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Abstract:

Resistance to ionizing radiation, a first-line therapy for many cancers, is a major
clinical challenge. Personalized prediction of tumor radiosensitivity is not currently
implemented clinically due to insufficient accuracy of existing machine learning
classifiers. Despite the acknowledged role of tumor metabolism in radiation
response, metabolomics data is rarely collected in large multi-omics initiatives such
as The Cancer Genome Atlas (TCGA) and consequently omitted from algorithm
development. In this study, we circumvent the paucity of personalized metabolomics
information by characterizing 915 TCGA patient tumors with genome-scale metabolic
Flux Balance Analysis models generated from transcriptomic and genomic datasets.
Novel metabolic biomarkers differentiating radiation-sensitive and -resistant tumors
were predicted and experimentally validated, enabling integration of metabolic
features with other multi-omics datasets into ensemble-based machine learning
classifiers for radiation response. These multi-omics classifiers showed improved
classification accuracy, identified novel clinical patient subgroups, and demonstrated
the utility of personalized blood-based metabolic biomarkers for radiation sensitivity.

The integration of machine learning with genome-scale metabolic modeling
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represents a significant methodological advancement for identifying prognostic

metabolite biomarkers and predicting radiosensitivity for individual patients.

Introduction:

Despite being one of the oldest forms of cancer therapy and still a primary
treatment modality, radiation therapy is not effective for over one-fifth of cancer
patients distributed across almost all cancer types™2. While biological understanding
of radiation resistance has been advanced, use of a priori prediction of radiation
response for individual cancer patients is not yet implemented clinically®. Early
studies that identified biomarkers for radiation response focused on tumor histology,
clinical factors including staging and Karnofsky performance score, and physiological
parameters such as tumor oxygenation status*®. As methods for transcriptomic
analysis have improved, gene expression-based classifiers for radiation response
have proliferated (recently curated in the RadiationGeneSigDB database)’. To date,
however, these radiation response classifiers do not integrate multiple -omics
modalities, owing in part to a lack of available -omics datasets for individual patient
tumors. Specifically, while genomic and transcriptomic data is becoming more widely
available for large numbers of patient tumors through initiatives such as The Cancer
Genome Atlas (TCGA), metabolomic data associated with tumor biobanks is rarely
captured, limiting inclusion of tumor metabolic features in predictive models for

radiation therapy response?.

Given the lack of available tumor metabolomic data, genome-scale metabolic
modeling approaches such as flux balance analysis (FBA) are becoming increasingly
popular for predicting metabolic phenotypes®®. By combining a curated

reconstruction of the human metabolic network with constraints on metabolic
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reaction activities and an objective function to maximize a particular metabolic
phenotype, predictions of steady-state reaction fluxes or metabolite production rates
under physiological constraints can be obtained at a genome scale™. We previously
developed a novel bioinformatics pipeline for integrating genomic, transcriptomic,
kinetic, and thermodynamic parameters into personalized FBA models of 716
radiation-sensitive and 199 radiation-resistant patient tumors from TCGA across
multiple cancer types''. Using these metabolic models, we identified novel
differences in redox metabolism between radiation-sensitive and -resistant tumors,
as well as personalized gene targets for inhibiting antioxidant production and
clearance of reactive oxygen species. By validating model predictions using a panel
of matched radiation-sensitive and -resistant cancer cell lines, we demonstrated that
genome-scale metabolic models provide accurate predictions of tumor metabolism

and can identify diagnostic and therapeutic biomarkers for radiation response.

While machine learning methods have been previously combined with
genome-scale metabolic models to improve prediction of metabolic phenotypes,
most studies combining these two methodologies have focused on microbiological
applications rather than applications to cancer metabolism or predicting treatment
outcomes™. We hypothesize that predictions from genome-scale metabolic models
of patient tumors would provide additional information for distinguishing
pathophysiological differences between radiation-sensitive and -resistant tumors, as
well as for prediction of radiation of radiation response. To this end, we utilized
personalized FBA models of TCGA patient tumors to predict genome-scale
metabolite production rates for incorporation into machine learning classifiers and
identifying novel metabolite biomarkers associated with radiation resistance.

