solely feedback control [12], [14]–[16].
In contrast, feedback and feedforward processes are engaged
simultaneously when subjects track continuous trajectories as
in our experiments.
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Fig. 6: Summary statistics from handedness experiment. Distributions (median, interquartile) from first five (light gray box)
and last five (dark gray box) of 30 trials with dominant (red solid background) and non-dominant (blue hatched background)
hands: (a) tracking error ‖r − y‖2; mean magnitude of (b) feedforward |F̂ | and (c) feedback |B̂| controllers (shared y axis);
mean magnitude of (d) disturbance rejection |T̂yd| and (e) reference tracking |T̂yr − 1| errors (shared y axis). Statistically
significant (p < 0.05) differences between adjacent distributions indicated with ∗. Group RL in top row, Group LR in bottom
row, as in Fig. 5.
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Distributions (median, interquartile) obtained by pooling data
from the last five trials with each hand for both groups in
the handedness experiment; we did not observe statistically
significant differences between groups or hands.

To assess how feedback and feedforward controllers are
learned through experience and transferred between hands in a
trajectory-tracking task, we extend, validate, and apply a non-
parametric system identification method (adapted from [2], [4],
[5], [7]). We find that feedback and feedforward controllers
estimated for different hands are not distinguishable and
that learned controllers transfer between hands. Trajectory-
tracking performance improves significantly with practice, but
system-level performance improvements are significant only
for the group that learned the trajectory-tracking task with
their non-dominant hand first. Surprisingly, we do not find
significant adaptation of the feedforward controller across the
sample population. Instead, performance improvements can be
attributed to a significant increase in feedback gain below
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Fig. 8: Change in effect of sensorimotor noise. (top row:)
Distributions (median, interquartile) of magnitude of user
response at non-stimulated frequencies from first and last five
trials with first hand (trials #1–5 in light gray and #26–30 in
green) in handedness experiment. (bottom row:) Ratio of user
response magnitudes between first and last five trials with first
hand decreases significantly below crossover (0.25 Hz). Group
LR on left, Group RL on right.

crossover frequency; this accounts for significant changes
in the effect of disturbances applied both externally by the
experimenter and internally by sensorimotor noise.

A. Combined Feedback and Feedforward Improved Prediction

Our results suggest that participants use both feedback and
feedforward control to continuously track reference trajectories
and reject disturbances, consistent with previous results for
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first-order [1], [4], [5], [7] and fourth-order [6], [25] systems,
lending further support for Hypothesis 1.

Our system identification method assumes the human con-
troller consists of parallel feedback and feedforward con-
trollers. However, the method does not assume or require
either controller to be non-zero; in particular, if participants
did not employ feedforward control, our method would yield a
feedforward estimate with negligible magnitude. We empha-
size that including both reference-tracking and disturbance-
rejection in the task is necessary to ensure we can solve
two independent equations in two unknowns (6) to uniquely
determine feedback and feedforward controllers.

B. Response to Reference and Disturbance (Approximately)
Superimposes

We found small but statistically significant differences be-
tween the transformations Tud, Tur estimated using data from
disturbance-only (0, d) and reference-only (r, 0) trials and
the combined reference-and-disturbance (r, d) trials. Thus,
the controllers implemented by our participants to control a
second-order system do not satisfy the superposition princi-
ple (1), in contrast to our previous findings for first-order
systems [4]; we attribute this difference to the increased diffi-
culty of the trajectory-tracking task for a second-order system.
Similarly to our previous findings for first-order systems [4],
we found higher variability in transformation estimates at
higher frequencies compared to lower frequencies. Although
we found evidence that our human-in-the-loop control system
is mildly nonlinear, neglecting this nonlinearity nevertheless
yields good predictions for the human’s learned controllers,
so our results support Hypothesis 2 with caveats.

