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ABSTRACT 
Development of accurate disease models and discovery of immune-modulating drugs is challenged by the immune 
system’s highly interconnected and context-dependent nature. Here we apply deep-learning-driven analysis of cellular 
morphology to develop a scalable “phenomics” platform and demonstrate its ability to identify dose-dependent, high-
dimensional relationships among and between immunomodulators, toxins, pathogens, genetic perturbations, and small 
and large molecules at scale. High-throughput screening on this platform demonstrates rapid identification and triage of 
hits for TGF-β- and TNF-ɑ-driven phenotypes. We deploy the platform to develop phenotypic models of active SARS-
CoV-2 infection and of COVID-19-associated cytokine storm, surfacing compounds with demonstrated clinical benefit 
and identifying several new candidates for drug repurposing. The presented library of images, deep learning features, 
and compound screening data from immune profiling and COVID-19 screens serves as a deep resource for immune 
biology and cellular-model drug discovery with immediate impact on the COVID-19 pandemic. 
 

 
INTRODUCTION 
Acting through autocrine, paracrine, and endocrine mechanisms, 
endogenous immune stimuli maintain homeostasis and signal 
response to invasion, injury, or malignancy. Immune 
dysregulation underlies a broad set of human diseases including 
inflammation1, autoimmune disease2, neuroinflammation3, 
neurodegenerative disease4, secondary effects of traumatic brain 
injury5, cancer6,7, infection8–10, and cytokine storm11,12. 
Improvements in the understanding of how immune stimuli 
amplify or suppress the immune system, trigger new cell fate 
differentiation, and remodel tissue have resulted in the discovery 
of a wide range of successful therapeutics13, as demonstrated by 
the anti-TNF antibody adalimumab (Humira), noted both for its 
discovery14 and its application in rheumatic disease15. However, 
the immune system is vastly complex and dependent on cell type 
and context; reliably intervening in such a highly interdependent 
process is a formidable drug discovery challenge. 
 
With few exceptions16, intercellular immune signaling has been 
explored by studying specific factors in isolation. Although 
cellular response to individual immune stimuli can be effectively 
profiled by high-dimensional molecular methods such as 
RNAseq17, proteomics18, and CHIPseq19, these technologies lack 
the speed and cost-effectiveness for systems-level analysis of 
large panels of immune stimuli and screening libraries across 
myriad inflammatory models. By contrast, image-based methods 
have demonstrated utility at many stages of drug discovery20, 

including compound profiling21, prediction of assay 
performance22, clustering by mechanism of action23,24, and 
toxicology predictions25. 
 
Here we present phenomics, the analysis of fluorescence 
microscopy images as a scalable approach to examine cellular 
response to a wide range of perturbations. Deep-learning 
algorithms extract high-dimensional and dose-dependent 
fingerprints of cellular morphological changes, or ‘phenoprints’, 
from images to support a variety of downstream applications. 
These phenoprints detect subtle morphological changes far 
beyond human ability, and a standardized assay pipeline allows 
the phenoprints of millions of cellular samples to be related 
across time and experimental conditions. In this work, we first 
demonstrate the ability to use images alone to accurately 
quantify and relate hundreds of immune stimuli. We then show 
how profiles resulting from these perturbations can be employed 
in drug screening, particularly highlighting the utility of a 
relatable dataset to accurately predict the mechanism of action 
for unknown compounds. We used these capabilities to rapidly 
develop high-throughput-ready disease models for both SARS-
CoV-2 viral infection and the resulting cytokine storm, and 
immediately launched large-scale drug screens that recapitulated 
known effective and ineffective therapies and, more importantly, 
identified several new potential treatments for both SARS-CoV-
2 infection and COVID-19-associated cytokine storm. 
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RESULTS 
Mapping response to immune stimuli: Generating 
phenoprints 
In order to discern the breadth of immune response that might be 
captured in a single profiling assay for various applications (Fig. 
1), we treated endothelial cells, fibroblasts, peripheral blood 
mononuclear cells (PBMC), and macrophages with diverse 
immune stimuli (Table S1), CRISPR gene editing reagents, 

antibodies, and small molecules. We used a single fully 
automated experimental workflow in which cells are plated, 
treated, labeled with a panel of fluorescent stains, and imaged 
with high-throughput fluorescence microscopy26. Vector 
representations of more than one million multi-channel 
fluorescence microscopy images analyzed in this manuscript 
were generated using a proprietary analytics workflow based on 
an extension of a DenseNet-161 neural network27 

 

 

 
Fig. 1: Phenomic platform for scaled discovery and exploration in immunology 
Various cell types (top left) are treated with a range of biological perturbants and treatments (bottom left), including recombinant proteins, 
antibodies, CRISPR-based genetic modifications, and small molecules. High-throughput fluorescence microscopy (middle-top) and deep learning-
enabled image featurization generates high-dimensional phenoprints that are used for interrogating a range of experimental questions (middle-top 
and middle bottom). This approach suits a suite of applications (right) with a single workflow and on a single platform. Specific applications 
demonstrated in this paper: systems biology exploration of immune relationships, adaptation across diverse disease models, compound screening, 
and mechanism prediction. 
 
Identifying immune stimulant phenoprints 
Phenoprints are high-dimensional vector representations 
(embeddings) of cellular morphology derived from fluorescent 
images resulting from treatment with a biological perturbation. 
To provide landmark phenoprints across a diverse range of 
immune function, 446 stimuli were added to four different 
primary human cell types at a range of biologically relevant 
concentrations and compared to untreated cells and adjacent 
concentrations. For example, cells treated with tumor necrosis 
factor alpha (TNF-ɑ), the anti-PD-1 antibody nivolumab, 
transforming growth factor beta (TGF-β), or interferon alpha 
(IFN-ɑ) each displayed concentration-dependent phenotype 
strength measured as intra-replicate consistency as well as 
increasing convergence of the phenotype (Fig. 2A). In total, 131 

of 446 stimuli produced highly consistent, dose-dependent 
phenoprints in at least one cell type (Fig. 2B), with representation 
from cytokines, growth factors, chemokines, antibodies, 
microbial toxins, and others (Fig. S2). 
 
A subset of factors, such as innate stimulants like LPS, 
interferons, and microbial toxins (e.g. enterotoxins) produced 
strong dose-dependent phenoprints in all cell types tested. By 
contrast, other stimuli produced phenoprints only in the expected 
cell type: Vascular endothelial growth factor (VEGF) in 
endothelial cells, fibroblast growth factor (FGF) family in 
fibroblasts, innate stimulants and interferons in macrophages and 
PBMCs, and TGF-β family in both macrophages and 
fibroblasts28,29. 
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Fig. 2: Dose dependent mapping of immune stimuli effects across multiple human cell types using phenomics 
A. Example phenoprints for indicated immune stimuli and cells. The intra-dose cosine similarity among well replicates (n=6) for each perturbation 
dose, demonstrating perturbation consistency(red), and average pairwise cosine similarity between each perturbation dose (blue) and the highest 
dose, demonstrating phenotypic convergence. B. Statistically significant phenoprints induced by immune stimuli (rectangles, colored by class as in 
Fig. 2C) are connected by edges to the cell type (circles) in which the phenoprint was observed. Thicker edges reflect stronger interactions. C. 
Classes of all immune stimuli in immune perturbant library. 
 
Mapping high-dimensional functional relationships 
To test whether phenoprints could capture known functional 
relationships, we applied hierarchical clustering and confirmed 
appropriate grouping for factors with similar function and/or 
structural homology, often in a cell-type-specific manner (Fig. 
3A, Table S2). For example, related factors IL-4 and IL-13, and 
all type-I IFNs clustered in unique groups in any cell type in 
which a phenoprint was observed. Chemokines (such as CCL-4 
and MCP-2) and innate stimulants (such as LPS and flagellin) 
are also readily grouped with other stimulants, but only in their 

appropriate cell types: macrophages and PBMCs (Fig. 3A, 
green/purple edges). Growth factors cluster in fibroblasts, 
consistent with their sensitivity to environmental cues for matrix 
remodeling and organ function, and ability to differentiate into 
other states such as myofibroblasts under inflammatory pressure 
(Fig. 3A, blue edges)30,31. 
 
