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Abstract 27 

The fact that the transmission and processing of visual information in the brain takes time presents a 28 

problem for the accurate real-time localisation of a moving object. One way this problem might be 29 

solved is extrapolation: using an object’s past trajectory to predict its location in the present moment. 30 

Here, we investigate how a simulated in silico layered neural network might implement such 31 

extrapolation mechanisms, and how the necessary neural circuits might develop. We allowed an 32 

unsupervised hierarchical network of velocity-tuned neurons to learn its connectivity through spike-33 

timing dependent plasticity. We show that the temporal contingencies between the different neural 34 

populations that are activated by an object as it moves causes the receptive fields of higher-level 35 

neurons to shift in the direction opposite to their preferred direction of motion. The result is that 36 

neural populations spontaneously start to represent moving objects as being further along their 37 

trajectory than where they were physically detected. Due to the inherent delays of neural 38 

transmission, this effectively compensates for (part of) those delays by bringing the represented 39 

position of a moving object closer to its instantaneous position in the world. Finally, we show that this 40 

model accurately predicts the pattern of perceptual mislocalisation that arises when human observers 41 

are required to localise a moving object relative to a flashed static object (the flash-lag effect).  42 

 43 

Significance Statement 44 

Our ability to track and respond to rapidly changing visual stimuli, such as a fast moving tennis ball, 45 

indicates that the brain is capable of extrapolating the trajectory of a moving object in order to predict 46 

its current position, despite the delays that result from neural transmission. Here we show how the 47 

neural circuits underlying this ability can be learned through spike-timing dependent synaptic 48 

plasticity, and that these circuits emerge spontaneously and without supervision. This demonstrates 49 

how the neural transmission delays can, in part, be compensated to implement the extrapolation 50 

mechanisms required to predict where a moving object is at the present moment.  51 
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1. Introduction 52 

The transmission and processing of information in the nervous system takes time. In the case of visual 53 

input to the eyes, for example, it takes up to ~50-70 milliseconds for information from the retina to 54 

reach the primary visual cortex (Maunsell and Gibson, 1992; Lamme and Roelfsema, 2000), and up to 55 

~120 milliseconds before human observers are able to initiate the first actions based on that 56 

information (Thorpe et al., 1996; Kirchner and Thorpe, 2006). Because events in the world continue 57 

to unfold during this time, visual information becomes progressively outdated as it travels up the 58 

visual hierarchy.  59 

Although this is inconsequential when visual stimuli are unchanging on this time scale, these delays 60 

pose a problem when input is time-varying, for instance in the case of visual motion. If neural delays 61 

were not somehow compensated, we would consistently mislocalise moving objects behind their true 62 

positions. However, humans and many other visual animals are strikingly accurate at interacting with 63 

even fast moving objects (Smeets et al., 1998), suggesting that the brain implements some kind of 64 

mechanism to compensate for neural delays.  65 

One candidate mechanism by which the brain might compensate for delays is prediction (Nijhawan, 66 

2008). In the case of motion, the brain might use an object’s previous trajectory to extrapolate its 67 

current position, even though actual sensory input about the object’s current position will not become 68 

available for some time. Consistent with this interpretation, motion extrapolation mechanisms have 69 

been demonstrated in multiple levels of the visual hierarchy, including the retina of salamanders, 70 

mice, and rabbits (Berry et al., 1999; Hosoya et al., 2005; Schwartz et al., 2007), cat lateral geniculate 71 

nucleus (Sillito et al., 1994), and both cat and macaque primary visual cortex (Jancke et al., 2004; 72 

Subramaniyan et al., 2018; Benvenuti et al., 2019). In humans, recent EEG and MEG studies using 73 

apparent motion similarly revealed predictive activation along motion trajectories (Hogendoorn and 74 

Burkitt, 2018; Aitken et al., 2020; Blom et al., 2020; Robinson et al., 2020), and motion extrapolation 75 
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mechanisms have been argued to be the cause of the so-called flash-lag effect (Hogendoorn, n.d.; 76 

Nijhawan, 1994; Khoei et al., 2017).  77 

The existence of predictive mechanisms at multiple stages of the visual hierarchy is reminiscent of 78 

hierarchical predictive coding, a highly influential model of cortical organisation (Rao and Ballard, 79 

1999). In this model, multiple layers of a sensory hierarchy send predictions down to lower levels, 80 

which in turn send prediction errors up to higher levels. In this way, the hierarchy essentially infers 81 

the underlying causes of incoming sensory input, using prediction errors to correct and update that 82 

inference. It is important to note, however, that the “predictions” in predictive coding are hierarchical, 83 

rather than temporal: predictive coding networks ‘predict’ (or reconstruct) activity patterns in other 84 

layers, rather than predicting the future. Consequently, the conventional formulation of predictive 85 

coding cannot compensate for neural delays. In fact, we previously argued that neural delays pose a 86 

specific problem for hierarchical predictive coding, because descending hierarchical predictions will 87 

be misaligned in time with ascending sensory input (Hogendoorn and Burkitt, 2019). For any time-88 

varying stimulus (such as a moving object) this would lead to significant (and undesirable) prediction 89 

errors.  90 

To address this, we previously proposed a Real-Time Temporal Alignment hypothesis, which extends 91 

the predictive coding framework to account for neural transmission delays (Hogendoorn and Burkitt, 92 