Although human behavior is richly varied and nonlinear
in general, people can behave remarkably linearly after suffi-
cient experience interacting in closed-loop with a linear time-
invariant system [1], [4]–[7], [25], [26]. Previous studies have
ensured that human-in-the-loop-systems are approximately lin-
ear by using experts such as pilots [2] or only collecting
data after participants undergo practice [1], [25]. Because our
experiments commenced immediately without providing time
for participants to explore the interface or machine dynamics
(let alone become experts), this lack of practice may have
contributed to the mild nonlinearities we observed. Future
studies may benefit from explicit estimation of nonlinear-
ity [26], especially during learning.

C. Feedback Adapted With Experience; Feedforward Did Not

Regardless of which hand was used first, participants sig-
nificantly improved tracking performance through experience
with their first hand. This improvement in time-domain perfor-
mance persisted when participants switched hands, suggesting
that learned controllers transferred between hands. Since we
observed corresponding significant increases in feedback gain
and observed no significant change in feedforward, we at-
tribute this performance improvement to changes in feedback.
These findings lead us to reject Hypothesis 3.

Our Hypothesis 3 was motivated by previous studies of
human sensorimotor learning during reaching tasks that sug-
gest improvements in end-point precision were due to im-
provements in initial movement (feedforward control) for the
dominant (right) hand and improvements in error correction
(feedback control) for the non-dominant (left) hand [12], [14]–
[16]. However, there are differences between target-reaching
tasks and the trajectory-tracking task used in this current
experiment. For instance, the target-reaching tasks in [12],
[14]–[16] are brief (approximately 1 sec in duration), so
feedforward control is thought to dominate user response for
a significant fraction of each trial since visual feedback is
delayed by approximately 250 msec, and the target’s location
changes discontinuously when the trial begins. In contrast,
feedback and feedforward are engaged simultaneously for the
entire 40 sec duration of each of our trajectory-tracking trials,
and the reference changes continuously throughout the trial.
Additionally, target-reaching tasks involve arm motions that
are large relative to the 10 cm extent of our manual interface.
These differences in experiment design could account for the
differences we observed in how feedback and feedforward
adapt. Since increasing the difficulty of a target-reaching task
affects adaptation of feedback and feedforward [27], [28],
it is possible that changing the machine dynamics or user
interface may affect adaptation of feedback and feedforward
in trajectory-tracking tasks.

Our finding that feedforward control did not adapt with
practice is inconsistent with previously published research that
demonstrated adaptation of feedforward control over a 2-week
period [6]. There are significant differences between our study
methodology and [6] that may explain why we did not observe
feedforward adaptation. First, the participants in [6] were
tasked with learning to track a fourth-order system, which is
significantly more complex than the second-order system used
here. Since many of our participants reported prior experience
controlling second-order systems (e.g. driving cars, playing
video games), they may have employed a previously-learned
feedforward controller in our experiment. There was also a
significant difference in practice time between the two studies.
In [6], participants learned the system dynamics over two
weeks, whereas in our study, participants learned the system
dynamics over 30 minutes. Although we observed performance
plateau during the 30-minute study, a longer practice time over
the course of days or weeks may result in significant adaptation
of feedforward control.

D. Adaptation of Feedback Improved System-Level Perfor-
mance For Group LR but Not Group RL

To determine whether adaptations in feedback controller
gain lead to system-level improvements in performance, we
looked for differences in T̂yd, T̂yr at the first two stimulated
frequencies (0.10, 0.15 Hz) comparing the first five and last
five trials with each hand. For Group LR, we saw improve-
ments in both T̂yd and T̂yr with their first hand, suggesting that
reference tracking and disturbance rejection both improved.
Despite clear improvements in time-domain performance, we
did not observe corresponding improvements in system-level
performance at the stimulated frequencies for Group RL.
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Sample size may explain some observed system-level differ-
ences in how groups improved performance. Group LR and
Group RL were relatively small populations (9 participants
in each group), so there may have been unmeasured group-
level differences. For instance, participants reported subjective
differences in the strategy they employed to improve tracking
performance. Some participants acknowledged that they were
controlling the cursor acceleration and consciously altered
their response accordingly, while others mainly focused on
reactively minimizing tracking error. Future experiments with
a larger number of participants are needed to determine
whether different subpopulations employ different strategies
when learning controllers.