Phenoprints also captured associations between initial stimuli 
and overlapping secondary effects, as in the case of clusters for 
activators of NFkB (TNF-ɑ, IL1β), interferons induced by IRF3, 
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and TLR3 ligands (Poly (I:C) variants) in endothelial cells (Fig. 
S1C). Double-stranded RNA motifs such as Poly (I:C) are 
recognized by TLR3, which signals through both NFkB and 
IRF3 pathways32. 
 
Fine-grained distinctions were visible in clustered phenoprints. 
For example, the TGF-β superfamily (TGF-β proteins, growth 
differentiation factors, activins, and Müllerian inhibiting 
substance) formed a distinct cluster from other growth factor 
families, which included the epidermal growth factor (EGF) 
family (EGFs, TGF-ɑ, betacellulin, heparin-binding EGF), 
platelet-derived growth factor (PDGF) family, FGF family and 
the insulin-like growth factor (IGF) family (Fig. S1D). Within 

these larger groupings, nearly structurally-identical TGF-β 
isoforms TGF-β1, TGF-β2, and TGF-β3 clustered more tightly 
than do other members of the TGF-β superfamily33. 
 
Pathogen-derived toxins also revealed expected relationships. C. 
difficile toxins A and B produced cell-type-specific similarities 
with members of the human immune stimulant panel (Fig. S1E). 
These toxin phenoprints were similar to those of interferon 
proteins in macrophages, as well as to IL-6 superfamily members 
and NFkB-mediated stimulants in HUVEC. This aligns with the 
known dual pathology of C. diff. infection, involving both 
inflammation through macrophage activation34 and direct gut 
permeabilization effects35. 
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Fig. 3: Recapitulation of known biological relationships using phenomics 
A. High-dimensional morphological relationships in four cell contexts. Immune stimuli are arranged based on hierarchical clustering of all factors 
in all cell types; only factors with a statistically strong phenoprint in at least one cell type are shown. Lines between nodes are filtered for similarity 
and colored based on the cell type in which the association was observed. B. Hierarchical clustering of phenoprints resulting from HUVEC treated 
with an annotated compound library. Highlighted clusters pertain to small molecule inhibitors of AGC family kinases: AKT (blue), ROCK 
(orange), MEK (orange)/ERK (blue), and mTOR inhibitors: rapalogues (blue), PI3K inhibitors (orange) and mTORC1/2 (green). C. Process for 
reduction of high-dimensional data into two dimensions. D. Projections of compound response in the context of on- and off-perturbation vectors 
and logistical regression for on-perturbation values by drug concentration for TNF-ɑ, IL-6 (receptor chimera) ligands, and SOCS3 knockout in 
HUVEC (mean, n=6). Contour lines depict perturbation state (orange) and target state (blue) replicates at the 50, 90, and 99th percentiles, 
respectively. 
 
Evaluating immune-relevant therapeutic candidates 
Confidence in phenotypes resulting not only from the immune 
perturbation but those resulting from compounds in a screening 
library is critical for evaluation of high-throughput screens. To 
this end, we generated individual compound phenoprints from an 
annotated bioactive library, which indeed clustered by 
mechanism of action (Fig. 3B). For example, inhibitors of AGC 
kinases Akt and ROCK clustered within a super-group as did 
inhibitors of MEK and ERK, which is expected based on protein 
homology and sequential signaling, respectively. More granular 
sub-clusters were also observed; for example, a diverse group of 
inhibitors of mTOR can be sub-classified into rapalogues, PI3K 
inhibitors and mTORC1/2 inhibitors. 
 
We next tested whether phenomics could uncover compounds 
that rescue the complex high-dimensional effect of various 
immune perturbants. We applied several disease-related 
phenoprints identified above and defined a corresponding 
perturbation vector in high-dimensional embedding space. 
Compounds that rescued on-perturbation morphology with 
minimal deviation in off-perturbation morphology were selected 
as screen hits, as they offer a potential combination of efficacy 
and specificity (Fig. S3A, B). 
 
We first validated the strategy using approved anti-TNF 
antibodies in the context of a TNF-ɑ phenoprint (Fig. 3D). All 
tested antibodies rescued the phenoprint induced by TNF-ɑ 
(perturbed state) back towards the unperturbed phenoprint 
(target state), but infliximab was less potent relative to 
adalimumab and golimumab. It is known that infliximab, 
adalimumab, and golimumab all have similar affinities for TNF-
ɑ36, but only adalimumab and golimumab are effective in the 
absence of concomitant immunosuppression37. Although many 
factors can affect antibody performance, this finding suggests 
phenomics can differentiate subtleties of antibody efficacy 
beyond affinity for the ligand. 
 
Next, we selected a set of clinical-stage and approved JAK 
inhibitors to test the ability of phenomics to model compound 
rescue of IL-6 signaling when cells are activated by the ligand or 
when disrupted by genetic modification. Tofacitinib, baricitinib, 
ruxolitinib, and oclacitinib reverse the phenoprint of the IL-6 
receptor chimera in HUVEC in a dose-dependent manner. In 
addition to identifying compounds that block receptor-mediated 
signaling, we demonstrated compound-induced rescue of a 
phenotype resulting from knockout of an intracellular mediator. 

Here, knockout of SOCS3 using CRISPR/Cas9 leads to 
hyperactivation of JAK signalling38, resulting in a phenoprint 
that is rescued by the same set of compounds (Fig. 3D; 
comparison to inactives: Fig. S3C). 
 
Discovery of a novel small molecule inhibitor of the TGF-β 
phenoprint and rapid triage using phenomics 
Well-designed phenotypic screening efforts benefit from being a 
more proximal model of the disease, and since they are not 
limited to pre-defined targets, offer the ability to uncover novel 
therapeutic pathways39. However, this carries the risk of 
investing time and resources into compounds that are later 
discovered to interact with known or disadvantageous pathways. 
To address this challenge, we leveraged the relatability of our 
NCE screening and annotated compound datasets to identify 
novel therapeutic opportunities while rapidly deprioritizing 
high-risk mechanistic space, as demonstrated in a screen against 
the TGF-β-induced phenoprint. 
 
TGF-β, signaling through the receptor ALK5, is recognized as a 
primary driver of fibrosis in debilitating diseases such as 
idiopathic pulmonary fibrosis and renal fibrosis, as well as a 
significant contributor to immune exclusion in the tumor 
microenvironment29. The diversity and consistency of 
phenoprints recapitulating known biology suggested phenomics 
might discover new chemical entities (NCE) and predict 
mechanism of action. We therefore screened 90,000 diverse 
chemical starting points (Fig. S4A) against the TGF-β 
phenoprint (Fig. 4A). A novel compound of interest (REC-
0104937) completely reversed the phenoprint at low micromolar 
concentrations. Further, this same compound rescued an 
orthogonal functional validation assay, mitigating TGF-β-
induced collagen deposition with an EC50 of 0.763 µM (Fig. 4B). 
We then compared the REC-0104937 phenoprint to reference 
phenoprints derived from a set of 6,000 diverse, well-annotated 
small molecules; several known ALK5 inhibitors were highly 
similar (Fig. 4C). We experimentally validated the accuracy of 
these predictions in gold standard assays of ALK5 activity: REC-
0104937 inhibited cellular p-Smad activity and cell-free 
biochemical ALK5 activity at 0.585 µM and 0.725 µM 
respectively (Fig. S4D, Fig. 4D)40,41. Because the advancement 
of TGF-β receptor inhibitors has been hampered by cardiac 
toxicity42, and because our research goals are to identify 
compounds acting against novel pathways, we rapidly 
deprioritized this compound in favor of others based on the 
primary screening data. 
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Discovery, mechanism prediction, validation, and lead 
optimization of small molecules that rescue the TNF-ɑ 
phenoprint in an NFkB-independent manner 
Overactive TNF-ɑ signaling is a major driver of inflammation in 
inflammatory and autoimmune diseases including Alzheimer’s 
disease43, multiple sclerosis44, and traumatic brain injury45, and 

significant benefit has been achieved with monoclonal antibody 
intervention46. We therefore sought to rescue the TNF-ɑ 
phenoprint with an intervention that not only targets a novel 
mechanism of action, but also benefits from advantages of small 
molecules over existing antibodies, such as oral availability and 
increased central nervous system penetration.