Additionally, through integration with clinical, genomic, and transcriptomic datasets,
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we developed gene expression, multi-omics, and non-invasive classifiers which
outperform previous predictors of radiation response, as well as provide

personalized diagnostic biomarker panels for individual patient tumors.

Results:

Gene expression classifier implicates cellular metabolism

Because the majority of previously-developed classifiers for radiation
response are based on gene expression data (curated in the RadiationGeneSigDB
database), we first developed a machine learning classifier utilizing transcriptomic
data from radiation-sensitive and -resistant TCGA tumors to compare predictive
accuracy and identified gene sets’. A gradient boosting machine (GBM) algorithm
was used with Bayesian optimization for determining optimal hyperparameter values,
providing optimal performance accuracy on TCGA datasets (Supplementary Fig. 1).
782 of the 22,819 genes in the dataset (3.43%) were identified as significant in the
classification of radiation response, determined by a 95% cumulative sum threshold
on feature importance scores (Fig. 1a). 10 of the 50 genes with largest feature
importance scores were previously implicated in radiation therapy response®*?2. To
determine whether the identified set of 782 genes has more predictive value than
previously-identified gene sets in RadiationGeneSigDB, machine learning classifiers
were subsequently trained using only the genes from each respective gene set, and
the predictive accuracy of each classifier was compared (Fig. 1b). Our set of 782
genes had the best performance among all gene sets when trained on the TCGA
dataset, and was among the best gene sets when trained on a separate dataset from

the Cancer Cell Line Encyclopedia (CCLE)®.
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Gene set enrichment analysis (GSEA) of these 782 genes among the
Hallmarks of Cancer showed significantly increased enrichment of the “Deregulating
cellular energetics” hallmark, with very low enrichment of the “Genome instability &
mutation” hallmark (Fig. 1c)**?°. Hierarchical clustering of the hallmark enrichment
ranks for each gene set in RadiationGeneSigDB revealed two major clusters: a
larger cluster with very high rank of “Genome instability & mutation”, and a smaller
cluster with much higher ranks for other hallmarks involved in cellular metabolism,
angiogenesis, and metastasis (Fig. 1d). This dichotomy suggests that although the
biological response to radiation therapy certainly involves genomic instability and
DNA-damage repair, other biological processes such as cellular metabolism may

play critical roles as well*?’

. GSEA of cancer expression modules additionally
showed increased enrichment of many modules involved in cellular metabolism,
including amino acid and sulfur metabolism, redox metabolism, and lipid metabolism
(Fig. 1e)®. Finally, GSEA of Recon3D metabolic subsystems demonstrated
increased enrichment of pathways involved in central carbon metabolism and lipid
metabolism, with the majority of genes being associated with increased probability of
radiation resistance (Fig. 1f)*°. Together, analysis of this gene expression classifier
suggests that radiation-resistant tumors exemplify dysregulation in their cellular
metabolic networks, and that additional features involving the metabolism of

radiation-sensitive and -resistant tumors will provide significant benefit in developing

machine learning classifiers for radiation response.
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Fig. 1 | Gene expression classifier for radiation response. a, (Left, black) Feature
importance scores for individual genes, signifying the absolute change in predicted
probability of radiation resistance attributed to each feature averaged across all
samples. Those features within the top 50 with previous literature suggesting a role
in tumor radiation response are annotated. (Right, gray) Cumulative feature
importance scores. b, Performance of the identified set of 782 significant gene
expression features from this study (red) versus previously identified gene sets in
RadiationGeneSigDB (black), on both the (left)j TCGA dataset performing a

classification task on patient tumor radiation response and (right) CCLE dataset
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performing a regression task on cancer cell line radiation response. AUROC: area
under the receiver operating characteristic curve; MAE: mean absolute error; MSE:
mean squared error. ¢, Gene set enrichment analysis (GSEA) of significant features
from our gene expression classifier among the Hallmarks of Cancer. d, Hierarchical
clustering of Hallmarks of Cancer enrichment ranks from the gene set in this study
and those in RadiationGeneSigDB, based on both (row) hallmark, and (column)
gene set. e, GSEA of significant gene expression features among the cancer
expression modules from Segal et al. Modules relevant to cellular metabolism are
annotated with their number and descriptions. f, GSEA of significant gene
expression features among Recon3D metabolic subsystems. Significant genes
within each subsystem are annotated above or below p-value bars based on whether
their expression is positively correlated with (above, green) radiation sensitivity, or
(below, red) radiation resistance. ns: not significant, *: p <€ 0.05, **: p < 0.01, ***: p <

0.001, ****: p < 0.0001.