2019). In this hypothesis, both forward and backward connections between hierarchical layers 93 

implement extrapolation mechanisms to compensate for the incremental delay incurred at that 94 

particular step. Without these extrapolation mechanisms, delays progressively accumulate as 95 

information flows through the visual hierarchy, such that information at higher hierarchical layers is 96 

outdated relative to information at lower hierarchical layers. Conversely, the striking consequence of 97 

the Real-Time Temporal Alignment hypothesis is that for a predictable stimulus trajectory, different 98 

layers of the visual hierarchy become aligned in time. The hypothesis posits that extrapolation 99 

mechanisms are implemented at multiple stages of the visual system, which is consistent with the 100 

neurophysiological findings outlined above, as well as with human behavioural experiments (van 101 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 4, 2020. ; https://doi.org/10.1101/2020.08.01.232595doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.01.232595
http://creativecommons.org/licenses/by-nc/4.0/


Heusden et al., 2019). However, a key question that remains is how such extrapolation mechanisms 102 

are implemented at the circuit level, and how those neural circuits arise during development.  103 

Here, we address those two questions by simulating in silico the first two layers of a feedforward 104 

hierarchical neural network sensitive to visual motion. We present the network with simulated moving 105 

objects, and allow neurons to learn their connections through spike-time dependent plasticity (STDP; 106 

Markram et al., 1997; Bi and Poo, 1998), a synaptic learning rule that strengthens and weakens 107 

synapses contingent on the relative timing of input and output action potentials. We focus on the first 108 

two layers of the hierarchical network to explore the key mechanisms, which would be expected to 109 

occur at each higher level of the hierarchy.  110 

We show that when a motion-sensitive hierarchical network is allowed to learn its connectivity 111 

through STDP (without supervision), the temporal contingencies between the different neural 112 

populations that are activated by the object as it moves cause the receptive fields of higher-level 113 

neurons to spontaneously shift in the direction opposite to their preferred direction of motion. As a 114 

result, they start to encode the extrapolated position of a moving object along its trajectory, rather 115 

than its physical position. However, due to the delays inherent in neural transmission, this mechanism 116 

actually brings the represented position of the object closer to its instantaneous position in the world, 117 

effectively compensating for (part of) those delays. Finally, we show that the behaviour of the resulting 118 

network predicts the pattern of velocity-dependence in the perceptual localisation of moving objects.  119 

 120 

2. Methods 121 

2.1. Network Architecture 122 

The network architecture considered here is one in which a moving object generates a visual input 123 

stimulus that is encoded at each layer of the network by a population code that represents both the 124 

position and velocity of the stimulus. This population code includes sub-populations of neurons tuned 125 

to both position and velocity, as has previously been proposed by Khoei et al. (2017) and consistent 126 
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with the known velocity-tuning of a large proportion of visual neurons in the early visual system 127 

(Orban et al., 1986). Three layers of the network are shown schematically in Figure 1A, in which there 128 

are Nn position sub-populations at each layer. Although both classical predictive coding and the Real-129 

Time Temporal Alignment hypothesis posit both feed-forward and feedback connections, here we 130 

consider only feed-forward connections as proof-of-principle. In addition, in a more general scheme 131 

lateral weights at each layer could also be included, as previously proposed by Jancke and Erlhagen 132 

(Jancke and Erlhagen, 2010), but these are neglected here. 133 

The neural activation of each stage of processing feeds forward to the following stage. An important 134 

aspect of the network architecture is that each neural population receives input from a limited 135 

receptive field of neural populations at the preceding stage. In this way, the receptive field size of 136 

neural populations increases as the activity propagates to higher stages of processing. 137 

138 

Figure 1: A. Schematic illustration of a portion of the first three layers of the network architecture. The 139 

circles denote the neural population at each of the Nn positions (fifteen shown, with the central 140 

population in black). The straight lines indicate the possible non-zero weights connecting the neural 141 

populations between layers, which have a limited spatial spread. The arrows indicate the direction of 142 

the neural connectivity (pre-synaptic to post-synaptic) and only the weights for a subset of neurons is 143 

illustrated. B. Each position population is further divided into M velocity-tuned sub-populations. Each 144 

velocity-tuned sub-population projects to sub-populations in the subsequent layer with the same 145 

velocity-tuning.  146 

 147 
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2.2 Neural Model 148 

The population place code of the stimulus at every stage of processing is described by a set of Nn units 149 

representing overlapping place fields, equally distributed over the interval [0, 1] and each with an 150 

identical Gaussian distribution width σp . This width represents the number of independent place fields, 151 

Np , in the input layer, given by Np = 1/ σp . In this network, the Gaussian distribution represents the 152 

activity evoked by a stimulus, as illustrated in Figure 2, in which the neural activity of each population 153 

of active input neurons corresponding to a particular place field (i.e., an object at a particular location) 154 

is represented by a different colour, and the Gaussian curve represents the amplitude of the firing-155 

rate of each neuron in that population. The firing rate, which represents the rate of action potentials, 156 

is described by a Poisson process, with a base firing rate of 5Hz in the absence of stimulation. Note 157 

that periodic boundary conditions are used, so that the position code can equivalently be represented 158 

by place on a circle. For simplicity, we consider the situation where only one object activates the input 159 

at any time, so that the relative activations of the input neurons give a neural representation of the 160 

position of the object. 161 

A layered network structure is considered, in which the units at the input layer feed their activity 162 

forward to the following layer, which has the same number of units, Nn. For simplicity, the layers are 163 

taken to have an equal spatial separation and the propagation delay time for activity between layers 164 

has a constant value tdelay. This neural transmission delay is of the order of several milliseconds 165 

between layers of the hierarchy (Maunsell and Gibson, 1992). 166 

To incorporate velocity, each place field is further subdivided into M distinct sub-populations, 167 

corresponding to M different velocities (or velocity intervals) for the input stimulus, as illustrated in 168 