 

 
 
Fig. 4: Rapid advancement of active screening compounds 
A. Projections of compound response onto the perturbation vector for TGF-β in fibroblasts. B. Impact of REC-0104937 on Collagen 1A1 (n=32) 
expression in fibroblasts as quantified by immunofluorescence and C. High dimensional cosine similarity analysis of REC-0104937 compared to 
annotated compounds. Red bars are annotated ALK5 inhibitors. D. ALK5 activity in a cell-free biochemically assay (n≥2). E. Projections of 
compound response in the context of perturbation vector for TNF-ɑ in HUVEC. F. IL-6 secretion (HTRF) from HUVEC treated with 1 ng/mL 
TNF-ɑ in the presence of REC-0150357 and REC-0082469. G. Distribution of cosine similarity of phenoprints of an annotated compound library 
to that of REC-0150357. Red lines highlight ROCK inhibitors. Measurement of IL-6 secretion in in response to REC-0082469 and 1 ng/mL TNF-
ɑ. H. Rescue of TNF-ɑ+IFN-γ-induced IBA-1 expression in microglia in the presence of REC-0082469 (n=5, mean+standard deviation). I. 
Projection of on-perturbation scores and EC50 values for each peripheral modification to the scaffold core (mean, n=6). 
 
We found 2,073 compounds that statistically altered the TNF-ɑ 
phenoprint at a single dose in a 90,000-compound primary 
screen. We tested these for dose response and selected a subset 
for validation. Although suppression of TNF-ɑ signaling through 
NFkB blockade is a plausible anti-inflammatory strategy, 
reduction of TNF-ɑ signaling via global inhibition of NFkB 

leads to a challenging safety profile47. Two molecules (REC-
0150357 and REC-0082469) rescued the TNF-ɑ-induced 
phenoprint (Fig. 4E) and prevented secretion of IL-6, a marker 
of TNF-ɑ stimulation (Fig. 4F) while preserving NFkB 
activation (Fig. S4E). By comparing the phenoprint of REC-
0150357 to phenomics data from annotated compounds in prior 
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experiments, we found strong similarity between the phenoprints 
of REC-0150357 and Rho kinase inhibitors (Fig. 4G). This 
finding was corroborated by kinase profiling, revealing ROCK1 
and ROCK2 inhibition at 0.097 and 0.066 µM, respectively (Fig. 
S4F). During intellectual property exploration, the target was 
further confirmed; the scaffold was previously evaluated as a 
ROCK inhibitor48. Kinases that were inhibited to a lesser degree 
were CDK7 and DYRK1B (Fig. S4F). The effect of ROCK2 
inhibition on TNF-ɑ-induced inflammation is documented51 and 
similar compounds are in active development for autoimmune 
disease49,50. Therefore, we deprioritized the compound using 
high-dimensional primary screening data in favor of another 
compound, REC-0082469. The alternative scaffold also reduced 
TNF-ɑ-induced IL-6 release (Fig. 4F) but did not phenotypically 
cluster with any of the mechanistic classes annotated in our 
libraries, thus enabling informed prioritization of the compound 
for further study. In a >400 kinase biochemical screen, the 
compound showed no significant inhibition of any kinase at 1 
µM. To investigate the potential benefit of REC-0082469 in 
neuroinflammation, we explored the role of the molecule to 
suppress microglial activation in vitro. Using an 
immunofluorescence stain for the microglial activation marker 
IBA-151

 we confirmed that REC-0082469 reduced the activation 
of BV-2 mouse microglia (Fig. 4H; example images Fig. S4G). 
Given the potential of REC-0082469 to operate via a novel 
mechanism of action (MOA) we initiated a hit optimization 
effort initially focused on enhancing the series potency (REC-
0082469 EC50 > 1 uM). We used phenomics as to assess our 
efforts to optimize potency while maintaining or improving 
efficacy against an unknown target; we succeeded in improving 
potency by more than ten-fold (REC-0648455 EC50 = 71 nM) 
and improving the on-perturbation score to 0.05 (Fig. 4I). 
 
Discovery of repurposing opportunities for COVID-19 
The ongoing COVID-19 pandemic presents an urgent need for 
quick and adaptable drug discovery in the context of a complex 
and poorly understood disease. We leveraged our phenomics 
platform to screen for approved and reference (e.g., development 
stage antiviral) compounds that could address two key 
components of COVID-19 disease progression: direct effects of 
viral infection and the damaging effects of an unresolved 
inflammatory response, or cytokine storm. 1,670 and 2,913 
compounds were applied to cells in the infection and cytokine 
storm modes, respectively, and compound rescue was evaluated 
with the same processing pipeline described above. 
 
Many features of terminal COVID-19 are the result of 
inflammatory pressure on endothelial cells, manifesting as 
barrier disruption, lymphocyte recruitment, induction of blood 
coagulation, and acute respiratory distress syndrome (ARDS)52. 
We modeled the cytokine storm associated with late-stage 
COVID-19 in endothelial cells by applying cocktails of 
circulating proteins that mirror those from severe COVID-1953 
patients (perturbed state) as well as healthy control patients 
(target state) (Table S3, Fig. S5A). We hypothesized that rescue 
of the perturbed state toward the target state would reveal anti-

inflammatory compounds specifically relevant to the COVID-
19-associated cytokine storm. Following identification of hit 
compounds, electric cell-substrate impedance sensing (ECIS) 
was employed to confirm the activity of the aforementioned 
compounds in an orthogonal functional model of vascular 
integrity challenged with the same cytokine cocktails. 
 
Presently, JAK inhibitors have shown benefit in one non-
randomized trial54 and represent one of the most common 
mechanisms being evaluated among hundreds of clinical trials 
active for COVID-19. In our screen against the cytokine storm 
phenotype, JAK inhibitors were capable of potent rescue of the 
severe cytokine storm phenoprint, confirming strong potential 
for this mechanism’s efficacy in the context of a complex 
immune cascade (Fig. 5A). We also identified rescue by 
compounds in three classes of inhibitors outside of the 
JAK/STAT pathway that have been less deeply explored in the 
context of COVID-19, including inhibitors of Syk, PI3K and c-
Met. Compounds were then applied to cells with the same 
inflammatory cocktail and evaluated with ECIS (Fig. S5A) to 
inform on benefit to vascular integrity. Rescue of this orthogonal 
functional assay was observed for each mechanism identified in 
the high-dimensional assay (Fig. 4G, Fig. S5B-C). 
 
We next developed a model of SARS-CoV-2 infection to screen 
for repurposable compounds acting directly against viral targets 
or on host pathways. To define the model, we evaluated the effect 
of SARS-CoV-2 infection in multiple cell types, of which three 
resulted in robust phenoprints as compared to either mock 
infected or inactivated virus control populations: Calu3 (a lung 
adenocarcinoma line), Vero (an immortalized interferon-
deficient African green monkey kidney line55), and primary 
Human Renal Cortical Epithelium (HRCE) (Fig. 5C, Fig. S6D). 
We confirmed active infection with SARS-CoV-2 nucleocapsid 
antibody staining and quantification of productive viral 
replication (Fig. S6A-C) . We reasoned that a primary human cell 
type would be most directly translatable56 to human pathology, 
especially from tissues demonstrated to be directly infected by 
SARS-CoV-257, and thus conducted a screen of 1660 compounds 
against the HRCE phenotype, while testing a limited subset of 
those compounds in Vero and Calu3 cells. 
 