FBA models accurately predict relative metabolite production

Personalized genome-scale FBA models of radiation-sensitive and -resistant
TCGA tumors were generated to obtain metabolic features which could be used in
machine learning classifiers for radiation response. These FBA models were
developed through integration of gene expression and mutation information from
individual patient tumors, as well as kinetic and thermodynamic parameters from
publicly-available repositories''. By systematically creating artificial metabolite sinks
in the Recon3D metabolic network and evaluating fluxes to these sinks, the

production rates of different metabolites were predicted and compared between
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radiation-sensitive and -resistant tumors (Fig. 2a). Fig. 2b shows that many of the
metabolite classes implicated from the gene expression classifier showed
significantly increased production in radiation-resistant tumors. These included
antioxidant and cysteine-containing metabolites (including precursors of glutathione,
an antioxidant with previously-implicated roles in radiation response)®, lipid and fatty
acid metabolites (including those previously implicated in lipid peroxidation in

response to ionizing radiation)®*3*

, and immune system mediators. While fewer
metabolites were predicted to be significantly downregulated in radiation-resistant

tumors, many metabolites involved in nucleotide metabolism were among this group.

Regression of experimental metabolite concentrations among the NCI-60
cancer cell line panel with cell line surviving fraction at 2 Gy radiation (SF2) showed
up- and down-regulation of the same metabolite classes predicted from FBA models
(Fig. 2c)*%. Many lipid and fatty acid metabolites positively correlate with radiation
resistance (including cholesterol, which had the most positive correlation among all
metabolites tested); antioxidant metabolites including glutathione positively correlate
as well. On the other hand, many nucleotide metabolites are anti-correlated with
radiation resistance (including UDP-MurNAc, which had the most negative

correlation among all metabolites tested).

To experimentally validate FBA model predictions of individual metabolite
levels, we analyzed matched pairs of radiation-sensitive and -resistant cell lines from
four different cancer types via untargeted metabolomics (Fig. 2d-e, Supplementary
Fig. 2-5, Supplementary Table 1). The pan-cancer FBA models accurately
predicted that most nucleotide metabolites, including derivatives of adenine,
guanine, thymine, and inosine, are downregulated in radiation-resistant cancers,

while, in contrast, cytidine derivatives are upregulated. Predictions of lipid production
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accurately captured the observed heterogeneity in lipid levels between cell lines.
Although model-predictions of absolute oxidized (GSSG) and reduced (GSH)
glutathione production did not match with experimentally-measured values, previous
model predictions of increased reduction potential of GSSG to GSH in radiation-
resistant tumors agreed with experimental findings of greater GSH/GSSG ratios in
radiation-resistant cell lines™. Finally, model-predicted production of the antioxidant
lipoamide as well as immune mediators anandamide and 2-arachidonylglycerol
corresponded very well with experimental measurements, which were upregulated in
nearly all radiation-resistant cell lines. Overall, these findings demonstrate that
genome-scale metabolic models derived from transcriptomic and genomic data
provide surprisingly accurate predictions of relative metabolite production between
radiation-sensitive and -resistant cancers, allowing for their use in machine learning

classifiers for radiation response.
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Fig. 2 | FBA model predictions of relative metabolite production and


https://doi.org/10.1101/2020.08.02.233098
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.02.233098; this version posted August 2, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