Figure 1B. The velocity of the object is encoded by the activity in the corresponding sub-population of 169 

the place fields. Consequently, an object moving at a constant velocity will primarily activate one 170 

velocity sub-population within each place field, i.e., for simplicity a discrete (quantised) representation 171 
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 172 

Figure 2: Place code in first (input) layer: Each colour represents the neural activity of the population 173 

of neurons, illustrated here for Np = 32 positions corresponding to the location of the peak of each 174 

Gaussian curve, with width σp = 1/Np. A stimulus at the position indicated on the plot by Δ generates 175 

firing rates in the neural population, whose amplitude is indicated by the crosses on the corresponding 176 

place curves. The place distribution of population activity for a stimulus centred at the position x = 0.5 177 

is shown in bold-red. 178 

 179 

of velocity is considered rather than a continuous representation. The velocity is assumed here to have 180 

been encoded by an earlier stage of neural processing, such as in the retina, so that the details of how 181 

this encoding occurs are not incorporated into the model. It suffices that velocity is encoded at each 182 

stage of the processing, which is a reasonable assumption as it is known that velocity is present in 183 

higher stages of the visual pathway such as area MT (Movshon and Newsome, 1996). 184 

 185 

2.3 Neural Learning 186 

We require that the computations that underlie learning in the network must be based upon known 187 

principles of synaptic plasticity, namely that the change in a synaptic strength is activity dependent 188 

and local. The locality constraint of synaptic plasticity requires that changes in the synaptic strength 189 

(i.e., the weight of a connection) can only depend on the activity of the presynaptic neuron and the 190 
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postsynaptic neuron. Consequently, the spatial distribution of the synaptic changes in response to a 191 

stimulus are confined to the spatial extent of the position representation of the stimulus, which has 192 

important consequences for the structure of the network that emerges as a result of learning. 193 

In the full network the weights are described by a matrix, W between every pair of successive layers. 194 

Since our focus here will be upon the first two layers, W is taken to be a NnxNn matrix in which the 195 

elements Wji are the weights between the first two layers. The locality constraint is implemented in 196 

the network by requiring that the weights from a neuron at location i in the first layer has a probability 197 

of being connected to a neuron at location j in the second layer that is Gaussian, namely that  198 

 
Prob{𝑊𝑗𝑖 ≠ 0} =  

1

𝜎𝑊√2𝜋
exp (

(𝑥𝑖 − 𝑥𝑗)
2

𝜎𝑊
2 ) , 

 

 

(1) 

where σW is the width of the Gaussian distribution and xi and xj are the locations of the neurons i and 199 

j, resp. In simulations, the amplitudes of the non-zero weights are initialized randomly and given small 200 

positive initial values, winit = 0.01, while the zero-valued weights are fixed throughout (i.e., 201 

corresponding to the absence of any synaptic connection between the two neurons). In simulations 202 

this Gaussian distribution was truncated to zero at 5σW. The non-zero weights then evolve according 203 

to Spike-Timing Dependent Plasticity (STDP), namely a change of the weight, ∆𝑊𝑗𝑖 , will occur when 204 

an input spike generated by neuron i at time ti arrives after a time-delay tdelay at a synapse on neuron 205 

j , and an output spike occurs at this neuron at time tj , so that the time difference ∆𝑡 lies within the 206 

STDP time-window 𝐹𝑆𝑇𝐷𝑃(∆𝑡) 207 

 ∆𝑊𝑗𝑖 =  𝜌 𝐹𝑆𝑇𝐷𝑃(𝑡𝑗 − 𝑡𝑖 − 𝑡delay)  , (2) 

where ρ is the learning rate and 208 

 

𝐹STDP(∆𝑡) = {

𝑐p𝑒∆𝑡/𝜏p  ,              𝑡 > 0

0 ,                          𝑡 = 0

−𝑐d𝑒−∆𝑡/𝜏d  , 𝑡 < 0 ,

 

 

 

(3) 
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with coefficients of potentiation and depression given by cp and cd, and time constants of potentiation 209 

and depression given by τp and τd  resp., and ∆𝑡 = (𝑡𝑗 − 𝑡𝑖 − 𝑡delay) is the difference between the 210 

arrival of the synaptic input at time 𝑡𝑖 + 𝑡delay and the spike output at time tj. Throughout the 211 

simulations balanced STDP was used, i.e., the STDP time-window has an equal amount of potentiation 212 

and depression, with cp = cd = 1 and τp = τd = 20ms. An upper bound on the individual weights, wmax, 213 

ensures that the weights do not grow unbounded. 214 

 215 

2.4 Neural Simulations 216 

Simulations of a network were carried out using MATLAB with Nn = 2000 neurons at both the input 217 