The majority of compounds currently under evaluation58 in 
human clinical trials for COVID-19 showed no or weak efficacy 
in the HRCE model56. However, in these screens remdesivir and 
its metabolite, GS-441524, demonstrated strong efficacy and 
aligned with potency described in the literature (EC50 of 100 nM 
and 2 μM, respectively) (Fig. 5D)59,60. Remdesivir is a nucleoside 
analog that directly interferes with the viral-RNA-dependent 
RNA polymerase to inhibit viral replication and, importantly, 
successfully reduced recovery time for treated patients in clinical 
trials61 announced after our data and analysis was publicly 
released. Further illustrating the predictive capacity of the model, 
two other antivirals, lopinavir and ritonavir were not found to be 
efficacious and were later discontinued in clinical testing for 
COVID-1962. 
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Fig. 5: Repurposed library screening for COVID-19 using phenomics 
 A. Syk, c-Met and PI3K inhibitors rescue the severe COVID-19 specific cytokine storm high-dimensional phenoprint (perturbed state) to the 
healthy phenoprint (target state). B. Example images of target and perturbed cell populations for the cytokine storm and SARS-CoV2 viral models. 
C. Infection of HRCE yielded a phenoprint against the mock-infected target population with an assay z-factor of 0.43 for the separation in on-
perturbation score for the mock and infected populations. D-F. Projections of compound response in the context of the perturbation vector 
generated in SARS-CoV-2- infected HRCE, Vero, and Calu3 cells. Off-perturbation values clipped at 50 for visualization. G. Compound impact 
on endothelial barrier function as quantified by ECIS assay. Values are normalized from 0 (cytokine storm cocktail-treated wells) to 100 (mock-
treated wells). Data was averaged over a 12-minute window at hour 12 of ECIS measurement to visualize concentration response curves for the 
indicated compounds. H. Infection rate as determined by SARS-CoV-2 nucleocapsid antibody staining of infected HRCEs treated with the denoted 
compounds. I. Plot of efficacious molecules by hit-scores in SARS-CoV-2 HRCE assay vs cytokine storm assay. Orange circles denote molecules 
registered in interventional COVID-19 clinical trials at the time of submission. Dotted lines presented as a visual guide depicting a hit score of 0.6. 
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Additionally, aloxistatin (E64d), an irreversible cysteine 
protease inhibitor initially developed for muscular dystrophy63, 
also demonstrated suppression of the viral phenoprint in HRCEs 
(EC50 of 40 nM). Recent studies have confirmed that cathepsin 
L, a cysteine protease, is required for SARS-CoV-2 entry in 
some cell types, and aloxistatin treatment significantly reduced 
entry of SARS-CoV-2 pseudovirions64,65. We then tested a subset 
of these antiviral compounds in additional cell types, Vero and 
Calu3, and found aloxistatin did not rescue in these models. 
However, another protease inhibitor, camostat mesilate, was 
efficacious in the Calu3 model (EC50 of 260 nM), but not the 
Vero or HRCE models (Fig. 5D-F, Fig. S6E). Camostat inhibits 
TMPRSS2, which was recently shown to be required for SARS-
CoV-2 entry in human airway cells66. Similar to findings in 
recent clinical trials67,68, we found chloroquine and 
hydroxychloroquine to have no benefit in the HRCE or Calu3 
models; however, they showed modest benefit in Vero cells 
(EC50 of 730 nM and 1.65 µM, respectively) with very high off-
perturbation activity (Fig. 5D-F). Overall, compound efficacy in 
human cell types was poorly recapitulated in Vero cells (Fig. 5D-
F, Fig. S6F).  Taken together these findings suggest that SARS-
CoV-2 entry protease inhibitor activity varies across cell type 
and species; however, remdesivir and GS-441524 show strong 
rescue of the viral phenoprint in all cell types tested. 
 
We identified JAK inhibitors ruxolitinib and baricitinib as 
efficacious in both viral and cytokine storm models (Fig. 5A, 5i, 
Fig. S6G). However, we found that high concentrations of these 
compounds led to increased infection in HRCE cells (Fig. S6H). 
Suppression of interferon production is a known component of 
SARS-CoV-2 infection at a low multiplicity of infection69. It is 
unclear however, what effect additional interferon suppression 
would have in vivo, especially at higher viral loads, warranting 
investigation into alternative mechanisms of cytokine storm 
suppression, such as PI3K or c-Met inhibition. Notably, 
bortezomib exhibited poor performance in both assay modes, is 
reported to impair endothelial cells in inflammatory contexts70, 
and also enhances susceptibility to viral infection71, particularly 
coronaviruses72. 
 
DISCUSSION 
Biology is massively complex and highly networked, but the 
tools to explore and discover novel biology and develop 
medicines have until recently relied on simple, univariate 
measurement. The genomic revolution yielded a taste of what is 
possible if high-dimensional biology can be scaled by massively 
increasing the rate of understanding of the role of thousands of 
genes in human biology and disease. Following this 
advancement, several new high-dimensional approaches have 
been developed to add clarity to complex functional relationships 
and discover new therapeutics, but these are hindered from high-
throughput screening application by engineering and cost 
bottlenecks. We present here early data from our experience 
using phenomics (Fig. 1) as one strategy to accelerate drug 
discovery. 
 

We first established that diverse immune biology and 
pharmacology can be detected and discriminated using 
phenomics (Fig. 2). These data also reveal that phenomics is not 
simply a classification technology: deep quantification of rich, 
multi-parametric signal and assessment of dose response is 
achievable, enabling comparisons and clusterings of diverse 
biological perturbants alone, or in combination across diverse 
cell types (Fig. 3). Diving more deeply on just two of the 131 
immune phenoprints we uncovered that are suitable for drug 
screening, we explored 90,000 new chemical entity starting 
points in the context of TGF-β- and TNF-ɑ-induced phenoprints 
(Fig. 4). Among hits in each context, prediction of ALK5 and 
ROCK inhibition allowed us to rapidly shift resources to higher 
priority hits. In particular, we focused our efforts on a suppressor 
of the TNF-ɑ phenoprint with a high potential to potentially be 
active against a novel, but as of yet unknown, target. Further, we 
drove medicinal chemistry work against this unknown target(s) 
using phenomics, demonstrating a 10-fold increase in potency 
while also increasing the magnitude of rescue. 
 
The application of phenomics can be extended to more complex 
disease-causing perturbations as well: the platform was rapidly 
adapted for the characterization and exploration of actionable 
therapies in the context of a novel and poorly understood disease, 
COVID-19. Within 28 days of initiating the project, we 
identified hits through high throughput chemical screens against 
COVID-19 cytokine storm and SARS-CoV-2 infection in the 
relevant tissue types, without the need to develop cytokine- or 
virus-specific reagents and assays. We demonstrated that a 
handful of drugs currently in clinical trials strongly modulate the 
infection model (e.g. remdesivir), the cytokine storm model 
(PI3K inhibitors) or both (JAK inhibitors), prior to their clinical 
trial results becoming available. Conventional antiviral research 
relies heavily on univariate assays that measure attributes like 
cell death or expression level of one protein. Using a single 
platform, we found not only conventional antivirals, but also 
compounds with unconventional effects on disease-associated 
host pathways such as inflammation.  
 
