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ABSTRACT  

Binge drinking and age at first full drink of alcohol prior to 21 years (AFD<21) have been linked 

to neuroanatomical differences in cortical and subcortical grey matter (GM) volume, cortical 

thickness, and surface area. Despite the potential to reveal novel network-level relationships, 

structural covariation patterns among these morphological measures have yet to be examined 

relative to binge drinking and AFD<21.  Here, we used the Joint and Individual Variance 

Explained (JIVE) method to characterize structural covariation patterns common across and 

specific to morphological measures in 293 participants (149 individuals with binge drinking and 

144 healthy controls) from the Human Connectome Project (HCP). An independent dataset 

(Nathan Kline Institute Rockland Sample; NKI-RS) was used to examine reproducibility/ 

generalizability. We identified a highly reproducible joint component dominated by structural 

covariation between GM volume in the brainstem and thalamus proper, and GM volume and 

surface area in prefrontal cortical regions. Using linear mixed regression models, we found that 

this joint component was related to AFD<21 in both the HCP and NKI-RS datasets, whereas the 

individual thickness component associated with binge drinking and AFD<21 in the HCP dataset 

was not statistically significant in the NKI-RS sample. Taken together, our results show that a 

highly reproducible structural pattern involving covariation in brain regions relevant to thalamic-

PFC-brainstem neural circuitry is linked to age at first full drink.  

 

Keywords: 

Structural covariation patterns; Dimension reduction; Structural MRI; Age at first full drink; Binge 

drinking; Addictive behavior 
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INTRODUCTION 

 

Age at first full drink prior to 21 years (AFD<21) and subsequent binge drinking (BD) are two 

important factors linked to the development of alcohol use disorders (AUDs) (1, 2). 

Adolescence, characterized by imbalanced brain development with subcortical regions 

developing earlier than the prefrontal control regions, is a critical risk period for addictions (3-5). 

Early onset of alcohol use may interfere with ongoing neurodevelopment, inducing 

neurobiological changes that could promote subsequent development of AUDs (1, 2). Human 

neuroimaging studies indicate that early onset of alcohol use and BD in adolescents or 

emerging adults are linked to multiple brain structural changes (1, 2), such as reduced cortical 

thickness (6), decreased surface area (7), and increased grey matter (GM) densities (8) in 

frontal regions, and a GM volume reduction in many regions (9-11) with exceptions including 

striatal volumetric increases (12). Sex-related effects have also been observed, with cortical 

thickness in selected frontal regions thinner in males and thicker in females (13) and putamenal 

volumes smaller in males and larger in females (14). 

Among brain regions related to early onset alcohol use and BD, the prefrontal cortex 

(PFC), amygdala, and striatum play critical roles in addiction neurocircuitry (1, 15). Early 

initiation of substance use has been hypothesized to reflect delayed or aberrant development of 

PFC regions involved in executive functions (1, 4, 5, 15). Recently, pre-clinical research 

extended models of addiction neurocircuitry (15) to include a focus on the medial PFC-

brainstem circuit, demonstrating that neural response in this circuit during initial alcohol 

exposure predicted the future development of compulsive drinking in a mouse model (16). 

However, whether such an understudied, yet potentially important, component of addiction 

neurocircuitry also operates in humans remains to be determined.  

Alcohol-use-related structural brain findings to date have been identified mainly via 

group mean differences (either increased or reduced) in morphological measures in individual 

brain regions. Such analyses do not typically consider that brain regions function in interacting 

circuits or networks. Indeed, inter-individual differences in the structure of brain regions within 

the same or connected neural circuitry often covary more than individual differences in other 

brain regions, suggesting coordinated development within communities of brain regions (17). 

Thus, structural covariance analyses may reveal functionally or developmentally linked 

subsystems. Specifically, structural covariance analyses compare differences in group-level 

structural covariation networks, where networks are based on pairwise correlations in 

morphological measures (e.g., cortical thickness) between brain regions. This group-level 
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network-based approach has been used to identify regions suggestive of coordinated 

development during brain maturation in schizophrenia (18). However, to our knowledge, no 

published structural covariance studies have examined potentially coordinated development of 

brain regions in relation to BD or AFD<21.  

