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Abstract10

Most animals face seasonal fluctuations in food availability and need to develop an annual11

routine that maximizes their lifetime reproductive success. Two particularly common strate-12

gies are reducing energy expenditure and building storage to sustain the animal in meager13

periods (winters). Here, we pose a simple and generic model for an animal that can de-14

cide, at each time during the season, on its level of foraging effort and on building energy15

stores. Using dynamic optimization, we identify the optimal annual routines that maximize16

the trade-off between energy and mortality over a life-long horizon. We investigate how the17

optimal strategies depend on the body size and longevity of the animal, and upon the sea-18

sonal variability in the environment. We find that with large fluctuations, the optimal annual19

routine for small animals is to develop a surviving egg/spore stage rather than to attempt20

to survive the winter. Medium sized animals invest heavily in reserves to allow long hiber-21

nation, while larger animals only need smaller reserves and a shorter hibernation period. In22

environments with smaller fluctuations, organisms do not need energy stores or hibernation23

but reduce foraging activities during spring and summer where their fitness is highest. Our24

optimization model can be used as a null hypothesis to explain the annual routines of animals25

of all body sizes across the globe.26
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1 Introduction27

The seasonal cycle is one of the strongest and most pervasive environmental variations affecting28

living organisms in nature. The predictability of the seasonal cycle makes it possible for organ-29

isms to develop elaborate adaptations to the changing conditions. The direct manifestation of the30

seasonal cycle is changes in light and temperature, however, the more important forcing for many31

animals is the changes in resources, be it primary production or other organisms. Typically, the32

seasonal resource cycle alternates between a feast period (around summer) and famine (winter).33

The most prominent strategies to deal with the variable resource environment is to make reserves34

during the end of the feast to survive the famine and to enter a form of hibernation during the35

famine.36

Such annual routines have been described theoretically as an optimization problem (Feró37

et al., 2008; McNamara and Houston, 2008). The model organism has mainly been small birds,38

where the annual routines revolve around making fat reserves, optimal moulting time (Barta39

et al., 2006; McNamara et al., 2008), or hypothermia (lowered body temperature) during winter40

(Clark and Dukas, 2000; Welton et al., 2002). Few models of annual routines exists for other41

animals than birds. One exception is copepods, that vary reserve investments and timing of42

reproduction (Varpe, 2012), or their reproductive mode (Sainmont et al., 2014) according to the43

seasonal cycle. In both cases (birds and copepods), the examples are environments with strong44

seasonal fluctuations, either in high latitude temperate systems (birds) or arctic environments45

(copepods). These cases, however, occupy only a small corner of the variability in life histories46

and seasonal fluctuations, by describing short-lived animals – between one and a few seasons –47

living at high latitudes with strong seasonal fluctuations in resource availability.48

Development of annual routines are not limited to birds and copepods, but is something that49

almost all animals do to various degrees. The effect of the seasonal variation is largely influenced50

by the animals’ life span: for a short-lived animal, the winter is experienced as a very long period51

of famine spanning a significant part – or the entirety – of the animals’ life, while for a long-lived52
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animal the winter is a recurrent pattern. The effect of the season evidently varies globally with53

extreme variation at the poles and in continental habitats and lesser in the tropics and in the54

ocean. Thus organisms with different affected depending on their habitat and their life span.55

Here we generalize previous models of optimal annual routines of birds and copepods by56

considering the effect of seasonal variation on all kinds of animals, from short to long lived, and57

at different levels of seasonal variation. We use the generic model to form hypotheses about the58

degree by which seasonal variation affects the life history of the entire animal kingdom on earth.59

We use optimal foraging theory (Stephens and Krebs, 1987) to predict the optimal decisions of60

an animal during the season: whether to forage or rest, and whether to build up reserves. The61

model is formulated generically by using body mass and metabolic theory (Brown et al., 2004)62

to describe differences in life span, and by considering the environment as periodic variation in63

resources.64

2 Optimal allocation to storage and foraging65

We consider an adult individual living in a seasonal environment which schedules its foraging66

effort and its building and use of energy reserves over the season, aiming to maximize its lifetime67

reproductive success (Fig. 1). Seasonality is expressed through temporal variation in food avail-68

ability while mortality risk is assumed constant. At each instant, the animal chooses its foraging69

effort, which determines the amount of energy it has available to maintain metabolism. Next, if70

there is any surplus energy, the animal chooses whether to allocate it to immediate reproduction71

or to build up stores to endure periods with energy deficits. We aim to identify how the optimal72

strategy, i.e. the foraging effort and the allocation of available energy, varies over the season. To73

this end, we use standard methods from state space modeling (Clark and Mangel, 2000; Hous-74

ton and McNamara, 1999), where the state at each time is the amount of energy the animal has75

stored, and we use dynamic programming (Bertsekas, 2005) to solve the optimization problem.76