experimental validation between radiation-sensitive and radiation-resistant
cancers. a, Multi-omics data from TCGA tumors and publicly-available repositories
is integrated to develop personalized FBA models and predict differences in
metabolite production rates between radiation-sensitive and -resistant tumors. b,
Model-predicted metabolite production rates, expressed as the log, ratio of average
production between radiation-resistant versus -sensitive tumors. Metabolites within
major classes with significant upregulation or downregulation in radiation-resistant
tumors are color-coded and annotated. c, (Left) Correlation between metabolite
concentration and surviving fraction at 2 Gy radiation (SF2) among 139
experimentally-measured metabolites in the NCI-60 panel of cancer cell lines.
Metabolite classes are colored as in (b). (Right) Example regression between
metabolite concentration and cell line SF2 for cholesterol. d, (Top) Schematic
showing the comparison of model-predicted metabolite production in radiation-
sensitive and -resistant TCGA tumors, with experimentally-measured metabolite
concentrations in matched radiation-sensitive and -resistant cell lines. (Bottom)
Radiation-sensitive and -resistant cell line pairs across four different cancer types
used in the experimental metabolomics study (Supplementary Table 1). e,
Comparison of model-predicted and experimentally-measured levels of individual
putative metabolites within the four major classes identified in (b). BRCA, COAD,
GBM, HNSC: log ratio of putative metabolite levels in radiation-resistant versus -
sensitive cell lines. Statistically-significant differences within each cell line pair are
represented by box outlines. MEAN EXP: average experimental log, ratio across all
four cell line pairs. FBA: log, ratio of model-predicted metabolite production rates in

radiation-resistant versus -sensitive TCGA tumors.
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Machine learning architecture for radiation response

To integrate FBA model predictions of metabolite production rates with other
TCGA datasets into multi-omics machine learning classifiers, a dataset-independent
ensemble architecture was developed (Fig. 3a). Multiple independent “base learner”
classifiers are trained on an individual -omics dataset (either clinical, genomics,
transcriptomics, or metabolomics data), as described in Supplementary Fig. 1.
Subsequently, by comparing predicted class probabilities from each individual base
learner to known radiation responses, a “meta-learner” classifier is trained to
determine which base learner provides the most accurate prediction of radiation
response based on the multi-omics features of individual samples (Fig. 3b)*. For an
individual testing sample, each base learner outputs the predicted probability of
radiation resistance (pi), and the meta-learner outputs the predicted probability that
each base learner will provide the most accurate prediction (w;); the final probability
of radiation resistance is the weighted average of each p;, with weights being each w;
(Fig. 3c). This dataset-independent ensemble architecture performs better across
multiple performance metrics compared to the common practice of initially combining
all -omics datasets and training on a single classifier (Fig. 3d, Supplementary Fig.
6-7). Overall, this machine learning architecture is a robust platform for integrating
multi-omics data and providing accurate predictions of radiation response in

individual patient tumors.
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Fig. 3 | Machine learning architecture for improved prediction of radiation
therapy response. a, Dataset-independent ensemble architecture, with independent
base learners for each dataset and one meta-learner for integration of base learner
outputs. b, Meta-learner performing Ng-class classification of the most accurate base
learner/dataset for each sample, where Ny is the number of independent base
learners/datasets. c, Prediction of radiation response for each testing set sample
using predicted probabilities from each base learner and weights from the meta-
learner. d, Performance of multi-omics classifier trained on clinical, gene expression,
mutation, and FBA-predicted metabolite data from TCGA tumors, comparing the
dataset-independent ensemble architecture versus combining datasets together
before training on a single classifier. Weighted log loss and AUROC performance
metrics are shown here, with other metrics shown in Supplementary Fig. 6. ns: not

significant, *: p < 0.05, **: p <0.01, ***: p <0.001, ****: p < 0.0001.
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Multi-omics classifier identifies clinical patient subgroups

Using the dataset-independent ensemble architecture described above, a
multi-omics machine learning classifier integrating clinical, gene expression,
mutation, and FBA-predicted metabolite production rates from TCGA tumors was
developed. With an AUROC of 0.906 + 0.004, this classifier has significantly greater
performance compared to previously-developed machine learning classifiers for

radiation response (Fig. 4a, 1b)"*

. Additionally, the threshold for separating
radiation-sensitive and -resistant classes can be altered to optimize sensitivity,
specificity, or a balance of both. 725 of the 52,223 features from the four datasets
(1.39%) were identified as significant in the classification of radiation response (Fig.
4b). While the majority of these 725 features were gene expression (48.3%) and
metabolite (32.6%) features, clinical features including tumor histology,
chemotherapeutic response, and cancer type contributed more than half of the total
feature importance scores (60.1%; Fig. 4c). Mutations with significant feature