layer and the first layer. The input layer had Np = 32 place-fields, i.e., the width σp of the Gaussian 218 

place-fields on the input layer was chosen to be σp = 1/Np in order to give place-fields that were both 219 

localized and had a reasonable amount of overlap. The weight distribution width, σW, was also chosen 220 

to be σW = 1/Np , and the width of the resulting place field σRF,j of each neuron in the second layer was 221 

measured from the distribution of weights after learning by spatially binning the weight amplitudes 222 

and finding the width of the resulting histogram, fit to a normal distribution. The width of the place 223 

fields in the second layer are distributed around a value that will shift depending upon the velocity of 224 

the stimulus, so these are labelled as σRF,v , to indicate this velocity-dependence. A time-step of 1ms 225 

was used for the simulations, and velocities over the range 𝑣 ∈ [0, 5], where the units of velocity are 226 

represented in terms of the inverse time (sec-1) taken to traverse the full spatial range 𝑥 ∈ [0, 1].  227 

 228 

3. Results 229 

The analysis here focuses upon the first two layers of the network, since the structure and function of 230 

the network follows the same principles at each successive level of the layered network.  231 

3.1. Stationary input stimulus 232 
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In order to illustrate the effects of a moving stimulus and to have a baseline for comparison, we 233 

consider first the case with stationary inputs, i.e., in which the stimulus velocity is zero. We use a single 234 

point stimulus with an amplitude 20 times greater than the base firing rate. In this case, there is no 235 

change in stimulus position over time, but rather stationary stimuli are presented for short periods of 236 

time at random positions. When the stimulus activates the input, it will generate activity in the units 237 

at the first layer, as described in Section 2.2 and illustrated in Figure 2. Because this generates constant 238 

input to layer two, and a balanced STDP window is used, convolution by the STDP function would not 239 

be expected to systematically change synaptic weights. Consequently, the network maintains a stable 240 

position code in each layer of the network, namely a localized (Gaussian-like) place field at each layer 241 

that arises through the variance of the STDP learning of the weights (Kempter et al., 1999). 242 

The organisation of the receptive fields of the neural populations in the second layer therefore simply 243 

reflects the input in the first layer, which has a spatial spread σp, and the activity transmitted through 244 

the weights, which has a spatial spread of σW. Figure 3 shows the results of a simulation for this case, 245 

in which the neural population in the second layer generates a place field representation of the input, 246 

as expected. The weights are initialized with a small value and then evolve under STDP, as described 247 

in the Methods. In this way, the width of the place field distribution at any layer depends upon the 248 

width of the place field at the preceding layer and the spatial spread of the synaptic connections that 249 

connect the two layers. 250 

 251 

3.2. Moving input stimulus 252 

We now consider the case where the same point-stimulus is moving. The velocity is chosen to have a 253 

discrete representation (i.e., a discrete number of velocities are chosen for simplicity, rather than a 254 

continuous representation), the place input distribution is as described above by a Gaussian 255 

distribution of width σp , as outlined above, and a simulation time step Δt=1ms is used. A stimulus 256 
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 257 

Figure 3: Place code in the second layer generated by learning: Each colour represents the neural 258 

activity of a population of neurons, illustrated here for a simulation with Np = 32 position populations 259 

in the second layer. The place distribution for the population centred at the position x = 0.5 is shown in 260 

bold. 261 

 262 

moving at a velocity v has a place representation that changes over time so that at a time Δt later it 263 

has shifted a distance Δx = v Δt. A moving object will sequentially activate successive populations of 264 

Level 1 neurons, which in turn project to Level 2. Importantly, a neuron in level 2 receiving input from 265 

level 1 neurons driven by this moving object will tend to fire more as the stimulus moves towards the 266 

centre of its place field. Due to STDP, inputs that arrive at the Level 2 neuron relatively early (before 267 

its peak firing rate) will be potentiated, whereas inputs that arrive relatively late are likely to be 268 

depressed. Consequently, the synapses connecting a given Level 2 neuron to Level 1 neurons centred 269 

on the direction from which the stimulus is arriving will tend to be potentiated by STDP. Conversely, 270 

the synapses on the other side (i.e., where the stimulus departs from the place field), will tend to be 271 

depressed, since the inputs on average arrive after the peak in output spiking activity.  272 

 273 

We therefore hypothesise that for neural populations tuned to visual motion, the pattern of arrival of 274 

synaptic inputs, together with STDP, will tend to potentiate the synapses in the incoming direction of 275 
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the stimulus and depress synapses in the departing direction of the stimulus. This would then lead to 276 

an overall shift of the place field in the direction towards the incoming stimulus. Moreover, due to the 277 

limited temporal window of STDP, the shift in the place fields of the level 2 neurons would be expected 278 

to be larger for larger velocities. 279 

 280 

To investigate this hypothesis, we simulated the activity of the neural network when it was presented 281 

with simulated objects moving at a range of velocities, and investigated the evolution of the receptive 282 

fields of Level 2 populations over time. We investigated neural populations tuned to 26 velocities, 283 

from 0 to 5 cycles per second in steps of 0.2 cycles per second (since we used periodic boundaries, 284 

one cycle is equivalent to traversing the full range of positions once). Because of the symmetry in our 285 

neural model, we only considered rightwards velocities, but the network behaves equivalently for 286 

leftward velocities. Each simulation ran for 5 simulated seconds (5,000 timesteps of Δt =1ms). The 287 

simulated object at a single location provided input to the Level 1 neurons according to their 288 

respective place fields.  289 

 290 

To evaluate whether receptive fields indeed shifted as a result of learning, we calculated the mean 291 

receptive field of all Level 2 neurons at each timestep by aligning the 32 Level 2 place fields and 292 

averaging their receptive fields at that timestep. This yielded a mean receptive field as a function of 293 

simulation time for each velocity. Figure 4 shows the evolution of receptive field position over time 294 

for 6 evenly-spaced velocities (0-5 cycles/s). 295 

 296 
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 297 

Figure 4: Simulated receptive field position of level 2 neural populations as a function of learning, for 298 