E. Adaptation of Feedback Affected the Effect (but not the
Source) of Sensorimotor Noise

Since time-domain tracking performance improved sig-
nificantly for both groups of participants but rejection of
disturbance stimuli and tracking of reference stimuli only
improved for one group, we are led to consider user response
at frequencies we measured but did not stimulate. Any user
response at non-stimulated frequencies degrades time-domain
tracking performance, so it is in the users’ best interest to
suppress this response. We observed nonzero user response
at non-stimulated frequencies, and this response decreased
significantly with practice for frequencies below crossover for
the first hand in both groups (Fig. 8). Because the machine
dynamics and feedback in Fig. 1b are linear time-invariant,
the user response at non-stimulated frequencies arises due
to (i) nonlinearity in the human’s transformation and/or (ii)
sensorimotor noise. Although we found evidence for (i) mild
nonlinearities (see Fig. 4 and Sec. V-B), we tested for but
did not find significant harmonics in the user response at
non-prime multiples of base frequency (i.e. non-stimulated
frequencies), so nonlinearity alone does not appear to explain
our observations. Assuming instead that user response at
non-stimulated frequencies arises solely due to (ii) additive
sensorimotor noise, we found that this noise did not change
with experience. Instead, the effect of the noise is attenuated by
the increase in feedback gain below crossover. Indeed, despite
the fact that we observed significant changes in feedback
B and user response u at non-stimulated frequencies, we
observed no significant changes in the power spectrum of
the imputed disturbance δ = (1 + MB)u. This result is
consistent with prior studies from sensorimotor control that
found the presence of significant noise whose statistics did not
change with the limited amount of practice (less than 1 hour)
considered here [29].

F. Does Stimulus or Noise Drive Learning?

When learning to perform novel tasks like controlling a
cursor on a screen or reaching under a force field, sensori-
motor noise and movement variability are crucial for driving
learning [30]–[32]. As people explore the action space for a
particular task, certain movements (e.g. tracking a trajectory
with specific frequency components) result in greater reward
(e.g. improved tracking) [30]. With significant practice, noise

and variability decreases, leading to improved performance in
ballistic throwing [29], [33] and reaching [32] tasks. Similarly,
we argue here that the improvement in time-domain per-
formance without improvement in system-level performance
at stimulated signals, in addition to the decrease in user
response at non-stimulated frequencies below crossover, sug-
gests that reducing the effect of sensorimotor noise may be
a crucial aspect of performance improvement in continuous
trajectory-tracking tasks (regardless of whether the source
of the noise can be affected). Although out of scope for
our study, our results indicate that in addition to examining
feedback and feedforward control at stimulated frequencies,
changes in feedback control and sensorimotor noise at non-
stimulated frequencies should also be considered during con-
tinuous trajectory-tracking tasks to better model and enhance
the performance of human-in-the-loop control systems.

VI. CONCLUSION

Understanding how humans learn to track continuous tra-
jectories with their dominant and non-dominant hands is
crucial for enabling bimanual device control like teleoperating
a surgical robot or manipulating objects in augmented or
virtual reality. We first validated a non-parametric modeling
method to simultaneously estimate feedback and feedforward
control during a second-order continuous trajectory-tracking
and disturbance-rejection task with seven participants. We then
investigated adaptation of feedback and feedforward control
and corresponding system-level changes in performance when
nine participants learned to track with their right hand before
their left hand, and when nine other participants learned to
track with their left hand before their right hand.

Our study demonstrated that: (1) feedback control adapted
with practice and transferred between hands, whereas feedfor-
ward control did not adapt; (2) feedback adaptation improved
system-level performance in tracking prescribed references
and rejecting externally-applied disturbances only for the
group that first learned the task with their left hand; and
(3) feedback adaptation improved tracking performance by
attenuating the effect of a user’s sensorimotor noise in both
groups. These findings suggest that handedness may not affect
learned controllers, demonstrate that learned controllers may
be transferred between hands, and highlight the importance of
attenuating sensorimotor noise for human-in-the-loop control
systems.
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