importance scores included those directly involved in redox metabolism (IDH1

R132H) and lipid metabolism (BRAF V600E)®%°,

Individual samples varied significantly in the contribution of different datasets
towards radiation response classification (Fig. 4d). Using unsupervised clustering,
three clusters of patients with varying contributions of clinical features were identified
(Fig. 4e, Supplementary Fig. 8a). While “High Clinical” patients were categorized
by large clinical feature contributions and small contributions from multi-omics
datasets, multi-omics features provided the majority of cumulative feature
importance scores for “Low Clinical” patients, with metabolic features alone providing
nearly as much utility as clinical features (Fig. 4f). For this “Low Clinical” cluster,

certain clinical features including chemotherapeutic response have diminutive utility,
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whereas novel multi-omics features including IDH1 SNP and lipid metabolite levels
have much higher importance scores compared to the overall patient cohort.
Significant heterogeneity in clinical clusters was observed based on patient clinical
factors, especially cancer type and tumor histology (Fig. 4g-i). Output weights from
the meta-learner provide an accurate prediction of clinical cluster, effectively
differentiating between “Low Clinical” and “Medium/High Clinical” patients; this
provides a valuable strategy for determining whether clinical information from
electronic medical records is sufficient to accurately predict radiation response in an
individual patient, or whether multi-omics features from tumor biopsy samples are

needed (Fig. 4j).
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Fig. 4 | Multi-omics classifier integrating clinical, gene expression, mutation,

and FBA-predicted metabolite features for prediction of radiation response. a,
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Receiver operating characteristic (ROC) curve for the multi-omics classifier. The
point representing a 50% predicted probability threshold for separating radiation-
sensitive and -resistant classes, as well as the optimal point for maximizing Youden’s
J statistic (J = sensitivity + specificity - 1) are shown. Blue line: mean across 20
training+validation/testing splits. Light blue error band: + 1 standard deviation. b,
(Left, black) Feature importance scores for individual features. (Right, gray)
Cumulative feature importance scores. c, List of top 50 features with largest feature
importance scores, colored based on their original dataset. (Inset, Left) Number of
significant features from each dataset. (Inset, Right) Relative contribution of features
from each dataset to the sum of total feature importance scores, averaged across all
samples. d, Relative contribution of features from each dataset to the sum of total
feature importance scores, for each individual sample. e, Clustering of samples into
“Low”, “Medium”, and “High” clinical groups based on the relative contribution of the
clinical dataset. The optimal number of clusters was calculated based on maximizing
the gap statistic from k-means clustering (Supplementary Fig. 8a). f, Top 50
features with largest feature importance scores among samples within the “Low
Clinical” cluster. (Inset) Relative contribution of features from each dataset to the
sum of total feature importance scores, averaged across all samples within the “Low
Clinical” cluster. g, Statistical significance of patient clustering into
“Low/Medium/High” clinical groups based on different clinical factors, as calculated
by the chi-squared test with Yates’ correction. Only statistically significant (p < 0.05)
clinical factors are shown. h, Clinical cluster and dataset contribution of samples
within different cancer types. i, Clinical cluster and dataset contribution of breast
cancer (BRCA) samples with different histological subtypes. j, Prediction of clinical

cluster based on meta-learner weight for the clinical dataset. Dotted line: threshold
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which maximizes the accuracy in separating “Low Clinical” from “Medium/High

Clinical” clusters.