6 different rightward velocities. Top row: In each panel, the colours in each row of pixels show the 299 

horizontal receptive field position at a single time-step, with hot colours indicating stronger 300 

connections to incoming signals from level 1 populations centred on that position. The center of the 301 

receptive field at each timepoint is marked by a black line. For clarity, only the first 2500 ms of the 302 

simulation are shown. Bottom row: mean receptive fields before (blue) and after learning (red). 303 

Altogether, these plots reveal that when velocity-tuned neural populations are presented with their 304 

preferred stimulus (here rightward), STDP causes their receptive field to shift over time in the direction 305 

opposite to their preferred velocity (i.e., here leftward).  306 

 307 

3.3. Velocity-dependence  308 

To be able to directly compare how the evolution of level 2 receptive fields depended on velocity, for 309 

each velocity we fitted Gaussians to the average receptive field at each time-step (e.g., each row in 310 

each panel in Figure 5). We then repeated the entire simulation 15 times to reduce the impact of 311 

stochastic noise. Subsequently, we averaged the horizontal centre of the best-fit Gaussians across all 312 

15 iterations. Finally, we plotted this receptive field centre as a function of time, separately for each 313 

velocity. The result is illustrated in Figure 5.  314 
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   315 

Figure 5: The evolution of receptive field centre over time, as a function of velocity. Colours represent 316 

populations tuned to 26 equally-spaced velocities, ranging from zero (red) to 5 cycles/s (blue). For all 317 

non-zero velocities, receptive fields shifted against the direction of motion, with a clear monotonic 318 

relationship between velocity and the asymptotic magnitude of the shift.  319 

 320 

We observed two key features. Firstly, the initial rate at which the receptive field centres of the 321 

different velocity-tuned populations shifted increased with velocity. At zero velocity the receptive field 322 

centre stayed in the same position, and as velocity increased, the initial rate of change grew until it 323 

reached an asymptote. This is perhaps unsurprising, because at lower velocities the simulated object 324 

needs more time to traverse the receptive fields of a given number of neurons. As a result, the object 325 

drives fewer individual neurons, and in turn provides fewer opportunities for the network to learn.  326 

Furthermore, the neural populations tuned to different velocities differed not only in their initial rate 327 

of change, but also in the asymptote of that change. In other words, the spatial shift in receptive field 328 

position at which subsequent time-steps produced no further nett change in position increased with 329 

increasing velocity. This observation is significant because the asymptote represents the position of 330 

the receptive field after learning has effectively completed, and therefore reflects the stable situation 331 
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in visual systems that have had even a short history of exposure to moving stimuli. Because these 332 

velocity-tuned populations are subpopulations of an overall population coding for position (as 333 

illustrated schematically in Figure 2), the overall population effectively represents a moving object 334 

ahead of where a physically-aligned static stimulus is represented. As a consequence, we might expect 335 

the asymptotic receptive field shift to be similarly reflected in conscious perception as the 336 

instantaneous perceived position of a moving object. 337 

 338 

3.4 Behavioural predictions 339 

Our model reveals how STDP-induced shifts in receptive field position depend on velocity. In the final 340 

section of this paper, we evaluate the degree to which these predictions match observed 341 

dependencies on velocities in the localisation of moving objects by healthy human observers.  342 

A much-studied behavioural paradigm used to probe the instantaneous perceived position of a moving 343 

object is the flash-lag paradigm, in which a flashed object is briefly presented alongside a moving 344 

object (Nijhawan, 1994). Observers are then required to report where they perceived the moving 345 

object to be at the moment the flashed object was presented. Strikingly, in this paradigm observers 346 

consistently localise the moving object ahead of the physically aligned flashed object, a phenomenon 347 

known as the flash-lag effect (Nijhawan, 1994). Although the mechanisms underlying this effect have 348 

been hotly debated over the last 25 years, convergent evidence supports Nijhawan’s original proposal 349 

that it reflects some kind of neural motion extrapolation process (Hogendoorn, n.d.; Nijhawan, 1994). 350 

What is particularly relevant to the present context is that the effect has been observed to scale with 351 

velocity (Wojtach et al., 2008): when an object moves faster, its perceived position at any given instant 352 

lies further along the object’s trajectory.  353 

In our model, the perceived position of a moving object corresponds to the level 2 neural population 354 

activated by that object. As outlined in the previous section, this is determined by the asymptotic 355 

receptive field position after learning. As a measure of asymptotic receptive field shift after learning, 356 
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we averaged the receptive field shift in the final 100 ms of our simulation (e.g., the 100 rightmost 357 

datapoints for each curve in Figure 5), averaged across the 15 iterations of the simulation. We 358 

subsequently fitted a logarithmic function to the data, as has previously been done for behavioural 359 

estimates of perceived position shifts using the flash-lag effect (Wojtach et al., 2008). This function 360 

explained a total of 96.8% of the variance, showing that the dependence of final receptive field 361 

position on velocity was very well described by a logarithmic relationship (Figure 6). 362 