Here, we sought to investigate whether common and distinct covariation patterns across 

well-studied cortical morphological measures (thickness, surface area, and GM volume) and 

subcortical GM volume are associated with BD and/or AFD<21. To accomplish this goal, we 

used the Joint and Individual Variation Explained (JIVE) method (19). JIVE differs from other 

network-based structural covariance analyses described above, which are limited to group-level 

analyses, and thus cannot obtain individual-level measures of structural synchronization. In 

contrast, JIVE summarizes structural covariation patterns across multiple morphological 

measures into different component scores. Since brain structures with larger loading 

magnitudes in a JIVE component are generally more correlated than those with smaller loading 

magnitudes in the same component (20), the JIVE component scores may provide insight into 

the extent of synchronized development across brain regions and morphological measures at 

individual levels. Indeed, our prior work has shown that JIVE can be used to integrate multiple 

morphological measures into joint and specific components that can robustly predict brain age 

(20). In short, JIVE analysis may help reveal information at the brain network level, not only 

providing an efficient data reduction, but also indicating potentially interacting neural circuits.   

Given that cortical and subcortical regions are associated with early initiation of alcohol 

use and BD (1, 2), we hypothesized that cortical and subcortical covariation patterns across 

multiple morphological measures would be related to AFD<21 and BD. We used the Human 

Connectome Project (HCP) (21) dataset for our primary analyses and the Nathan Kline Institute-

Rockland Sample (NKI-RS (22)) for replication. Our finding of an AFD<21-associated joint 

component dominated by structural covariation among brainstem, thalamus, and PFC suggests 

a potential important role of brainstem in alcohol addiction in humans, possibly via the thalamus-

PFC-brainstem circuit.  

 

METHODS AND MATERIALS 

 

Study Sample 

 

We utilized 293 subjects from the HCP S1200 data (21). The HCP is a community-based 

sample with participants free of current serious psychiatric conditions or neurologic illness, and 
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free of lifetime substance use disorders (SUDs) other than AUD, cannabis use disorder, and 

tobacco use disorder. The full HCP S1200 data includes 1,206 participants aged 22-36 years 

with structural brain imaging data along with alcohol consumption information from the Semi-

Structured Assessment for the Genetics of Alcoholism (SSAGA). Our final sample was selected 

based on the following criteria.  

  

Inclusion and Exclusion Criteria 

 

For inclusion in analyses, participants met the following criteria: 1) passed image quality 

controls; 2) had no conflict information between SSAGA survey and laboratory drug results; 

and, 3) had complete data on SSAGA substance use measures, T1-weighted cortical 

morphometric features, and potentially confounding variables. Subjects with lifetime AUD status 

were included only if they reported BD in the past 12 months. Given brain alterations related to 

use of other substances, subjects with any lifetime SUDs without AUD co-morbidity were 

excluded from analyses, regardless of past 12-month BD status. Healthy controls (HCs) 

reported no more than one (for female) or two (for male) drinks in any drinking day in their 

lifetime. Also exclusionary to HC status were: 1) more than five lifetime uses of any illicit drugs 

including hallucinogens, opiates, sedatives, and stimulants; and, 2) positive drug tests for 

methamphetamine, amphetamines, cocaine, opiates, tetrahydrocannabinol, and oxycontin. The 

final sample consisted of 293 participants (144 HC vs 149 BD). 

 

BD and Age at First Full Drink Prior to 21 Years (AFD<21) 

 

BD subjects were defined as those who had at least four (for female) or five (for male) drinks 

within a period of 24 hours at least once per week in the past 12 months. AFD<21 indicated 

whether the participant had his/her very first full alcoholic drink (e.g., beer, wine, wine coolers, 

and hard liquor) prior to 21 years. The age of 21 years was chosen as it is the minimum legal 

drinking age in the US. Per the National Institute on Alcohol Abuse and Alcoholism guidelines, 

people younger than 21 years should avoid alcohol use completely 

(https://www.niaaa.nih.gov/alcohol-health/overview-alcohol-consumption/moderate-binge-

drinking).  