In the SARS-CoV-2 model remdesivir and its analog, GS-
441524 demonstrated efficacy in all cell models tested. 
Unfortunately, remdesivir is dosed via an intravenous route, 
typically in an inpatient setting and a time at which cytokine 
storm may be primarily responsible for the pathology (wherein 
remdesivir had no unexpected efficacy in our cytokine storm 
model). SARS-CoV-2 is able to use a variety of receptors to 
facilitate cell entry, with receptor specificity by cell type 
apparent in our data: aloxistatin (E64d), inhibiting the cathespin-
mediated entry pathway, and camostat, inhibiting the 
TMPRSS2-mediated pathway, each demonstrated strong 
response in HRCE and Calu3 cells respectively. Nevertheless, 
pseudovirus entry assays66 have shown that even in cells with 
both pathways active, modulating a single pathway still 
quantitatively reduces viral infection load. Further study of the 
proportional activity of each pathway in relevant human tissues 
may be warranted. As aloxistatin is orally bioavailable, simply 
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and inexpensively synthesized, and has a relatively strong safety 
profile based on chronic treatment of muscular dystrophy 
patients in a phase 3 trial, it deserves further study for COVID-
19, with the expectation that early treatment in the course of 
infection may be most efficacious. 
 
In our model of more advanced COVID-19 symptoms driven by 
cytokine storm, JAK inhibitors were noteworthy rescuers of the 
inflammatory phenoprint and moderate rescuers of the viral 
phenoprint at low concentrations. Due to oral bioavailability and 
the safety profile of acute treatment they are excellent candidates 
for repurposing. However, we observed that JAK inhibitors 
enhanced cellular infection of SARS-CoV-2 at higher 
concentrations, suggesting an effect on interferon signaling, a 
possible clinical liability that should be closely monitored during 
trials. Supporting this finding and underlining the importance of 
identifying diverse options to address cytokine storm, JAK 
inhibitors are known to increase the prevalence or severity of 
other viral infections including herpes zoster, JC virus, and 
hepatitis B73–75. This study also identified alternative 
mechanisms of action which have been much less deeply 
considered in the context of COVID-19, such as certain Syk 
inhibitors, c-Met inhibitors and PI3K inhibitors. Such molecules 
could be critical additions to remdesivir therapy in severe 
patients. This work and the recent success of dexamethasone in 
clinical trials for COVID-19 also identified a key limitation of 
our current phenomics approach: when studying a cell type in 
isolation, phenomics surfaces compounds that act via cell-
autonomous mechanisms76. Compounds that intervene in 
multicellular processes might be revealed by development of co-
culture models. 
 
Taken together, our results demonstrate that systems-level 
modeling and drug discovery is achievable using a single 
phenomics platform. First, this approach simplifies and extends 

the ability to work across many disease models rapidly because 
assay development work for any new model is minimized. 
Second, this work partially overcomes a historical limitation of 
phenotypic screening, predicting mechanism of action, by 
relating the high-dimensional phenoprint of hit compounds to 
those of reference molecules. Finally, we show the potential of 
this platform in optimizing NCE compounds through medicinal 
chemistry in a high-dimensional, target-agnostic manner. Unlike 
other high-dimensional approaches, the relatively inexpensive 
nature of these image-based assays allows them to be scaled to 
levels of throughput comparable to more traditional low-
dimensional screening modalities. In the hopes that it will be 
valuable to others, we have made images and embeddings from 
HUVEC treated with the immune perturbant library, and from 
our COVID-19 primary screens (both infection and cytokine 
storm) available online (including raw image data, metadata, and 
deep learning embeddings from images) at rxrx.ai/rxrx2 and 
rxrx.ai/rxrx19, respectively. 
 
Beyond the applications described here, the modular nature of 
this phenomics platform enables rapid adaptation to different 
libraries of immune stimulants, antibodies, or other large 
molecules, and incorporation of additional cellular contexts like 
co-culture models. In future work, comparisons of hits to 
phenoprints associated with knockout of each gene in the 
genome (achieved by arrayed whole-genome CRISPR knockout) 
may further expand our ability to predict mechanisms beyond 
those represented within our annotated small molecule library, 
bridging a key gap in phenotypic screening.  Critically, these data 
can be related over time and across disparate research 
programs—supporting the creation of large biological image 
datasets for deep-learning applications77,78 that will accelerate 
drug discovery and yield functional maps of human cellular 
biology. 
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MATERIALS/METHODS 
Cells: 
HUVEC: Human umbilical vein endothelial cells (Lonza, 
C2519A) were cultured according to manufacturer’s 
recommendations in EGM2 (Lonza, CC-3162). NHLF: Normal 
Human lung fibroblasts (Lonza, CC-2512) were cultured 
according to manufacturer’s recommendations in FGM2 (Lonza: 
CC-3131, 4126) and used at passage four for all assays. PBMC: 
Peripheral blood mononuclear cells (PBMCs), from healthy 
donors, were prepared from fresh (< 24 hours old) leukopaks 
(STEMCELL Technologies Inc., Catalog # 70500). Following 3 
120 rcf washes (brake off) for platelet removal, the samples were 
processed by EasySepTM RBC Depletion Reagent in 
accordance to manufacturer's instructions (STEMCELL 
Technologies Inc., Catalog #18170). Following isolation, 
PBMCs were pelleted (300 rcf) and resuspended in cryo-
preservation medium (CryoStor® CS10 Freeze Media, 
BioLifeSolutions Inc., Part #: 210102) for long term storage. 
Macrophage: Macrophages were derived from either cryo-
preserved or freshly isolated PBMCs. Monocytes were enriched 
by plastic adherence, first seeding PBMCs in serum free RPMI-
1640 medium followed by 1.5 hours of incubation and washed 
2x with PBS. Cells were incubated for 3 d in complete medium 
(RPMI+ 10% heat inactivated FBS, 25 ng/mL M-CSF, 10 ng/mL 
IL-10). Media was replenished after 3 d with one third of the 
conditioned medium and ⅔ fresh complete medium. Monocyte 
Derived macrophages (MDMs) were harvested from each vessel 
after an additional 3 d using ACCUTASE following 
manufacturer’s instructions (Thermo - A1110501). MDMs were 
pelleted (300 rcf) and resuspended in cryo-preservation medium. 
HRCE: primary human renal cortical epithelial cells Lonza (CC-
2554) were propagated at 37°C with 5% CO2 in EpiCM, 
(ScienCell # 4101) supplemented with Epithelial Cell Growth 
Supplement (EpiCGS, ScienCell #4152). Vero: an immortalized 
african green monkey kidney (ATCC CCL-81) were propagated 
at 37°C with 5% CO2 in Eagle’s Minimum Essential Medium 
(EMEM) supplemented with 10% FBS. Calu3: human lung 
adenocarcinoma line (ATCC HTB-55) were propagated at 37°C 
with 5% CO2 in EMEM supplemented with with 10% FBS. BV-
2: murine microglial cells (ICLC ATL03001, Ospedale 
Policlinico San Martino) were propagated at 37°C with 5% CO2 
in RPMI media + 10% Heat Inactivated FBS. 
 
Preparation of stimulant library 
Immune stimuli (Table S1) were solubilized in sterile phosphate 
buffered saline (PBS) containing 0.1% BSA (Sigma cat.# 
A1595-50ML) to make stock solutions of .04 mg/mL in Echo-
qualified 384W low-dead volume source plates. Source plates 
were stored at -80°C until use. 
 