Two principal parameters characterize the problem faced by the animal: The relative mag-77
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Figure 1: Conceptual sketch of the model. An organism of mass m is confronted by seasonally

varying resource R(t). The organism can regulate its foraging effort τ(t) which effects its energy

acquisition but also its exposure to mortality risk. From its energy stream, it pays metabolic costs

and can subsequently allocate surplus to storage or immediate reproduction.

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2020. ; https://doi.org/10.1101/2020.08.02.213595doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.02.213595
http://creativecommons.org/licenses/by-nc-nd/4.0/


nitude of fluctuations in food availability over the season, and the body size (mass) m of the78

animal. We examine how these two parameters effect the optimal strategy. The degree of sea-79

sonal fluctuation correlates with latitude, in that polar habitats experience larger fluctuations80

than lower-latitude habitats, and for a given latitude, oceanic habitats display smaller fluctua-81

tions than terrestrial ones. Our model of seasonal fluctuations combines all seasonal patterns in82

the habitat in a single dimensionless parameter ρ, which quantifies the amplitude of fluctuations83

in food availability measured relative to the average level. The body size of the animal, in turn,84

defines physiology (consumption rate and metabolism) and predation risk. We consider body85

size a parameter, not a state variable; i.e. we do not model the growth of the animal. We employ86

metabolic scaling rules (Brown et al., 2004) to determine how body size affects vital rates. These87

scaling rules are generic in nature and posit that the speed of metabolic processes (measured88

in mass per time) scale with body mass m roughly as m3/4. Consequently, rates (units of per89

time), such as mortality, scales as m−1/4. It follows that the lifespan scales as m1/4 – evidently90

larger organisms have a longer lifespan than smaller organisms. In combination, the magnitude91

of seasonal fluctuations and the time scale of the animal determine how and to which degree the92

choices of the animal depend on the time of year.93

2.1 Energy budgets, reserve dynamics, and the optimization problem94

Here, we describe how energy budgets and reserves evolve over the season. We follow state95

space formalism to describe the animal, with the state s ≥ 0 being the energy storage of the96

animal. As long as the animal is alive the storage evolves according to97

ds
dt

= σ(t) E(t, τ(t)) .98

Here, E(t, τ(t)) is the total assimilated energy at time t, with τ(t) being the foraging effort at99

time t, expressed as the fraction of time spent foraging. In turn, σ(t) denotes the fraction of this100

energy used for building storage. Both σ(t) and τ(t) are decision variables which the animal at101

each instant chooses from the unit interval [0, 1].102
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If the assimilated energy is negative, E(t, τ(t)) < 0, we demand σ(t) = 1, thus forcing the103

animal to use of its storage. If the assimilated energy is positive, then the animal may choose104

which fraction σ ∈ [0, 1] of this surplus energy that it uses for building storage, while the rest,105

(1− σ)E, goes to instantaneous reproduction. The animal dies if its storage is totally depleted,106

i.e. s = 0. When the animal has positive storage, s > 0, its mortality rate is µ(t, τ(t)), i.e., the107

probability of dying in a short time interval dt is µ dt. Note that the mortality depends on the108

foraging effort, which leads to an energy-mortality trade-off.109

The animal’s goal is to maximize its expected reproductive output during its lifetime by110

choosing strategies for allocation σ(t) and foraging effort τ(t) in each time t ≥ t0, where the111

initial time is t = t0. The animal dies at a random time T, which we integrate out by taking112

expectation w.r.t. T. The expected energy allocated to reproduction for its remaining lifetime is113