 

Validation Data Set 
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The NKI-RS includes publicly available data (22). We applied similar inclusion and exclusion 

criteria to select BD and HC subjects. Subjects aged between 18 and 60 years were selected if 

they met BD criteria in the past year (with or without lifetime AUD diagnosis). HC subjects were 

required to 1) be free of any SUDs, and 2) have no self-reported BD history, limited alcohol use, 

and no or only occasional past-year use of other substances. The selected sample consisted of 

93 subjects (46 HC and 47 BD). Potentially confounding variables were controlled in regression 

analyses, including age, sex, race (white vs. other), socioeconomic status, fluid intelligence 

(Wechsler Abbreviated Scale of Intelligence-II), handedness, and estimated total intracranial 

volume.  

 

Brain Image Processing 

 

All T1-weighted imaging data in the HCP sample were acquired on a customized Siemens 3T 

Skyra scanner using a multi-band sequence at a spatial resolution of 0.7 mm isotropic voxels 

(21). Structural scans were preprocessed using the customized HCP structural pipeline based 

on FreeSurfer 5.3 and quality controlled by the HCP team. The tabulated structural dataset 

includes multiple morphometric measures for each subject. Based on prior findings from studies 

of early initiation of alcohol use and BD, we investigated structural covariation patterns among 

GM volumes in 17 subcortical regions (left and right amygdala, accumbens area, caudate, 

hippocampus, putamen, pallidum, thalamus proper, ventral diencephalon, and brainstem), and 

cortical thickness, surface area and GM volume in 68 regions-of-interest (ROIs) based on the 

Desikan-Killiany atlas (23).  

Subjects in the NKI-RS sample underwent a scan session using a Siemens TrioTM 3.0T 

MRI scanner. T1-weighted images were acquired using a magnetization-prepared rapid gradient 

echo (MPRAGE) sequence with 1mm isotropic resolution. The structural images were 

preprocessed using the recon-all pipeline from FreeSurfer version 5.3.0 (24, 25), an extensively 

used robust pipeline optimized for 1mm isotropic data. Image pre-processing quality was 

checked following ENIGMA image quality control protocols 

(http://enigma.ini.usc.edu/protocols/imaging-protocols/).  

 

Statistical Analysis of Cortical and Subcortical Covariation Patterns 

 

Subcortical GM volume, cortical thickness, surface area, and cortical GM volume were treated 

as four data sources. We utilized JIVE (19) to identify covariation patterns consistent across 
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different morphological measures and patterns unique to individual morphological measures. 

JIVE is a dimension-reduction and pattern-discovery approach for data from multiple resources. 

Specifically, JIVE decomposes total variation into three terms: joint variation across multiple 

morphometric measures, structured variation unique to each morphometric measure, and 

residual noise to be discarded from analyses.  

 Briefly, let ��, ��,�� , �� be data matrices for four morphological measures in which each 

row stands for a morphometric feature (e.g., surface area, cortical thickness) and each column 

for a subject, �� be matrix for individual structure of �� , �� be the submatrix of joint structure 

matrix associated with �� , and ��  be error matrix of �� . The JIVE model can be written as 

�� � �� �  �� � �� , …, �� � �� �  �� � ��. An iterative approach was used to estimate the 

loadings of �� and ��  (i.e., joint and individual components). The optimal number of joint and 

individual components was determined via a permutation approach (19) with 10,000 

permutations and the significance level set to 0.0001. All procedures were implemented in R 

using modified functions from the r.jive package.  

 

Linear Mixed Regression Analysis 

 

To control for potential confounding effects in regression analysis, we included covariates of 

age, sex, race (white vs. other), education and income level (to approximate socioeconomic 

status), twin status (monozygotic, dizygotic, or unrelated), fluid intelligence score based on 

Raven’s Progressive Matrices, and estimated total intracranial volume (to control for differences 

in overall head size). Linear mixed models with family as a random effect were used to test 

whether JIVE joint and individual components were related to BD status and AFD<21. To 

control for multiple comparisons, the false discovery rate (FDR) was controlled at 0.05 

significance. 

 

RESULTS 

 

Participant Characteristics (HCP Sample) 

 

The HCP sample included 144 HCs, 61 BD subjects without lifetime AUD diagnosis (BD-AUD), 

and 88 BD subjects with lifetime AUD diagnosis (BD+AUD) (Table 1). These groups did not 

differ significantly on age, handedness, household income, education, intelligence, zygosity, and 

family history of drug or alcohol use. However, our bivariate analyses indicated that there were 
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significantly more white males in the BD group. Also, the HC group on average had significantly 

smaller estimated intracranial volumes than the BD group. As expected, there was a significant 

difference in age at first use of alcohol. The mean age at first full drink was 20.3 (	2.8) years for 

HC, 17.1 (	2.5) years for BD-AUD, and 16.0 (	1.9) years for BD+AUD.  