Novel metabolic biomarkers identified for radiation response

Metabolite set enrichment analysis (MSEA) of the 236 significant metabolite
features from the multi-omics classifier indicated significant enrichment of several
metabolic pathways involved in central carbon metabolism, lipid metabolism, and
nucleotide metabolism (Fig. 5a). To identify individual metabolites with the largest
impact on radiation response prediction, the Spearman correlation between feature
importance score and predicted metabolite production rate across all patients was
calculated for each metabolite (Supplementary Fig. 9). Fig. 5b highlights many of
the significant metabolic features, as well as metabolism-related gene expression
and mutation features. Significant glycolytic and TCA cycle metabolites (fructose 1,6-
bisphosphate, 3-phosphoglyceric acid, succinyl-CoA, and succinate) were all
positively correlated with radiation resistance, while genes promoting
gluconeogenesis (PCK2 and LDHC) were associated with radiation sensitivity.
Fructose 2,6-bisphosphate, an allosteric regulator of PFK-1 that activates glucose
breakdown, had one of the most positive correlation values. Additionally, many
metabolites in early mannose metabolism had positive correlation values, in
accordance with previously observed radiation-induced upregulation of mannose-6-

phosphate receptors and high-mannose type N-glycan production®”%,

Greater glycolytic fluxes in radiation-resistant tumor models resulted in
increased production of the majority of significant lipid and fatty acid metabolites,

including many with previously-identified roles in antioxidation such as capric acid,
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butyric acid, eicosatrienoic acid, and y-linolenic acid (Fig. 5¢)**2. On the other
hand, significant nucleotide metabolites were highly correlated with radiation
sensitivity, in agreement with the observed downregulation in radiation-resistant
cancer cell lines (Fig. 5d). While production of energy metabolites including ATP
was correlated with radiation sensitivity, FBA models predict significantly greater
conversion of ADP to ATP in radiation-resistant tumors, in agreement with previous

experimental findings (Fig. 5e, Supplementary Fig. 10)***

. Finally, increased
production of membrane phospholipids and arachidonic acid precursors resulted in
significant correlations between inflammation-mediating eicosanoids and radiation
resistance, corroborating previous evidence of radiation-sensitizing effects of
cyclooxygenase inhibitors including aspirin (Fig. 5f)*°. Together, these findings
suggest that metabolic features from multiple interconnected pathways including

central carbon, lipid, and nucleotide metabolism are viable diagnostic biomarkers for

prediction of radiation sensitivity.
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Fig. 5 | Analysis of metabolic biomarkers from the multi-omics classifier for
radiation response. a, Metabolite-set enrichment analysis (MSEA) of significant
metabolic features among Recon3D metabolic subsystems. The number of
significant metabolites in each subsystem are shown. Only statistically significant (p
< 0.05) subsystems are shown. b, Overview of significant metabolic features, as well
as metabolism-related gene expression and mutation features. Different metabolic
pathways are shown with colored backgrounds. Significant metabolic features are
denoted by colored boxes, where the color indicates the Spearman correlation
coefficient between feature importance score and predicted metabolite production
rate across all patients (Supplementary Fig. 9). Significant gene expression and
mutation features are denoted by colored reaction arrows, either in green
(associated with radiation sensitivity) or in red (associated with radiation resistance).
13BPG: 1,3-bisphosphoglycerate; 2HG: 2-hydroxyglutarate; 2PG: 2-

phosphoglycerate; 3HB: 3-hydroxybutyrate; 3HBCoA: 3-hydroxybutyrl-CoA; 3PG: 3-
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phosphoglycerate; aKG: Alpha-ketoglutarate; AA: Acetoacetate; AACOA:
Acetoacetyl-CoA; ACo0A: Acetyl-CoA; CDP-DAG: CDP-diacylglycerol; Cit: Citrate;
CL: Cardiolipin; DG: Diacylglycerol; DHAP: Dihydroxyacetone phosphate; F16BP:
Fructose 1,6-bisphosphate; F1P: Fructose 1-phosphate; F26BP: Fructose 2,6-
bisphosphate; F6P: Fructose 6-phosphate; FA-CoA: Fatty acyl-CoA; FFA: Free fatty
acid; Fru: Fructose; Fuc: Fucose; Fum: Fumarate; G3P: Glyceraldehyde 3-
phosphate; G6P: Glucose 6-phosphate; GDP-ddM: GDP-4-keto-6-deoxymannose;
GDP-Fuc: GDP-fucose; GDP-M: GDP-mannose; Glc: Glucose; Glyald:
Glyceraldehyde; Glyc3P: Glycerol 3-phosphate; Gylc: Glycerol;, HMGCoA: 3-
hydroxy-3-methylglutaryl-CoA; ICit: Isocitrate; Lac: Lactate; LPA: Lysophosphatidic
acid; M16BP: Mannose 1,6-bisphosphate; M1P: Mannose 1-phosphate; MG6P:
Mannose 6-phosphate; MAG: Monoacylglycerol; Mal: Malate; MCoA: Malonyl-CoA;
OAA: Oxaloacetate; PA: Phosphatidic acid; PC: Phosphatidylcholine; PCoA:
Palmitoyl-CoA; PE: Phosphatidylethanolamine; PEP: Phosphoenolpyruvate; PG:
Phosphatidylglycerol; PGP: Phosphatidylglycerol-phosphate; PI:
Phosphatidylinositol; PS: Phosphatidylserine; Pyr: Pyruvate; Suc: Succinate;
SucCoA: Succinyl-CoA; TG: Triglyceride. c-e, Spearman correlation coefficients of
significant metabolic features involved in (c) fatty acid and cholesterol metabolism,
(d) nucleotide metabolism, and (e) energy metabolism. f, Metabolic pathway of
eicosanoid production, highlighting significant metabolite and gene expression
features. 12HpETE: 12-hydroxyperoxyeicosatetraenoic acid; AA: Arachidonic acid,;