J(s, σ(·), τ(·), t0) = E
{∫ T

t0

(1− σ(t)) · E(t, τ(t)) dt
}

114

=
∫ ∞

t0

(1− σ(t)) · E(t, τ(t)) S(t) dt115

116

where s is the storage at time t0, E denotes the expected value w.r.t. T, and S(t) is the sur-117

vival function, i.e. the probability of being alive at time t ≥ t0, which can be written S(t) =118

exp
(
−
∫ t

t0
µ(l, τ(l)) dl

)
. Note that the expected reproductive output J depends on the entire119

functions σ(t) and τ(t) for t ≥ t0.120

To summarize our problem, we wish to maximize the expected energy allocated to reproduc-121

tion during the animal’s entire lifetime:122

max
τ(·), σ(·)

J(s, σ(·), τ(·), 0)123

where we assume the animal is born at time t = 0. The optimization is subject to conditions124

for the storage s(t) described above, and the constraints on the feasible instantaneous decisions,125

which depends on time:126

∀t : σ(t) ∈ [0, 1], τ(t) ∈ [0, 1], {E(t, τ(t)) < 0⇒ σ(t) = 1}.127
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Hamilton-Jacobi-Bellman equation128

This optimization problem can be solved with the theory of dynamic optimization using the129

Hamilton-Jacobi-Bellman theorem (Bertsekas, 2005; Clark and Mangel, 2000; Houston and Mc-130

Namara, 1999). We define the fitness V as the expected energy allocated to reproduction in the131

remaining lifetime of the animal, assuming that the animal behaves optimally, i.e.132

V(s, t0) = max
τ(·), σ(·)

J(s, σ, τ, t0).133

The fitness of a dead animal is zero, while the fitness V(s, t0) of a live animal, s > 0, is governed134

by the Hamilton-Jacobi-Bellman equation:135

∂V
∂t0

+ sup
τ,σ

[
∂V
∂s

Eσ− µV + (1− σ)E
]
= 0 . (1)136

Here, the supremum is over all decisions which are feasible at the instant; in particular, σ must137

equal 1 whenever E is negative. The Hamilton-Jacobi-Bellman equation is complemented by the138

boundary condition139

V(0, t0) = 0140

since an animal with storage 0 dies instantaneously and has zero fitness. In the Hamilton-141

Jacobi-Bellman equation, the term ∂V
∂s Eσ indicates gain or loss of fitness due to building or using142

storage, −µV indicates expected loss of fitness associated with dying, and (1−σ)E is the immedi-143

ate pay-off, i.e. energy allocated to spawning. The Hamilton-Jacobi-Bellman equation expresses144

a trade-off between sowing and reaping, i.e. building storage to facilitate future spawning or145

spawning now, and finds from this trade-off the optimal immediate action τ(t), σ(t). We solve146

the Hamilton-Jacobi-Bellman equation numerically as outlined in appendix C.147

Model components148

The available energy is written in terms of a maximum consumption rate C (energy per time)149

and dimensionless feeding levels f which is between 0 and 1:150

E(t, τ) = C ( f (τ, t)− f0 − f1τ) . (2)151
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Here, f (τ, t) is the feeding level at time t assuming a foraging effort τ, f0 defines a critical152

feeding level where the available energy exactly balances standard metabolism, and f1τ is the153

extra metabolic cost, expressed as a fraction of C, resulting from foraging effort.154

For the feeding level f , we assume a Holling type II functional response:155

f (t, τ) =
R(t)τ

R(t)τ + C
. (3)156

Here R is the encountered resource (energy per time) for an animal which forages continuously157

(τ = 1). This varies with the season as:158

R(t) = R0 ·max {0, 1 + ρ sin(2πt/Ts)} (4)159

Here R0 is an average value of the resource, Ts is the period of seasonal fluctuations, i.e. 1 year,160

and ρ is amplitude of resource fluctuations relative to the mean level. The max-function ensures161

the resource will be non-negative if we increase ρ above 1. We use values of ρ > 1 to represent162

environments with prolonged periods without feeding opportunities; i.e., harsh winters.163