 

Cortical and Subcortical Covariation Patterns 

 

JIVE analysis of 221 brain features (three cortical morphological measures for each of 68 ROIs 

plus 17 subcortical GM volumes) from the HCP sample led to identification of 14 brain 

signatures (i.e., components). These included one joint component, and three, four, four, and 

two individual components specific to surface area, cortical thickness, and GM volumes in 

cortical regions and GM volume in subcortical regions, respectively. Figure 1 shows joint and 

individual variation across the four morphological measures. Overall, the joint component 

explained 38.4% of total variation, and the individual components collectively explained 27.6% 

of total variation. A considerable amount of residual noise was identified in cortical thickness 

(48.6%), surface area (37.3%), and GM volume (36.0%).  

 

Wide-Spread Cortical Thinning Associated with BD 

 

Controlling for confounding variables, separate linear mixed models were used to test 

associations between each JIVE component and BD status. After multiple-comparison 

adjustment, one individual component specific to cortical thickness was negatively associated 

with BD status, suggesting that past-12-month BD was linked to smaller mean cortical thickness 

component scores in both BD-AUD (beta=-0.062, p-value=0.001) and BD+AUD (beta=-0.057, p-

value=0.003) groups (Figure 2A). Post-hoc subgroup analyses revealed no differences in mean 

thickness component scores between BD-AUD and BD+AUD groups (beta=0.013, p-

value=0.544). To facilitate the interpretation of this cortical thickness component, we listed 

loadings for each of the 68 ROIs (Table S1). Loadings in most ROIs (~72%) ranged between 

0.1 and 0.15. Seven ROIs (mainly in the temporal lobe: right entorhinal, left and right temporal 

pole, transverse temporal region, and frontal pole) had loadings between 0.15 and 0.21, 

suggesting that BD might have a slightly stronger relationship with systematic cortical thinning in 

temporal lobe regions compared to others. Overall, results suggest that wide-spread cortical 

thinning is associated with past-12-month BD. 
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Brain Anatomical Covariation Patterns Associated with AFD<21 

 

Separate linear mixed models were used to test associations between JIVE components and 

AFD<21, controlling for potentially confounding variables. After multiple-comparison adjustment, 

two components were associated with AFD<21. First, the aforementioned cortical thickness 

component reflecting wide-spread cortical thinning associated with BD (Figure 2A) was also 

related to AFD<21 (beta=-0.066, p-value<0.001; Figure 2B). Second, individuals with AFD<21 

displayed greater mean joint component scores (beta=0.059, p-value=0.001; Figure 2C). This 

joint component, which includes structural covariation pattern across all 221 cortical and 

subcortical brain features considered (Table S2), is dominated by covariation patterns among 

subcortical and cortical GM volumes and cortical surface areas, and accounts for roughly 50% 

of variation within each of these three morphological measures. This joint component, however, 

accounted for only 1.3% of variation in cortical thickness. Most brain features (147 out of 221, 

66.5%) had loading magnitudes less than 0.05, 16 (7.2%) features had loadings between 0.05 

and 0.08, 34 (15.4%) had loadings between 0.08 and 0.10, and 24 brain features (10.9%) had 

loadings greater than 0.10. The 24 brain features with the largest loadings and their individual 

associations with AFD<21 are listed (Table 2), and the loading plot of these regions is shown 

(Figure 2D). Figure S1 shows regions with loadings larger than 0.08. Among all 221 brain 

features, the brainstem had the largest loading (0.433), followed by the thalamus proper (left 

and right) and PFC regions (e.g., GM volume and surface area in left and right superior frontal 

and rostral middle frontal regions), suggesting that the joint component is dominated by 

synchronized/coordinated development in these brain regions. Surprisingly, most of these 

regions were not significantly related to AFD<21 based on the mixed model regression analysis 

(Table 2, and Table S2). Thus, our analysis suggests that AFD<21 may not lead to substantial 

individual brain alterations. Instead, AFD<21 may modify coordinated development among 

morphological measures in regions including brainstem, thalamus proper, and PFC, although 

longitudinal studies are needed to investigate this possibility. In addition, several cortical regions 

in the parietal, temporal and occipital lobes, and other subcortical regions including left and right 

putamen, hippocampus, caudate, and ventral diencephalon also had relatively large loadings in 

the joint component (Table S2). 