DGLA: Dihomo-y-linolenic acid; GLA: y-linolenic acid; LA: linoleic acid.

Non-invasive classifier implicates blood metabolic features
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Because non-invasive metabolic predictors of radiation response could be
rapidly applied for informing patient-specific treatment, we refined machine learning
classification to only integrate clinical data derived from non-invasive means
(excluding any pathologic staging or histological information from tumor biopsies)
with FBA-predicted production rates of metabolites known to be quantifiable in
human blood samples (Fig. 6a)*®. This non-invasive classifier performed similarly
overall to the multi-omics classifier, with increased sensitivity and decreased
specificity; this suggests that the non-invasive classifier may be optimal as a first-line
screening test, followed by the multi-omics classifier as a second-line diagnostic test
(Fig. 6b)*". 97 of the 363 features from the two datasets (26.7%) were identified as
significant in the classification of radiation response (Fig. 6¢). Similar to the multi-
omics classifier (Fig. 4e), individual patient contributions of clinical features formed a
bimodal distribution of “Low Clinical” and “High Clinical” groups (Fig. 6d,
Supplementary Fig. 8b). Blood metabolite features - including many lipid,
nucleotide, and inflammation-mediating metabolites previously identified from the
multi-omics classifier - provided almost one-half of the cumulative feature importance
scores for “Low Clinical” patients (Fig. 6e). Dataset contributions and feature
importance scores for individual cancer patients can identify personalized
biomarkers with maximal diagnostic utility (Fig. 6f-h). Overall, these findings
demonstrate the value of blood-based biomarkers as a non-invasive approach

towards personalized prediction of radiation response.
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Fig. 6 | Non-invasive classifier integrating non-invasive clinical and blood-
based metabolite features for prediction of radiation response. a, Schematic
showing inclusion and exclusion criteria for features in the non-invasive classifier. b,
Comparison of model performance between multi-omics and non-invasive classifiers.
c, (Left, black) Feature importance scores for individual features. (Right, gray)
Cumulative feature importance scores. d, k-means clustering of samples into “Low”
and “High” clinical groups based on the relative contribution of the clinical dataset
(Supplementary Fig. 8b). e, Clinical and metabolic dataset contributions among the
“Low Clinical” group. Individual features with feature importance scores above 1%
are shown. f, Breakdown of individual feature contributions towards prediction of
radiation response in a representative radiation-resistant TCGA patient (TCGA-S9-

AT71Y). (Upper) Contribution of each dataset towards the progression from prior to
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posterior probability of radiation resistance. (Lower) Feature importance scores for
this individual patient. g-h, Plots of feature importance score versus predicted
metabolite production rate for two metabolic features, illustrating (g) a feature with
large individual importance score relative to other patients (significant utility as a
personalized blood-based biomarker), and (h) a feature with small individual
importance score relative to other patients (little utility as a personalized blood-based
biomarker). ns: not significant, *: p < 0.05, **: p < 0.01, ** p < 0.001, ****: p <

0.0001.