 363 

Figure 6: Velocity-dependence of asymptotic receptive field shifts. Marker colours correspond to 364 

velocities in Figure 5, and the dashed line represents a logarithmic fit to the data, explaining 96.8% of 365 

variance.   366 

 367 

In order to compare the perceptual shifts predicted by our model to those measured in behavioural 368 

experiments with human observers, we compared the velocity dependence of receptive field shifts in 369 

our model to the velocity dependence of the Flash-Lag Effect (FLE), as previously measured for the full 370 

range of detectable velocities by (Wojtach et al., 2008). We noted that the magnitudes of both RF-371 

shifts in our model and perceptual shifts in the FLE were very well-described by a logarithmic 372 
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dependence on stimulus velocity (Figure 6, Figure 7A). We then directly compared RF-shifts in our 373 

model to perceptual shifts in the FLE by treating the maximum velocities tested in each paradigm to 374 

be equal. For the behavioural paradigm, this was 50 deg/s, the highest velocity at which an FLE could 375 

be measured (Wojtach et al., 2008). For our model, this was 5 cycles/second, at which point the period 376 

of the motion (200 ms) reached the approximate width of the STDP window. The correlation between 377 

RF-shifts in our model and perceived position shifts in the FLE was near perfect (r > 0.99). Note that 378 

this pattern of results arose spontaneously as a result of STPD, without requiring any tuning of the 379 

model. This shows that the velocity-dependence of STDP-induced receptive-field shifts in our model 380 

very closely matches the velocity-dependence of perceptual mislocalisation for moving objects as 381 

measured using the FLE.  382 

 383 

 384 

   385 

Figure 7: A) Behaviourally measured perceptual shift magnitude as a function of velocity using the 386 

flash-lag effect (reproduced from (Wojtach et al., 2008). The solid line indicates a logarithmic fit to 387 

their data. B) Scatterplot showing the magnitude of receptive field shifts predicted by our model and 388 

the corresponding perceptual shifts reported by (Wojtach et al., 2008) using the FLE. The 389 

correspondence is near-perfect, with a Pearson correlation r > 0.99. C) Absolute magnitudes of RF-390 

shifts produced by our model and position shifts observed in the FLE, expressed as a time-constant (the 391 

equivalent duration necessary to traverse the shift distance at each velocity). Dashed lines indicate 392 

exponential fits. 393 
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Finally, we compared the absolute magnitude of the shifts in receptive field position produced by our 394 

model to the absolute magnitude of perceptual shifts observed in the FLE. To do so, we expressed the 395 

magnitude of the shift at each velocity as a time constant, by dividing shift magnitude by velocity. This 396 

is equivalent to the time necessary for an object moving at that velocity to be displaced a distance 397 

equivalent to the receptive field shift (Figure 7C). We observed that for both the FLE and our model, 398 

this time constant tended to decrease exponentially with increasing velocity (exponential fits 399 

explained 96.3% and 98.5% of variance in FLE and model time constants, respectively). Across the 400 

entire range of velocities tested, the time constant produced by our model was roughly 12-20% of the 401 

time constant for the behaviourally-measured FLE, as might be expected given that our model 402 

reflected receptive field shifts in just a single layer of synaptic connections. 403 

 404 

3.5 Parameter dependence 405 

Parameters in our model were chosen to be biologically plausible. For some parameters, choosing 406 

different values would be expected to have predictable effects. For example, varying the STDP learning 407 

rate 𝜌 , Eq.(2), would be expected to cause the model to converge to its asymptotic state either more 408 

rapidly or more slowly. However, we would not expect it to change the asymptotic state itself – merely 409 

the simulation time necessary to reach that state. Indeed, we deliberately chose a relatively high 410 

learning rate in order to keep the computation tractable; we would not expect a biological system to 411 

reach its asymptotic state within just 5 seconds of exposure.  412 

For other parameters, it is less obvious how choosing different values would affect the pattern of 413 

results. In particular, we chose a value of 32 for Np, the number of place fields in each layer. This 414 

parameter corresponds loosely to the size of receptive fields at each layer, and might be expected to 415 

vary for neurons in different areas in retinotopic visual cortex. For example, place field width inevitably 416 

varies as a function of eccentricity, with foveal retinotopic areas showing smaller receptive fields than 417 

peripheral retinotopic areas. To investigate the effect of manipulating this parameter, we ran 418 
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additional simulations with higher (64) and lower (16) values of Np. Although we observed small 419 

differences in the absolute magnitude of predicted receptive field shifts, the overall pattern of results 420 

was very similar (Figure 8). In particular, the pattern of velocity dependence for both absolute 421 

receptive field shifts and the equivalent time constants was highly similar, giving confidence that our 422 

results are not restricted to a small region of parameter space.  423 

 424 

 425 

Figure 8: Comparison of model prediction for different numbers of place fields. A) Receptive field shift 426 

as a function of velocity for models with 16, 32, or 64 place fields. The magnitude of the receptive field 427 

shift increases slightly with increasing place field width (corresponding to a lower number of place 428 

fields), but the overall pattern of velocity-dependence is comparable for all three simulations. Dashed 429 

lines show logarithmic fits as in the main analysis. B) Comparison of time constants for models with 430 