We also assessed whether age and sex were related to the joint component. Without 

controlling for confounding variables, the joint component was inversely related to biological age 

(beta=-0.011, p-value=0.001), and males had larger joint component scores (beta=0.311, p-

value<0.001). Controlling for race, socioeconomic status, handedness, and estimated 
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intracranial volumes, relationships with age (beta=- 0.006, p-value=0.013) and sex (beta=0.064, 

p-value=0.003) remained significant.  

 

Examining NKI-RS Data 

 

To investigate replication in an independent dataset, we conducted JIVE analyses in the NKI-

RS sample (Table S3). First, proportions of joint and individual variance explained were highly 

similar in the NKI-RS (Figure 3A) and HCP (Figure 1) samples. Second, the joint component 

identified in HCP analyses was highly reproducible in NKI-RS analyses. Pairwise Pearson 

correlation coefficients between the component loadings from both datasets were used to 

assess degrees of similarity in brain components. If an HCP component was correlated highly 

with more than one NKI-RS component, the maximal correlation coefficient was reported. We 

found that the HCP and NKI-RS joint components correlated highly (r=0.959; Figure 3B). Third, 

three individual components were also reproducible including components specific to subcortical 

GM volume (r=0.990), surface area (r=0.881), and cortical thickness (r=0.819), respectively. 

Correlations in loadings for other components specific to individual morphological measures 

were low to moderate (ranging from 0.234 to 0.743), indicating that these components were less 

reproducible. Of note, the thickness component related to BD (Figure 2A) and AFD<21 (Figure 

2B) identified from the HCP sample had moderate reproducibility in the NKI-RS sample, as 

evidenced by the maximal correlation of 0.624 between loadings of the cortical thickness 

component in HCP and NKI-RS samples.   

We also investigated whether relationships between two components (i.e., joint and 

thickness) and BD and/or AFD<21 were reproducible. Regression analysis, controlling for 

potential confounding effects, showed that neither BD (p-value=0.406) nor AFD<21 (p-

value=0.743) were significantly related to the thickness component in the NKI-RS. In contrast, 

the NKI-RS sample replicated the positive association between the joint component and 

AFD<21 (beta=0.023, p-value=0.040).  

In terms of age and sex, the joint component was inversely related to biological age in 

NKI-RS with (beta=-0.040, p-value<0.001) or without (beta=-0.032, p-value<0.001) controlling 

for confounding variables. The significant relationship between sex and the joint component was 

observed without controlling for confounding variables (beta=1.019, p-value<0.001), but no 

longer remained (beta=0.014, p-value=0.135) if controlling for confounding variables. 

 

DISCUSSION 
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Joint Structural Covariation Implicates Thalamus-PFC-Brainstem Circuitry  

 

Our hypotheses were largely supported in that we observed joint structural covariation 

suggestive of widespread cortical thinning related to BD and AFD<21 in HCP analyses and 

highly correlated joint structural covariation patterns linked to AFD<21 across HCP and NKI-RS 

datasets. Thus, the latter, replicable results may be more generalizable across samples. 

Although the former results resonate with those assessing relations between cortical thickness 

and alcohol misuse using HCP data and different analytical approaches (26), we did not 

observe these associations in the NKI-RS sample. Therefore, interpretation of relations between 

the JIVE thickness component and BD and AFD<21 should be made cautiously.  