Generating high-dimensional phenotypes 
Cells were seeded into 1536-well microplates (Greiner, 789866) 
via Multidrop (Thermo Fisher) and incubated at 37C in 5% CO2 
for the duration of the experiment.  Immune stimuli or virus were 
added 24 hours post-seeding (HUVEC, Macrophage, Fibroblast) 

or 1 h (PBMC). Treatments were randomized across treatment 
plates with a 6-log range of immune stimuli (typically 0.001-100 
ng/mL) at 6 replicates each with acoustic transfer (Echo 555, 
Labcyte) and incubated 37°C for 24 or (complete immune 
stimuli panel) or 48 h (for PBMC with pembrolizumab or 
nivolumab). Active SARS-CoV-2 was added via multidrop 24 
hours post seeding of the specified cell type. Plates were stained 
using a modified cell painting protocol29. Cells were treated with 
mitotracker deep red (Thermo, M22426) for 35m, fixed in 3-5% 
paraformaldehyde, permeabilized with 0.25% Triton X100, and 
stained with Hoechst 33342 (Thermo), Alexa Fluor 568 
Phalloidin (Thermo), Alexa Fluor 555 Wheat germ agglutinin 
(Thermo), Alexa Fluor 488 Concanavalin A (Thermo), and 
SYTO 14 (Thermo) for 35 minutes at room temperature and then 
washed and stored in HBSS+0.02% sodium azide. Live-virus 
experiments omitted the mitochondrial stain due to operational 
constraints of the biosafety level environment. 
  
Compound screen and imaging 
One hour prior to addition of the immune stimulant or 18 hours 
prior to the addition of virus, cells were treated with compound 
via acoustic transfer (Echo 555, Labcyte). Primary screening of 
New Chemical Entity libraries was performed at 10 or 30 µM 
with concentration-response confirmation spanning 100 nM to 
30 µM in half-log steps. SARS-CoV-2 screening was completed 
in dose response in half-log steps between 10 nM to 3µM. After 
24 h incubation (or 96 hours post viral infection), plates were 
imaged using Image Express Micro Confocal High-Content 
Imaging System (Molecular Devices) microscopes in widefield 
mode with 20X objectives. Four sites per well were acquired 
with 6 channels per site. The following bandpass filters were 
used to visualize the channels: FF409/493/573/652, 
FF459/526/596, FF01-432/515/595/730-25, FF01-475/543/702, 
and FF01-600/37/25. 
 
Kinase analysis 
Kinase profiling was performed using a KINOMEscanTM panel 
of 97 or >400 kinases at Eurofins-DiscoverX (San Diego, CA). 
Targets exhibiting > 50% inhibition were followed by KdElectⓇ 
analyses for DYRK1B, CDK7, ROCK2 and ROCK1 to 
determine IC50’s. Data presented as mean and standard deviation. 
 
CRISPR gene knockout 
Alt-R Crispr-Cas9 reagents were purchased from Integrated 
DNA Technologies, Inc. (IDT) and prepared following the 
manufacturer's guidelines and protocols (Alt-R CRISPR-Cas9 
crRNA, Alt-R CRISPR-Cas9 tracrRNA cat #1072534, Alt-R 
S.p. Cas9 Nuclease V3, cat #1081059, and Alt-R Cas9 
Electroporation Enhancer, cat #1075916). Alt-R CRISPR-Cas9 
crRNA was duplexed to Alt-R CRISPR-Cas9 tracrRNA and then 
combined with Alt-R S.p. Cas9 Nuclease V3, following IDT 
guidelines, to form a functional CRISPR-RNP complex. This 
CRISPR-RNP complex was transfected into cells using the 
Lonza 4D Nucleofection system and standard protocols with 
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proprietary modifications, or with a proprietary lipofection-
based process for high-throughput application. Alt-R Cas9 
Electroporation Enhancer was included into the nucleofection 
reactions to enhance transfection efficiency following standard 
guidelines from IDT. 
 
Image featurization for phenomic analysis 
All images were uploaded to cloud storage and featurized by 
embedding them with a trained neural network using Google 
Cloud Platform. This network is based on the convolutional 
neural network DenseNet-16130.  We adapt this network in the 
following ways.  First, we change the first convolutional layer to 
accept image input of size 512 x 512 x 6.  Like DenseNet-161, 
we use Global Average Pooling to contract the final feature 
maps, which in our case are tensors of dimensions 16 x 16 x 
2,208, to a vector of length 2,208.  However, instead of following 
immediately with a classification layer, we add two fully-
connected layers of dimension 1,024 and 128, respectively, and 
use the 128-dimensional layer as the embedding of the image.  
The weights of this network were learned by adding two separate 
classification layers to the embedding layer, one using softmax 
activation and the other using ArcFace78 activation, which were 
simultaneously optimized by training the network to recognize 
perturbations in the public dataset RxRx179 and in a proprietary 
dataset of immune stimuli in various cell types. Due to 
operational constraints of the BSL-3 assay conditions, a 
modified assay protocol lacking one image channel was used for 
the live-virus experiments. To accommodate this change, we 
trained a separate network of the same basic architecture that 
used only five input channels and one fully-connected final layer 
of dimension 1,024. 
 
Phenomic Analysis 
Immune stimuli phenoprints were observed by calculating the 
mean embedding of all but one biological replicate, finding the 
angle between that average and the held-out replicate well, and 
repeating this process for every replicate to find the average 
cross-validated angle for that perturbation. Statistical 
significance of these phenotypes was determined by comparing 
their similarity at high dose against a distribution of similarities 
between embeddings of images of untreated cells. We used the 
Benjamini-Hochberg multiple tests correction with a 5% false 
discovery rate and considered phenotypes acceptable if they had 
a corrected p-value<0.05 in two independent experimental 
batches. 
 
The similarity between a pair of immune stimuli was determined 
by calculating the cosine similarity between all pairs of 
embeddings of one immune stimulant at high concentration with 
the embeddings of another immune stimulant at high 
concentration, and testing whether the mean of this pairwise-
similarity distribution was significantly different from zero using 
a one-sample t-test and employing the Benjamini-Hochberg 
multiple tests correction with a 5% false discovery rate.  Only 
significant pairs are used in this paper, and the means of their 

pairwise-similarity distributions are the values reported in the 
figures. 
 
For small molecule screens, post-processing of the embedded 
images included normalization to remove inter-plate variance, 
PCA to reduce the feature space, and anomaly detection to 
remove outliers from the control populations. The vector 
pointing between the barycenters of the untreated and perturbed 
conditions was computed, and the embedded image vectors were 
decomposed into the signed scalar projection (the on-
perturbation score) and the scalar rejection (the off-perturbation 
score) with respect to this vector. These scores were normalized 
so that the mean on-perturbation score was 0 for the untreated 
condition and 1 for the perturbed condition. Separation of the 
untreated and perturbed conditions along the on-perturbation 
axis was assessed by Z-factor. 
 
For compound MOA inference, cosine similarities were 
computed between the embeddings of an NCE compound and 
the set of embeddings of a compound library annotated for 
MOA, and significantly large similarities (relative to the 
distribution of similarities of pairings of annotated compounds 
with the NCE compound) were reported. 
 
Cytokine storm cocktails 
For the cocktail representing severely affected patients, top 
concentration of the most abundant protein, CXCL-10 was 
selected to be 200 ng/mL based on a practical screen 
concentration and previously identified phenotypes for this 
factor. All other proteins were prepared at appropriate 
concentrations relative to CXCL-10. Cocktails representing 
healthy patients and those with moderate disease severity were 
prepared with each concentration relative to the severe cocktail. 
 