16, 32, or 64 place fields. Time constants were remarkably similar for models with different numbers 431 

of place fields, showing comparable exponential dependence on velocity. Dashed lines show 432 

exponential fits.  433 

 434 

 435 
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4. Discussion 436 

We investigated a computational problem faced by the brain in processing the visual position of 437 

moving objects: the fact that neural transmission takes time, and that the brain therefore only has 438 

access to outdated visual information. Motion extrapolation is one way the brain might compensate 439 

for these delays: by extrapolating the position of moving stimuli along their trajectory, their perceived 440 

position would be closer to the their physical position in the world (Hogendoorn, n.d.; Nijhawan, 1994, 441 

2008; Hubbard, 2005). We simulated a possible neural mechanism (spike-timing dependent plasticity 442 

- STDP) by which a layered neural network might implement such an extrapolation mechanism. We 443 

show that a two-layer hierarchical network comprising of velocity-tuned neural population is not only 444 

able to implement motion extrapolation, but actually learns to do so spontaneously without 445 

supervision, due only to the temporal contingencies of its connectivity. We go on to show that the 446 

velocity-dependence of the resulting receptive field shifts predicts previously reported, behaviourally 447 

measured effects on the perceived position of moving objects.  448 

The magnitude of the receptive field shifts we observe for each velocity in our simulations corresponds 449 

roughly to the equivalent displacement resulting from 10-20 ms of motion at that velocity. Although 450 

this is 5-8 times smaller than the Flash-Lag Effect, it is important to note that our model includes just 451 

two layers, and only one stage at which learning takes place. If we were to extend our model to include 452 

additional layers, each with comparable properties, then each output layer would constitute the input 453 

layer for the synapses at the next stage. As a result, we would expect the same learning process, and 454 

therefore the same receptive field shift, to take place at each stage. In this way, receptive field shifts 455 

would add up as information ascends the hierarchy. Although it is unknown which cortical areas 456 

ultimately determine where we consciously perceive a moving object, it seems highly likely that 457 

information from the retina will cross at least a handful of synapses before it is accessed for conscious 458 

awareness. The magnitude of the receptive field shifts predicted by our model are therefore of roughly 459 

the same order of magnitude as, and comparable to, those we would expect based on the magnitude 460 

of the perceptual effect. 461 
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 462 

The magnitude of receptive field shifts predicted by our model is also consistent with previous 463 

neurophysiological recordings as well as human neuroimaging. Jancke and colleagues (Jancke et al., 464 

2004) recorded neurons in cat primary visual cortex, and compared the latencies of responses to 465 

flashes with the latencies of responses to smoothly moving objects. They observed that peak neural 466 

responses to smoothly moving objects were approximately 16 ms further along the motion trajectory 467 

than peak responses to static flashed objects. Almost identical results were found by Subramaniyan 468 

and colleagues (Subramaniyan et al., 2018) who recorded neurons in primary visual cortex of awake 469 

macaques, and observed a latency advantage for moving stimuli compared to flashed stimuli of 470 

between 10-20 ms depending on stimulus velocity. These results from invasive recordings in cats and 471 

macaques are therefore in quantitative agreement with the predictions of our model. In humans, we 472 

recently used an EEG decoding paradigm to investigate the latency of neural responses to predictably 473 

and unpredictably moving objects (Hogendoorn and Burkitt, 2018). Using an apparent motion 474 

paradigm, we showed that when objects move along predictable trajectories, their position is 475 

represented with a lower latency than when they move along unpredictable trajectories. Like the 476 

neurophysiology studies, we observed a latency of 16 ms for the predictably moving object. Our 477 

present modelling result is therefore consistent not only with behavioural measurements of motion 478 

perception, but also with neural recordings in both humans and animals.  479 

 480 

It is important to note that in our model, the extrapolation mechanism emerged spontaneously and 481 

without supervision, simply as a result of STDP. By extension, extrapolation would similarly be 482 

expected to develop spontaneously in any hierarchical network of velocity-selective populations when 483 

it is exposed to visual motion. Furthermore, it would be expected to arise between every layer in such 484 

a network. This structure of extrapolation mechanisms at multiple levels of the visual hierarchy is 485 

consistent with previous empirical findings showing extrapolation at both monocular and binocular 486 

stages of processing (van Heusden et al., 2019). It is also consistent with the Real Time Temporal 487 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 4, 2020. ; https://doi.org/10.1101/2020.08.01.232595doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.01.232595
http://creativecommons.org/licenses/by-nc/4.0/


Alignment hypothesis that we recently proposed (Hogendoorn and Burkitt, 2019) as a theoretical 488 

extension of classical predictive coding (Rao and Ballard, 1999), although this hypothesis also posited 489 

feedback projections that are not included in our current model. Indeed, the network architecture 490 

considered here is entirely feed-forward, which represents a good model for the initial wave of neural 491 

activity travelling through the visual pathway in response to a stimulus, but it neglects the feedback 492 

activity from higher visual centres that would be evoked over longer time periods. This feedback 493 

activity is outside the scope of the present study and forms the focus of ongoing research.   494 