A particularly consistent finding across samples is the association of a cortical and 

subcortical covariation pattern, or joint component, with AFD<21. The joint component is 

dominated by covariation between GM volume and surface area features across multiple 

regions (Table 2). Among all brain features, covariation among brainstem, thalamus proper, and 

superior and rostral middle frontal cortices contributed most. The PFC has been shown to play a 

critical role in early alcohol use initiation, as it is still maturing in adolescence and thus may not 

have sufficient control over sensation- or novelty-seeking which is promoted by subcortical 

regions and peaks in adolescence, according to dual-systems or maturational imbalance 

models (1, 4, 5). Although much less is known regarding the role of brainstem in youth alcohol 

use, alcohol use has been linked to impairment of lower-level brainstem functioning (27), and 

adolescents who initiated heavy drinking showed reduced brainstem volume (9). Importantly, 

the JIVE brainstem result appears to be consistent with a recent pre-clinical optogenetic study, 

which found that neural response in medial-PFC-brainstem circuitry during initial alcohol 

exposure in a mouse model predicted future compulsive drinking (16). However, the extent to 

which the PFC-brainstem circuitry contributes to human alcohol use remains unknown. Our 

JIVE finding that the brainstem contributes most strongly to the AFD<21-related joint component 

and covaries with PFC regions suggests a key role of brainstem in human alcohol addiction, 

likely via PFC-brainstem circuitry.  

Additionally, the identified frontal and brainstem regions also covary with thalamic GM 

volumes. The thalamus has been described as a “passive” information relay station, but data 

suggest that it contributes importantly to cognition (28). Thalamic function via corticothalamic or 

thalamocortical pathways integrates inputs from the PFC and other cortices. Indeed, the PFC 

and thalamus can be activated by alcohol cues (29), and decreased connectivity in the 
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thalamus-PFC fibre pathway is associated with AUD (30). In addition, a thalamus-dorsomedial-

PFC circuit was recently demonstrated to link to social dominance in mice (31). Notably, social 

behaviors also have been associated with PFC-brainstem circuitry in the mouse model (32), 

further suggesting coherence in the coordinated activities of these structures in the thalamus-

PFC-brainstem circuit. Given these data and our finding that the brainstem, thalamus and frontal 

regions are top contributors to the joint component score, we postulate a role for a thalamus-

PFC-brainstem circuit in early alcohol use initiation in humans. 

 Other cortical and subcortical structures also showing strong contributions to the joint 

component have been implicated in early alcohol use initiation. For example, differences in GM 

volume in parietal, temporal and occipital lobes have been reported in prior studies examining 

brain structural changes related to pre-initiation or post-drinking (9, 10, 33, 34). These regions 

are associated with various functions, such as motor control, emotion processing, language 

comprehension, and visuospatial processing. Several subcortical regions are noteworthy, 

including putamen, caudate and their functionally connected regions including the hippocampus 

and structures in the ventral diencephalon. The dorsal striatum, including putamen and caudate, 

has been implicated in addiction processes, particularly with respect to habitual versus goal-

directed behaviors (35-37). Consistently, the dorsal striatum is proposed as contributing 

importantly to binge/intoxication phases of AUDs (15). Hippocampal volumetric differences have 

been reported in adolescents with and without AUDs (38), hippocampus-dorsal-striatum 

connections are involved in formation of memories and habits may contribute (39), and the 

hippocampus-thalamus fibre pathway is related to AUD (30). The ventral diencephalon includes 

structures implicated in controlling alcohol consumption, such as the substantia nigra, 

subthalamic nucleus and hypothalamus (40-44). In summary, given extensive interconnections 

between the top three regions (thalamus, PFC, and brainstem) and other cortical or subcortical 

structures, these latter regions and related circuits may provide or modulate inputs to or outputs 

from the major thalamus-PFC-brainstem circuit in balancing impulse control vs. sensation- or 

novelty-seeking that may influence AFD<21. Cortical and subcortical covariation patterns may 

represent a potential brain-based biomarker for AFD<21. 

 

Structural Covariation May Reflect Synchronized Development 

 

A major advantage of JIVE analysis is that it can effectively consolidate covariation patterns 

among different morphological measures into lower dimensional representations (i.e., 

component scores). This is critically important for generating meaningful, interpretable results 
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using existing statistical models (45, 46). Other methods, such as structural learning and 

integrative decomposition of multi-view data (47), common orthogonal basis extraction (48), and 

group factor analysis (49), may also be used. Our results suggest that an attractive feature of 

JIVE is the performance robustness, consistent with our prior study of brain age prediction (20). 