Iba1 Immunofluorescence assay 
BV-2 microglia were thawed from liquid nitrogen and plated at 
2500 cells per well in 384-well PDL/collagen-coated plates 
(Greiner #781866). The next day, the cells were treated with 
compound first, followed an hour later by stimulant 
(recombinant murine TNF-ɑ+IFN-γ (Peprotech), 200 μg/mL in 
0.1% low endotoxin BSA/PBS). Twenty-four hours after 
treatment, BV-2 microglia were fixed and stained for the 
microglial activation marker Iba1. Briefly, cells were fixed with 
4% PFA for 15 min at room temperature. Primary antibody 
solution was added to a 1:100 final dilution (Iba1 antibody 
Abcam cat #ab5076) incubated overnight at 4°C. After overnight 
incubation with primary antibody cells were washed with PBS, 
and secondary antibody solution was added (AlexaFluor 488 
donkey anti-goat IgG, 1:1000 final dilution. Invitrogen cat# 
A11055). Cells were then incubated for 1 hr at room temperature, 
protected from light. Following secondary antibody incubation 
cells were washed and the plate was sealed for imaging, which 
was performed on an Image Express Micro Confocal High-
Content Imaging System (Molecular Devices). Data and error 
presented as mean and standard deviation. 
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HTRF 
Quantitative measurement of cytokines in supernatants obtained 
from cultured cells was performed by using a homogenous time-
resolved fluorescence assay (HTRF, Cisbio). IL-6 HTRF assays 
were performed in accordance with the manufacturer's protocol. 
Briefly, cells were seeded and after 24 h treated with compound 
over 8 concentrations and 5 replicates each. After an additional 
24 h, supernatant was collected from assay plate and appropriate 
sample dilutions and standards were made and dispensed into 
barcoded labeled 384-PerkinElmer ProxiPlates (cat# 6008280). 
After the recommended incubation time, the plate was read using 
an EnvisionⓇ 2105 microplate reader (PerkinElmer). Data and 
error presented as mean and standard deviation. 
 
NFkB translocation assay 
NFkB reporter cells (TR860A-1, System Biosciences) were 
seeded at 4000 cells per well in 384 well imaging plates (781948, 
Greiner). Compounds were added at at least 4 replicates per 
concentration followed by 1 ng/mL TNF-ɑ after 1 h. Plates were 
imaged (GFP channel) once every 3 h via incucyte (Sartorius). 
Data for Integrated intensity over at the 16 h time point is 
presented as mean and standard deviation, significance analyzed 
with 2-way ANOVA. 
 
pSmad assay 
Normal Human Lung Fibroblasts (NHLF, Lonza) were plated in 
1536-well plates (Greiner) at 0.25 x 10^6 cells/mL in FGM-2 
(Lonza). After 24 hours, the media was replaced with FBM 
media (Lonza) and incubated for 24 hours. Cells were treated 
with compounds of interest in a 11-point dose response curve at 
32 replicates per concentration using an acoustic liquid handler, 
and incubated for 1 hour at 37°C, 5% CO2. Cells were then 
treated with 1uL of 11ng/mL TGF-β1 (R&D Systems), for a final 
concentration of 1ng/mL. Cells were incubated for 30 minutes at 
37°C and 5% CO2.  Cells were fixed with 4% PFA, blocked for 
1 hour with 1% BSA/0.1% Triton X-100/PBS, and then stained 
for pSMAD (Cell Signaling, 1:800). After an overnight 
incubation at 4°C, cells were stained with AlexaFluor 647 
(Thermo, 1:1000) and Hoescht (Thermo, 1:5000) for two hours 
at 25°C, washed with PBS twice, and imaged on an Image 
Express Micro Confocal High-Content Imaging System 
(Molecular Devices). Images were analyzed with CellProfiler to 
observe nuclear translocation of pSMAD2. Data and error 
presented as mean and standard deviation. 
 
Collagen expression 
Normal Human Lung Fibroblasts (NHLF, Lonza) were plated in 
1536-well plates (Greiner) at 0.25 x 10^6 cells/mL in FGM-2 
(Lonza). Cells were treated with compounds of interest in a 11-
point dose response curve at 32 replicates per concentration 
using acoustic transfer (Echo 555, Labcyte), and incubated for 1 
hour at 37°C, 5% CO2. Cells were then treated with 1uL of 
11ng/mL TGF-β1 (R&D Systems), for a final concentration of 
1ng/mL using Multidrop (Thermo Fisher). Cells were incubated 
for 96 hours at 37°C and 5% CO2. Cells were fixed with 4% 

PFA, blocked for 1 hour with 5% BSA/0.2% Triton X-100/PBS, 
and then stained for Collagen I (Cell Signaling, 1:500). After an 
overnight incubation at 4°C, cells were stained with AlexaFluor 
750 (Thermo, 1:1000), CellMask Orange (Thermo, 1:5000) and 
Hoescht (Thermo, 1:5000) for two hours at 25°C, washed with 
PBS twice, and imaged on an Image Express Micro Confocal 
High-Content Imaging System (Molecular Devices). Images 
were analyzed with CellProfiler. Data and error presented as 
mean and standard deviation 
 
Electric Cell-substrate Impedance Sensing (ECIS) 
Prior to use, 96-well ECIS plates (Applied Biophysics, 
96W20idf PET) were pre-treated with 10mM L-cysteine (Sigma-
Aldrich, C7352-25G) and then coated with fibronectin (gibco, 
PHE0023). Human Umbilical Venous Endothelial Cells were 
plated in the fibronectin coated 96-well ECIS plates at 55,000 
cells/well in EBM-2 (Lonza cc-3156) +EGM-2 (Lonza, cc - 
4176). Cells were allowed to settle at room-temperature for 1 
hour and then incubated for 24 hours at 37oC, 5% CO2. Following 
incubation, the plates were placed on the ECIS readers for 1 hour 
to establish baseline resistance. Cells were then treated in a 9-
point dose response curve at 4 replicates per concentration using 
acoustic transfer (Echo 555, Labcyte) and returned to the 
incubator for 1 hour. Following this, cells were treated with the 
cytokine storm cocktail (Table S3). Resistance was measured for 
24 hours following this. The assay window was defined as the 
time range with the greatest observable difference in membrane 
resistance between empty and disease control (approximately 6 
hours following cocktail addition). Resistance was normalized to 
each plate and graphed as a dose-response curve where 1 and 0 
correspond to health and disease controls, respectively. 
 
SARS-CoV-2 Nucleocapsid staining 
After staining and imaging to establish high dimensional 
phenotypes, plates were rinsed once with Wash Buffer (1xHBSS 
+ 0.02% sodium azide) before incubating with primary antibody 
raised against SARS-CoV-2 nucleocapsid protein for 60 mins at 
RT (Sino Biological catno. 40588-T62, 1:1000 dilution). Media 
was evacuated from wells by inverted centrifugation, and 
secondary antibody was added and incubated another 60 minutes 
at RT (Thermo Scientific catno. A31573, 1:2000 dilution). 
Primary and secondary antibodies were diluted in Stain Base 
media (1xHBSS, 1% BSA, 0.3% Triton-X 100). Plates were 
washed one final time using inverted centrifugation and Wash 
Buffer before imaging as described above. Data presented as 
mean value. 
 
Calculation of SARS-CoV-2 infection Rate 
Cell-level image segmentations and per-cell log-mean 
nucleocapsid staining intensities were calculated using standard 
image segmentation techniques (CellProfiler80). These intensities 
were normalized by plate with respect to log-mean-intensity in 
the mock control cells. To adjust for optical effects that changed 
the background fluorescence level in infected wells, a Gaussian 
mixture model was used to align the lowest peak in log-mean-
intensity across well conditions. Cells were estimated to be 
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infected if they exhibited an adjusted log-mean-intensity above 
the 99th percentile of intensity for the control cell population. 
This estimate of number of infected cells was used to compute a 
fraction of cells infected, which was adjusted to account for the 
1% of uninfected cells expected to be above the 99% threshold. 
 
SARS-CoV-2 propagation and controls 
The USA-WA1/2020 strain of SARS-CoV-2 was propagated in 
Vero cells. Cells were grown in standard tissue culture flasks 
(60% confluence) and were infected at a multiplicity of infection 
(MOI) of 0.001, in EMEM + 2% FBS and 50 g/mL gentamicin, 
incubated at 37°C with 5% CO2 for 5 days. Supernatants 
containing virus were removed from these cultures, spun down 
to remove cellular debris and stored at -20°C until use. Viral 
titers were determined through standard tissue culture infectious 
dose 50% (TCID50) methods, where cytopathic effect (CPE) on 
Vero 76 cells was measured by visual observation under a light 
microscope. 
 