 495 

The network and learning parameter values chosen for this proof-of-concept study represent values 496 

consistent with cortical neural processing, but without incorporating many of the details of vision 497 

processing in the human visual pathway. The description of the neural activity in terms of a Poisson 498 

process is a widely used approximation for the time distribution of action potentials. Although it 499 

neglects all spike after-effects, such as refractoriness, it nevertheless provides a good description for 500 

the situation examined here in which the visual stimulus moves with a constant velocity and is 501 

modelled as having a spatial intensity distribution that is Gaussian, without any edges or other spatial 502 

discontinuities (Aviel and Gerstner, 2006). The STDP time constants of potentiation and depression, τp 503 

and τd , are chosen to both have a value of 20ms, which is in the range of that observed in neurons in 504 

the visual cortex (Froemke and Dan, 2002).  505 

 506 

In the human visual system, the processing of motion begins in the retina, where it has long been 507 

known that there are direction-selective retinal ganglion cells (Barlow and Hill, 1963; Barlow et al., 508 

1964). These neurons are maximally activated by motion in their preferred direction and strongly 509 

suppressed by motion in the opposite direction. Within the retina there are a number of mechanisms 510 

involving multilayered retinal circuits that provide reliable motion detection – for a review see Wei, 511 

(2018). This motion selective information is transmitted via the LGN to the primary visual cortex, V1, 512 

where direction selective neurons are concentrated in layer 4B of V1 and project from there to higher 513 
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motion processing areas of the visual hierarchy pathway, particularly area MT (Maunsell and van 514 

Essen, 1983).  515 

 516 

 In the analysis presented here we have made the simplifying assumption that the same principles 517 

apply at each successive level of a layered network. However, in the visual system the receptive fields 518 

of neurons at successive levels become progressively larger as information moves up the visual 519 

hierarchy. For example, a motion selective neuron in area MT which has a receptive field of 100 520 

diameter receives its input from neurons in V1 that have receptive fields of 10 diameter (Andersen, 521 

1997). The restricted receptive field of neurons in the lower stages of this vision processing hierarchy 522 

can result in ambiguous motion signals as a result of the aperture effect. Consequently, at each 523 

successive stage of the visual hierarchy the motion information is not only transmitted, but it also can 524 

be refined: the information at earlier stages is integrated so that the motion of larger objects can be 525 

more accurately determined and objects moving at different speeds are disambiguated – for a review 526 

see Bradley and Goyal (2008). The larger receptive field sizes in the higher stages of the hierarchy 527 

correspond to broader place field representations, which it would be straightforward to accommodate 528 

in a multi-layer extension of the processing framework presented here. It may also be possible that 529 

the dorsal and ventral pathways of the visual system (i.e., the where and the what pathways) have 530 

very different encoding of velocity. While the dorsal pathway relies upon an accurate representation 531 

of position and the visual motion extrapolation analysed here, it is possible that in the ventral pathway 532 

the velocity coding is so broadly tuned that it is effectively absent.  533 

In the analysis presented here we have for convenience used a discrete coding of the velocity, rather 534 

than allowing it to take a continuum of values from zero up to some maximal value. Consequently, an 535 

object with changing velocity will, in this simplified model, make discrete jumps between velocity sub-536 

populations. It is, however, also possible to formulate the velocity using such a continuous 537 

representation, for example as a set of overlapping Gaussian distributed velocity fields similar to the 538 

(spatial) place fields. We anticipate that this would give a smoother, possibly more biologically 539 
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plausible, transition between velocity sub-populations, but that it would not change the essential 540 

results of this study in any significant way. 541 

In sum, we have implemented spike-time dependent plasticity in a layered network of velocity-542 

selective neurons, and shown that this results in a pattern of receptive-field shifts that causes the 543 

network to effectively extrapolate the position of a moving object along its trajectory. The magnitude 544 

of this shift is in quantitative agreement with previous findings from both animal neurophysiology and 545 

human neuroimaging experiments, and also qualitatively predicts the perceptual mislocalisation of 546 

moving objects in the well-known flash-lag effect. Most strikingly, we show that it emerges 547 

spontaneously and without supervision, suggesting that extrapolation mechanisms are likely to arise 548 

in many locations and at many levels in the visual system. 549 

Finally, the model we present here includes only feed-forward connections, and a natural extension 550 

to the model would be to include lateral and/or feedback connection. Previous modelling work, most 551 

notably by Jancke & Erlhagen (Jancke and Erlhagen, 2010), has proposed an instrumental role for 552 

lateral connections in generating the perceptual mislocalisation that characterises the flash-lag effect. 553 

It would be interesting to investigate in more detail what the emergent characteristics would be of a 554 

network implementing both STDP and lateral connectivity, and whether that would explain any other 555 

perceptual phenomenology. In a similar vein, it would be interesting to implement feedback 556 

connections in the model we present here, as we proposed in our previous Real-Time Temporal 557 

Alignment hypothesis (Hogendoorn and Burkitt, 2019). An exciting possibility is that these feedback 558 

connections might function to calibrate receptive field shifts to the relative transmission delays 559 

between layers in the hierarchy, allowing extrapolation mechanisms to accurately compensate for 560 

processing delays. Further research will be necessary to evaluate these possible extensions to the 561 

current model.  562 

 563 

  564 
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