The mortality µ (dimensions: per time) is defined from a background mortality µ0 and a164

mortality µ1 due to foraging effort τ.165

µ(τ) = µ0 + µ1τ. (5)166

Non-dimensionalization and scaling with size167

We non-dimensionalize the model using the length of the season Ts as characteristic time and the168

body mass m of the animal as characteristic mass. See details in appendix A. We thus reach the169

non-dimensional Hamilton-Jacobi-Bellman equation170

ν
∂V
∂t

+ sup
τ,σ

[
∂V
∂s

σE− au + (1− σ)E
]
= 0. (6)171

where all quantities are now non-dimensional. The parameter ν = m/(TsC) is non-dimensional172

and measures the size of the animal relative to the maximum energy consumption during a173

season and other quantities are non-dimensionalized with Ts and w. Also,174

a = µm/C = a0 + a1τ175
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Table 1: Parameters in the model. Justification of values in Appendix B

Parameter Value

Standard critical feeding level f0 = 0.1

Activity critical feeding level fτ = 0.1

Basal physiological mortality a0 = 0.3

Activity physiological mortality a1 = 0.3

Average scaled resource level R̃0 = 1.5

Pace of life constant c = 0.025 g−1/4

Seasonal variation in resource ρ = free

Body size m free

is the non-dimensional physiological mortality, i.e., mortality relative to maximum acquired en-176

ergy. In a constant environment, a non-dimensional physiological mortality greater than one177

implies that the expected assimilated energy during the remaining lifetime is less than the body178

mass of the animal.179

We next introduce scalings with size. We write the maximal consumption rate as C = hm3/4.180

This gives181

m
TsC

=
m

Tshm3/4 = cm1/4, (7)182

where c = 1/(Tsh) ≈ 0.025 g−1/4 is a ”pace of life” constant (see Appendix B for parameter183

values). The factor m/(TsC) will have magnitude of order 1 when m ≈ 2.5 ton, implying the184

factor will be small for most of the organisms we consider. When the factor m/(TsC) is small,185

the fitness function V responds quickly to instantaneous conditions, and the optimal strategy186

depends only weakly on future changes in the environment, whereas it depends strongly on187

instantaneous conditions. Conversely, when the factor m/(TsC) is large, the fitness function will188

only fluctuate weakly over the season, and at each instant the trade-off between energy and189

mortality is defined by the average fitness V.190
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Figure 2: Optimal seasonal routines for animals of different sizes (rows; 0.1, 100, and 10000 g)

in increasingly strong seasonal resource environments (columns; ρ = 0.4, 0.9, and 1.5). The top

row shows the seasonal resource environment. Each panel shows the foraging effort (τ, red),

allocation to reserves (σ, blue) and the size of the reserves as a fraction of body mass (blue

patches). Light grey patches indicates time periods where the animals stops foraging entirely

and enters hibernation. Dark gray patches indicates time periods where the fitness is less than

zero and where the animals either die and leave resting stages behind or migrate away.
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Figure 3: Overview of seasonal strategies for all sizes and seasonal variations. a) The fraction

of the season spent foraging at maximum foraging effort (τ = 1); b) The maximum size of the

storage over the season as a fraction of body mass. c) The length of the hibernation period. The

black areas in the top left corners indicate that fitness is less than zero.
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3 Results191

The model predicts a wide variety of seasonal strategies (Fig. 2.1). Animals typically have high192

foraging effort in the spring and fall where the resources are lower. During winters, with strong193

seasonal fluctuations, the resources are too small to allow the expenses of feeding, and foraging194

ceases altogether. During the summer, when resources are abundant, the functional response195

saturates and it pays off to lower foraging effort to reduce mortality. Allocation to reserves occur196

in the autumn, just before the effort goes to zero. The acquired resources are then used to fuel197

the winter metabolism in the absence of an energy input from foraging.198

Storage and hibernation periods vary with the body mass (Fig. 3). This variation is largely199

a result of the assumption of decreasing metabolism per body mass for larger organisms where200

surviving a winter period of fixed length requires less resources per body mass for a large animal201

than for a smaller one. Therefore storage declines with body mass and hibernation periods202

become shorter. Small animals subject to strong seasonal fluctuations do not attempt to survive203

the winter (the top left corners in the in Fig. 3), and therefore do not build storage.204