Given that brain morphological measures within structurally and functionally connected regions 

often co-vary (17), the identified JIVE covariation patterns may be interpreted as synchronized 

or coordinated development of brain structures across cortical and subcortical regions, although 

longitudinal studies should examine this directly. Longitudinal studies may also disentangle the 

extent to which such relationships exist prior to or subsequent to alcohol use. Nonetheless, our 

study underscores the importance of using innovative data-driven approaches to extract novel 

information from big data to provide new insight into alcohol-use behaviors/problems.  

 

Limitations 

 

Our work is cross-sectional and retrospective; thus, it is not possible to determine whether this 

joint structural covariation pattern reflects a consequence or a precursor of AFD<21. Also, as 

most HCP participants initiated alcohol use prior to tobacco and/or cannabis use, it remains 

unclear whether the identified structural covariation pattern is specific to alcohol use. Future 

studies using longitudinal data are needed to determine: 1) whether the identified structural 

covariation pattern can prospectively predict initiation of use of alcohol and/or other substances; 

2) how developmental trajectories of brain structural covariation patterns change from childhood 

to adolescence; and, 3) whether this structural covariation pattern predicts risk or resilience 

relative to substance use. Additionally, due to limited sample sizes, sex, age and other factors 

were treated as covariates. Future studies using JIVE in larger samples may provide insights 

into effects of these individual differences on structural covariation patterns and their 

relationship to BD and AFD<21.  

 

Conclusions 

 

JIVE identified a highly reproducible cortical and subcortical structural covariation pattern 

involving brain regions relevant to thalamic-PFC-brainstem neural circuitry. Further, a 

covariation pattern was linked to AFD<21 in both HCP and NKI-RS datasets. This data-driven 

discovery study highlights the importance of considering subcortical and cortical regions 

together to increase understanding of AFD<21 correlates. 
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Table S3. Summary of binge drinking and heathy control subjects from the NKI-RS sample 
used in this study. 
 

Figure S1. Brain regions in the joint component with loadings larger than 0.08. 
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Table 1. Summary of binge drinking and heathy control subjects from the HCP sample used in 
this study. 
 
Variables HC BD-AUD BD+AUD 

Number of subjects 144 61 88 
Age (SD) 28.8 (4.1) 27.5 (3.8) 28.2 (3.2) 

Sex: Female * 86 (59.7%) 25 (41.0%) 20 (22.7%) 
Race: White * 87 (60.4%) 42 (68.9%) 77 (87.5%) 

Household income (<$50,000) 61 (42.4%) 26 (42.6%) 34 (38.6%) 
Education (<16 years) 64 (44.4%) 27 (44.3%) 41 (46.6%) 

Handedness (SD) 69.6 (40.1) 63.0 (45.0) 61.4 (43.7) 
Intelligence: PMAT24 score (SD) 16.9 (4.8) 16.0 (4.9) 17.2 (4.5) 

Total intracranial volume cm3 (SD) * 1561.2 (197.7) 1590.5 (197.0) 1671.0 (154.4) 

Zygosity 
           Individual subjects 85 (59.0%) 36 (59.0%) 57 (64.8%) 

        Dizygotic twins 30 (20.8%) 9 (14.8%) 16 (18.2%) 
        Monozygotic twins 29 (20.1%) 16 (26.2%) 15 (17.0%) 

Family history of drug or alcohol use 22 (15.3%) 9 (14.8%) 20 (22.7%) 
Age at first use of alcohol (SD) * 20.3 (2.8) 17.1 (2.5) 16.0 (1.9) 
 
HC, healthy controls; BD-AUD, BD without AUD, BD+AUD, BD with AUD. PMAT24, Raven’s 
Progressive Matrices. SD, standard deviation. * indicates a significant difference at 0.05 level 
(without multiple comparison adjustment). 
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Table 2. Loading of top brain regions in the joint component related to AFD<21. 
A total of 24 brain regions and morphological measures in the joint component showing a 
loading of larger than 0.100 are listed based on the order of the magnitudes of the loadings. The 
results from individual linear mixed regression analyses are also listed. 
 