To create a suitable control with inactivated virus, SARS-CoV-
2 was irradiated with a UV lamp for 10 or 20 minutes. Viral 
inactivation in this sample was verified using visual CPE on 
Vero cells, where undetectable level of active virus was 
observed. An additional “mock” control was created using 
conditioned media preparations generated from uninfected Vero 
76 cells grown in 2% FBS in EMEM for five days. Cellular 
debris were removed through centrifugation and the supernatants 
were frozen at -80°C until use. 
 
All experiments using SARS-CoV-2 were performed using 
Biosafety Level 3 (BSL-3) containment procedures at partner 
facilities including one at Utah State University. Data and error 
presented as mean and standard deviation. 
 
ALK5 biochemical assay 
A 1536-well plate was pre-treated with compounds, at 13 
concentrations (ranging from 0 to 100 ng/mL) with at least 2 
replicates of each concentration, and a reaction mix containing 
15 ng ALK5 (ThermoFisher), using Poly 4:1 as substrate was 
added to the plate. The reaction was started by the addition of 20 
µM ATP, the plate was mixed on a plate shaker (500 RPM for 2 
min) and the reaction allowed to incubate at room temp for 60 
min. The reaction was terminated by the addition of ADP-Glo 
Reagent (Promega V9102) (40 min incubation) and Kinase 
Detection Reagent (30 min incubation). Luminescence was 
captured using an EnVision XCite plate reader. Data presented 
as mean and standard deviation. 
 
Small molecule structural analysis 
All assessments of compound diversity and similarity were 
performed in DataWarrior (openmolecules.org). Neighbors were 
determined to be at 83% or greater similarity as determined with 
the SkelSpheres descriptor. 
 
 
 

Data availability 
Tables containing metrics for immune stimulant phenotypes in 
each cell type are provided in the Supplementary Materials. 
Underlying images, metadata, and deep learning embeddings for 
soluble factor perturbations in HUVEC and all primary screens 
in primary cell types for COVID-19 virus and cytokine storm 
screening have been made available at rxrx.ai. An interactive 
server containing drug response projections, hit scores, and 
structures for COVID-19 screening data has been made available 
for custom search at covid19.rxrx.ai. 
 
Code availability 
The code underlying this report leverages proprietary algorithms 
for image processing, data standardization, outlier detection, and 
compound efficacy scoring. As such the code underlying this 
report will not be made available. Instead, much of the output of 
these algorithms is provided in the provided Supplemental 
Tables. 
 
Virus graphic in Fig. 1 adapted from an image by Desiree Ho for 
the Innovative Genomics Institute and is licensed under a 
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 
International License 
 
No replicates presented were repeat measurements of the same 
biological conditions. 
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SUPPLEMENTARY INFORMATION 
 

 
 
Fig. S1: Determination of soluble factor phenoprints 
A. Z-factor for the statistical confidence separating a series of soluble factors from untreated cells. B. For soluble factors presented in A, cosine 
similarity to an untreated null distribution, indicating strong separation for selected stimulant phenoprints. C-E. Hierarchical clustering of 
similarities. c. Phenoprints in HUVEC treated with three classes of factors: Interferons (blue segments), TLR3 agonists (orange segments), and 
NFkB-inducing cytokines (purple segments). D. Phenoprints in fibroblasts treated with growth factors. e. Differential response of C. diff. toxins A 
and B in HUVECs vs. macrophages. 
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Fig. S2: Cytokine Phenoprint Dose Curves 
Convergence of phenoprints by dose, as represented by cosine similarity (y) of each dose (x, log10 concentration) to the highest dose for each 
reagent. Data is drawn from the union of two replicate experiments in each of 4 cell types (total 8 experiments): HUVEC, PBMC, Fibroblast, and 
Macrophage. The subset of fitted sigmoid curves for illustration were selected by filtering on a similarity threshold at any dose (cosine similarity 
>= 0.25) and fitted parameters (-7 < midpoint < -1.05; slope > 0.5; ceiling > 0.25; scale > 0.3). The 104 compounds shown represent 24% of the 
screened library. 
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Fig. S3: Projection in two dimensions and benchmark compound response 
A. Schematic for interpreting projection of drug response in 2-dimensional plot. Contours show the 99%, 90%, and 50% distributions of on- and 
off-perturbation scores for the perturbation (orange) and target (blue) states. Ideal rescues are compounds that rescue along the on-perturbation x-
axis toward the target state with minimal increase to the off-perturbation score on the y-axis. B. Potential hits are prioritized by the proximity of 
any dose to the target state, illustrated here with dashed lines and increasing red highlight intensity for higher-ranked dose-curve trajectories. c. 
Projections of treatments along the on-perturbation vector: rescue of the TNF-ɑ phenoprint with clinically approved monoclonal antibodies, 
reversal IL-6-IL-6R receptor chimera, and reversal of SOCS3 CRISPR gene knockout. EC50 for high-dimensional compound rescue are indicated 
in parentheses 
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Fig. S4: Library diversity and NCE compound validation 
A. Library projected as molecular weight (x) and cLogP (y). B. Histogram of number of members of a structural scaffold. C. Pairwise assessment 
of scaffold diversity. Edges are projected between compounds >82% similar. Blue edges in the zoomed inset illustrates similarity to an example 
compound. D. Measurement of Smad phosphorylation in response to REC-0104937 in the presence of 1 ng/mL TGF-β-1. Microglial activation 
quantified by measurement of IBA-1 production. E-F. Kinase profiling of REC-0150357 in a single concentration screen (E) and concentration 
response (F). G. Representative images resulting from IBA-1 fluorescence immunostaining. 
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Fig. S5: COVID-19-associated cytokine storm 
 A. ECIS trace for untreated and severe cocktail-treated wells. Blue lines represent concentrations of ruxolitinib. B, C. Protection of endothelial 
barrier integrity with active compounds. Data were averaged over a 12-minute window at hour 12 of ECIS measurement to visualize concentration 
response curves for the indicated compounds (n=5). 
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Fig. S6: SARS-CoV-2 infection model 
A. Quantification of active SARS-CoV-2 production over time in the indicated cell types using TCID50 measurement on Vero cells (n=2). B. 
Representative images of HRCE, Calu3 and Vero cells immunostained with SARS-CoV-2 nucleocapsid protein (pink) and modified cell paint 
dyes C. Infection rates of each tested cell type as analyzed by nucleocapsid immunostaining. Of note, HRCE donors displayed significant variation 
in infectability and only a minority of donors exhibited infection rates high enough for screening. Antibody stains were performed after the 
principal analysis concluded and are therefore not represented in the primary dataset used for phenoprint evaluation and compound screening. D. 
Infection of HRCE yielded a phenoprint against the mock-infected target population with an assay z-factor of 0.43 and was selected for further 
investigation. Vero and Calu3 cells also demonstrated screenable phenoprints. E. Quantification of percentage of cells infected using nucleocapsid 
protein immunostaining in Calu3 cells at 96 hours post infection for key compounds F. Consistency of hit scores for selected compounds across 
HRCE donors and between cell types. G. Projections of compound response of JAK inhibitor and control compounds onto the perturbation vector 
generated in SARS-CoV-2- infected HRCE.  H.  Quantification of percent of cells infected using nucleocapsid protein immunostaining in HRCE 
cells at 96 hours post infection for JAK inhibitors 
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Table S1: Immune perturbants 
Names, catalogs and vendors for tested immune perturbants 
Table S2: Cellular phenotypes and classes 
Table to generate Fig. 2B 
Table S3: Cytokine storm cocktails 
Concentrations of individual factors in Cocktails representing circulating soluble factor levels for severe-COVID19 and healthy 
subjects. 
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