4 Discussion205

From the model results we identify four strategies to deal with a winter famine: 1) increasing206

the foraging effort to make up for the reduced resources. This strategy occurs in environments207

with a small seasonal amplitude among organisms of all sizes. Increasing the foraging effort has208

a cost in terms of increased mortality due to the trade-off between foraging and mortality (5),209

nevertheless, the increased risk is justified in a life time perspective. 2) Making reserves to fuel210

winter metabolism. This strategy occurs mainly among larger individuals in stronger seasonal211

environments, and is accompanied by an increased autumn foraging effort. The prevalence of this212

strategy among large individuals can be understood by a metabolic argument: surviving a fixed213

time interval ∆t requires a storage that occupies a fraction ∝ ∆tm−1/4 of body mass. Thus, larger214
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individuals need a smaller fraction of body mass set aside for reserves than smaller individuals,215

however, the fraction increases proportional to the length of the period the animal has to survive216

on storage. 3) Stop foraging entirely and go into hibernation. Again, this occurs mostly for217

smaller individuals and in combination with building storage needed to survive the hibernation.218

The advantage of hibernation is a reduction in mortality and in metabolism. Hibernation occurs219

in the model in periods where there are few resources. 4) The last strategy occurs when the fitness220

drops to zero and the model is unable to find a strategy that leads to survival of the population.221

This occurs among smaller individuals when they are unable to accumulate sufficient reserves to222

survive the winter. The four strategies are not distinct but often occur in combination.223

The four idealized strategies can be used to interpret the choices made by animals. For224

example, copepods in high latitudes are larger than in lower latitudes and build bigger reserves225

(Brun et al., 2016). A particular example is the dominant arctic species Calanus finmarchicus and226

hyperboreus. C. finmarchicus builds limited reserves but make a winter hibernation. C. hyperboreus227

is an even larger copepod which make even larger lipid reserves. The smaller C. finmarchicus228

dominates on lower latitudes while the larger C. hyperboreus dominates at higher latitudes. The229

lengthened growth season in arctic environment favours C. finmarchicus (Møller and Nielsen,230

2019). At very strong seasonal fluctuations even large animals need to enter a hibernation period,231

such as polar or brown bears.232

The last strategy identified by the model (4) indicates that small organisms need to develop233

alternative strategies to cope with the winter famine. One strategy is for the adult organism to234

die and leave behind seeds, eggs, or resting spores. Smaller plants and scrubs leave seeds for235

the next generation even in low seasonal environments. Some copepods species make eggs that236

sink to depth while the adult perishes (Holm et al., 2018). Many unicellular aquatic protists form237

resting stages in the form of cysts, e.g., dinoflagellates (Zonneveld et al., 2013) and diatoms (Hal-238

legraeff and Bolch, 1992). Smaller fish species, like capelin (Mallotus villosus), have semelparous239

reproduction where they spawn and die because they are unable to make sufficient lipid reserves240

to both survive the winter and fuel reproduction. An alternative winter strategy is a latitudinal241
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migration to climates with a less extreme winter. Migration is mainly done by birds but also fish242

species (e.g. herring, mackerel, and garfish) follow a seasonal peak in primary production across243

latitudes. Migration requires that the animal is able to make sufficient storage to fuel the mi-244

gration and it is therefore mainly an option for larger organisms due to the metabolic argument245

given above. Smaller land-bound organisms, such as rodents, increase their effective reserves246

by building winter supplies. In this manner their foraging is not limited by their functional247

response (assuming that it represents gut limitation and not handling limitation) and they can248

build effective reserves larger than their own body mass. These particular challenges for small249

and short-lived organisms were also noted by Pianka (1970) associated with r-strategies.250

Our model is simplistic and aims to describe generic patterns in responses to seasons with251

a minimal amount of detail. A fruitful avenue of future research could be to make the model252

specific for a given animal in a given environment, which would complement previous studies253

that take as starting point specific cases. For the environmental fluctuations, the degree of sea-254

sonality varies along a latitudinal gradient, but also between continental, coastal, and oceanic255

habitats, and our representation of these fluctuations is suitable only at the generic level. Spe-256

cific studies could detail these fluctuations and include a gonad building between reproductive257

seasons (Thygesen et al., 2005), or maintain continuous reproduction but let the fitness of the258

offspring depend on the season. Fluctuations in mortality over the year could also be included,259

reflecting presence and activity of predators, as well as vulnerability to predation. At the generic260

level and at least for larger animals, we expect that inclusion of fluctuating mortalities only alters261

the results quantitatively, in that the optimal strategy would be to reduce foraging effort during262

periods with increased risk. For smaller animals in strongly seasonal environments, the risk of263

dying of starvation implies fluctuating food availability leads to different strategies than fluctu-264

ating mortalities. For specific animals, fluctuations in mortality is probably necessary to obtain a265

quantitative match between model predictions and observations.266

An even more elaborate model would consider the seasonal game between predators and267

prey, either in a generic or specific setting, where the the optimal foraging effort of predators268
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depends on the foraging effort of prey and vice versa. An other extension would be to include269

growth and life history, considering structural body mass an evolving state rather than a fixed270

parameter. This would increase the fidelity of the model, in particular for short-lived animals.271