Shape ROI   Loading   Estimate Std. Error P-value P-adj. 

s17.joint1   -0.06 0.02 0.001 0.016 

SC Vol Brainstem 0.434 -81.41 234.73 0.729 1 

SC Vol L_Thalamus proper 0.193 78.82 90.51 0.385 1 

GM Vol L_Superior frontal 0.178 499.14 259.03 0.055 1 

GM Vol R_Superior frontal 0.171 397.00 257.66 0.125 1 

Area L_Superior frontal 0.169 48.00 81.38 0.556 1 

SC Vol R_Thalamus proper 0.161 109.51 76.38 0.153 1 

Area R_Superior frontal 0.161 38.85 80.91 0.632 1 

Area R_Rostral middle frontal 0.144 58.63 79.71 0.463 1 

GM Vol R_Rostral middle frontal 0.142 449.90 238.24 0.060 1 

Area L_Rostral middle frontal 0.137 5.91 77.23 0.939 1 

GM Vol L_Rostral middle frontal 0.137 172.54 235.32 0.464 1 

Area R_Inferior parietal 0.125 12.88 80.50 0.873 1 

GM Vol R_Inferior parietal 0.124 252.43 236.13 0.286 1 

Area L_Inferior parietal 0.113 -61.34 68.54 0.372 1 

Area L_Superior parietal 0.112 75.94 68.06 0.265 1 

GM Vol R_Middle temporal 0.111 3.98 156.81 0.980 1 

Area R_Superior parietal 0.109 111.45 70.26 0.114 1 

GM Vol L_Inferior parietal 0.109 -13.00 202.65 0.949 1 

SC Vol R_Putamen 0.106 157.07 57.69 0.007 0.165 

GM Vol L_Inferior temporal 0.105 295.26 186.85 0.115 1 

GM Vol R_Precentral 0.103 339.72 166.59 0.042 0.974 

Area L_Supramarginal 0.101 27.58 56.56 0.626 1 

Area R_Lateral occipital 0.101 10.65 64.34 0.869 1 

Area R_Precentral   0.101   60.21 55.14 0.276 1 

 
Abbreviations: ROI, region-of-interest; L, left; R, right. SC Vol, subcortical volume; GM Vol, grey 
matter volume; Area, surface area. SE, standard error. P-value and P-adj. represent the p-
values from the linear mixed regression models without and with multiple comparison 
adjustment, respectively. 
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Figure Legends 
 
Figure 1. Proportion of variance explained by JIVE components in the HCP data. 
 
Figure 2. JIVE components related to binge-drinking and age at first full drink prior to 21 years 
in the HCP data.  
(A & B) Boxplots showing a cortical thickness component related to binge-drinking status (p-
value=0.003) and to age at first alcohol use (p< 0.001). (C) Boxplot showing the JIVE joint 
component related to age at first full drink (p=0.001). (D) Plots of brain regions in the joint 
component with loadings larger than 0.10. Interior and exterior views of the brain regions are 
presented for each morphological measure. Brainstem is not shown. 
HC, healthy controls; BD-AUD, subjects with BD in the past 12 months but without AUD 
diagnosis; BD+AUD, subjects with both BD in the past 12 months and AUD diagnosis. 
 
Figure 3. A highly similar joint component exists in the NKI-RS data.  
(A) Proportion of variance explained by JIVE components in the NKI-RS data. (B) Correlation of 
the loadings for 221 ROI structural features in the joint components derived from the HCP and 
the NKI-RS data sets.  
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Fig. 1. Proportion of variance explained by JIVE components in the HCP data. 
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Figure 2. JIVE components related to binge-drinking and age at first full drink prior to 21 years 
in the HCP data.  
(A & B) Boxplots showing a cortical thickness component related to binge-drinking status (p-
value=0.003) and to age at first alcohol use (p< 0.001). (C) Boxplot showing the JIVE joint 
component related to age at first full drink (p=0.001). (D) Plots of brain regions in the joint 
component with loadings larger than 0.10. Interior and exterior views of the brain regions are 
presented for each morphological measure. Brainstem is not shown. 
HC, healthy controls; BD-AUD, subjects with BD in the past 12 months but without AUD 
diagnosis; BD+AUD, subjects with both BD in the past 12 months and AUD diagnosis. 
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Fig. 3. A highly similar joint component exists in the NKI-RS data (shown) as identified in the 
HCP data.  
(A) Proportion of variance explained by JIVE components in the NKI-RS data. See Figure 1 for 
proportion of variance explained by JIVE components in the HCP data. (B) Correlation of the 
loadings for 221 ROI structural features in the joint components derived from the HCP and the 
NKI-RS data sets.  
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