At a technical level, our model operates in continuous time and continuous state space, while272

the majority of similar studies have followed Clark and Mangel (2000) and used a discrete set-273

ting. The two formulations are, of course, essentially analogous and the difference boils down to274

whether time steps and number of storage levels are consider numerical parameters or model pa-275

rameters. We find that the continuous formulation present somewhat cleaner conceptual frame-276

work, which is particularly appealing when operating at the generic level.277

5 Conclusion278

We have presented a minimalistic model which explains generic patterns in how animals can and279

should cope with fluctuating environments. We have found that the optimal responses can, qual-280

itatively, be categorized into four broad classes, which each are feasible and favorable for animals281

of different sizes in different degrees of fluctuations: When seasonal fluctuations are modest, for-282

aging efforts decrease during periods with abundant resources, following the varying trade-off283

between foraging and mortality. Larger animals in strongly fluctuating environments build stor-284

ages, whereas smaller animals are more prone to going into hibernation. Finally, smaller animals285

subject to strong fluctuations do not attempt to survive the famine but concentrate on reproduc-286

ing as long as possible. The model results conform to and formalizes our general understanding287

of how seasonal fluctuations affect animals, and the model may serve as a useful null hypothesis288

to interpret observed seasonal strategies of plants and animals globally.289
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A Non-dimensionalization of the model292

To non-dimensionalize the model we scale time with the season to obtain non-dimensional time293

t̃ = t/Ts, and reserves with body weight to get the non-dimensional reserves s̃ = s/w.294

We describe mortality in terms of the dimensionless “physiological mortality” a, using the295

maximum consumption rate C and body weight w:296

a = µw/C297

and using this in the equation for µ(τ) gives298

a(τ) = a0 + a1τ (8)299

where a0 = µ0w/C and a1 = µ1w/C are background and foraging-related physiological mortali-300

ties, respectively.301

In the same manner, the encountered resource can be written in non-dimensional form by302

scaling with the constant C giving a non-dimensional level of the food resource R̃ = R/C. This303

gives304

R̃(t̃) = R̃0 max {0, 1 + ρ sin(2πt̃)} (9)305

where R̃0 = R0/C is the dimensionless average resource level. We use f̃ (τ, t̃) = f (τ, t) for the306

functional response as a function of dimensionless time:307

f̃ (τ, t̃) =
τR̃(t̃)

τR̃(t̃) + 1
(10)308

Now the dimensionless energy Ẽ = E/C can be expressed as309

Ẽ(τ, t̃) = f̃ (τ, t̃)− f0 − fττ (11)310

Finally we scale fitness with body weight Ṽ = V/m. Introducing this in (1) gives:311

w
TC

∂Ṽ
∂t̃

+ sup
τ,σ

[
∂Ṽ
∂s̃

σẼ− aṼ + (1− σ)Ẽ
]
= 0. (12)312

This equation is identical to (1) except for the factor ν := w/(TC), which combines the pace of313

life C/m and the length of a season T. Aiming for a less cluttered notation, we drop the tilde’s314

so that V, t and E from now on refers to non-dimensional quantities.315
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B Parameter values316

The model requires a specification of the body mass m and the amplitude of the resource ρ.317

Additionally, it requires 6 parameters, the metabolic costs f0 and f1, the physiological mortalities318

a0 and a1, the scaled resource level R̃0, and the pace of life constant c. The metabolic costs319

and the mortalities are non-dimensional constants which are bounded between 0 and 1. The320

scaled resource is unbounded (but positive), and the pace of life constant is the only dimensional321

parameter. We use general arguments to find reasonable values of all parameters.322

We first consider an animal that forages at maximum rate, i.e., τ = 1. For this case we assume323

that the total metabolism and mortality are split evenly between basal rates and active rates. With324

this assumption, f0 = f1 and a0 = a1. We further assume that the total metabolism is on the order325

of 20% of the maximum consumption rate. This yields f0 = f1 = 0.1.326

We can consider the level of the resource R̃ by again considering an animal that feeds all the327

time (τ = 1). Its feeding level f ∗ is (10):328

f ∗ = f̃ (1, t̃) =
R̃0

R̃0 + 1
. (13)329

This yields the food consumed relative to the maximum consumption for an individual that330

forages at maximum rate. This value f ∗ should, on average, be larger than f0 + f1 = 0.2 to331

ensure sufficient intake to cover metabolism, while still less than the the upper bound f ∗ ≤ 1. A332

value of 0.6 seems appropriate – in this case the organism is neither starving nor satiated. This333

assumption provides a reasonable value for the scaled average resource concentration:334

R̃0 =
0.6

1− 0.6
≈ 1.5. (14)335

Larger values of R̃0 will lead to satiated individuals without the need for seasonal strategies,336

while smaller values will lead to starving individuals and more extreme seasonal strategies.337

To estimate a reasonable value for the overall physiological mortality a, we consider first the338

Darwinian fitness, i.e., the expected number of offspring which will reach maturity:339

W0 = εS
E

µm0
(15)340
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Here, S is the survival to maturation, 1/µ is the expected remaining lifetime of an adult, so that341

E/µ is the expected future reproductive output of this adult. ε is the reproductive efficiency342

and m0 is the mass of an offspring, so εE/(µm0) is the expected number of offspring the adult343

will produce in its remaining life. Considering again an individual feeding constantly and with344

feeding level f ∗, we get E = ( f ∗ − f0 − f1)hm3/4 (2) and from (7) we have µ = ahm−1/4. As-345

suming that the physiological mortality a is constant during the growth phase of the animal, the346

probability of survival from size m0 to size m is S = (m0/m)a (Andersen, 2019). Inserting in (15)347

we get:348

W0 = ε
f ∗ − f0 − f1

a

(w0

w

)a−1
. (16)349

If the population is in steady state, we require that W0 = 1 and use this to determine a. With350

ε = 0.2 and m/m0 = 100 (Neuheimer et al., 2015) we find a ≈ 0.6 which compares well with351

empirical measurements on fish and elasmobranchs (Andersen, 2019, Ch. 9). We then get a0 =352

a1 = 0.3.353

C Numerical methods354

We solve the Hamilton-Jacobi-Bellman equation numerically using simple and conservative meth-355

ods; from the point of view of computational methods for partial differential equations, the prob-356

lem is modest in complexity and computational requirements. The state space is truncated so357

that the dimensionless storage is bounded above by 0.2. The state space is discretized into 30 grid358

cells. We time-step the Hamilton-Jacobi-Equation by the explicit Euler method, using a time step359

of 10−3 years. At each time step, and for each possible state, we find the optimal strategy τ, σ360

by brute-force evaluation over a discretized decision space: τ is allowed to vary over 51 different361

values between 0 and 1, while we for σ exploit that the objective function is linear in σ, so that362

the maximum is attained for σ = 0 and σ = 1. The time marching continues for 10 years to363

ensure that the periodic asymptote is reached. Sensitivity analysis indicates that the results do364

not depend significantly on numerical choices, i.e. grid sizes, time steps, etc.365
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(2006). Annual routines of non-migratory birds: optimal moult strategies. Oikos 112(3), 580–370

593.371

Bertsekas, D. P. (2005). Dynamic Programming and Optimal Control, Volume 1. Athena Scientific.372

Brown, J. H., J. F. Gillooly, A. P. Allen, V. M. Savage, and G. B. West (2004). Toward a metabolic373

theory of ecology. Ecology 85(7), 1771–1789.374

Brun, P., M. R. Payne, and T. Kiørboe (2016). Trait biogeography of marine copepods–an analysis375

across scales. Ecology Letters 19(12), 1403–1413.376

Clark, C. and M. Mangel (2000). Dynamic State Variable Models in Ecology: Methods and Applications.377

Oxford University Press.378

Clark, C. W. and R. Dukas (2000). Winter survival strategies for small birds: managing energy379

expenditure through hypothermia. Evolutionary Ecology Research 2(4), 473–491.380
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