Discussion:

Despite significant interest in methodologies for the a priori prediction of
radiation response in cancer patients, machine learning algorithms have yet to be
used in the clinical setting for informing radiation treatment®. Recently-developed
classifiers for predicting tumor radiation response have focused mainly on gene
expression data, rather than the integration of multiple -omics datasets’*. This may
be in part due to a lack of metabolomics datasets from tumor biobanks including
TCGA, limiting inclusion of metabolic features in machine learning classifiers for
radiation response. Here, we propose a novel strategy of utilizing personalized
genome-scale FBA models of radiation-sensitive and -resistant patient tumors to
predict the production rates of metabolites across the Recon3D metabolic network,
leveraging the accessibility of genomic and transcriptomic tumor datasets to
generate metabolic insight. These metabolic features are subsequently integrated
with clinical, genomic, and gene expression data from TCGA tumors to generate
gene expression, multi-omics, and non-invasive classifiers for radiation response.

These classifiers provide more accurate predictions of tumor radiation response
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compared to previously-developed classifiers, as well as novel multi-omics

biomarkers associated with radiation sensitivity.

FBA model predictions of tumor metabolism and experimental validation with
matched radiation-sensitive and -resistant cancer cell lines demonstrated significant
re-routing of metabolic fluxes in radiation-resistant cancers, as observed by the up-
and down-regulation of metabolites across multiple interconnected metabolic
pathways. (Fig. 2,5). This flux re-routing was observed previously in the context of
redox metabolism in radiation-resistant cell lines and tumors, but findings from this
study suggest more widespread metabolic alterations throughout central carbon,
lipid, and nucleotide metabolism*“°. Our approach of systematically introducing
metabolite sinks into the Recon 3D network provides a novel way of relating
production fluxes to relative changes in experimentally measured metabolite levels.
We observe association between increased levels of fatty acid and cholesterol
metabolites with tumor radiation resistance in agreement with previous experimental
evidence. Radiation-resistant head and neck cancer cells have enhanced fatty acid
production from increased expression of fatty acid synthase®. Additionally, ionizing
radiation was shown to cause increased cholesterol production in lung cancer cells®.
Plasma levels of total and HDL cholesterol were found to be elevated in radiation-
resistant SPRET/EiJ mice compared to radiation-sensitive BALB/cByJ mice,
implicating cholesterol as a potential non-invasive metabolic biomarker®®°3,
Treatment with HMG-CoA reductase inhibitors including simvastatin was reported to
sensitize prostate cancer cells to radiation therapy, potentially by compromising DNA
damage repair"**°. Other agreements between model predictions and experimental
studies include implication of inflammation-mediating eicosanoids in radiation

resistance. Many prostaglandin metabolites identified in this study have previous
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associations with radiation resistance, and cyclooxygenase inhibitors such as aspirin
may act as radiation sensitizers and improve outcomes in cervical, prostate, and
rectal cancers**°®*%. These findings suggest that lipid and eicosanoid metabolites
may have utility as both diagnostic biomarkers as well as therapeutic targets for

improving radiation response.

Integration of FBA model predictions into multi-omics machine learning
classifiers for radiation response was performed by employing a dataset-
independent ensemble architecture (Fig. 3). This approach was based on the
concept of stacked generalization (having multiple “base learners” make predictions
that are used as input for a separate “meta-learner”), which was shown to improve
predictive accuracy in this study as well as multiple previous medical applications®
®L However, while in previous studies there is only one input dataset being supplied
to the multiple base learners, we instead input different -omics datasets to separate
base learners. The benefit of this dataset-independent approach is that the meta-
learner can subsequently be used to predict which individual datasets will provide
the most utility for determining radiation response in individual patients. For example,
the meta-learner can accurately differentiate between “Low Clinical” patients (with
large contributions of gene expression, mutation, and metabolic datasets from
patient biopsy samples and genome-scale metabolic modeling) and “High Clinical”
patients (with greater contribution of clinical data from electronic medical records)
(Fig. 4). This stratification of patient populations allows for optimal resource
allocation for collecting biological measurements with maximal diagnostic utility for
individual cancer patients. Moreover, the use of gradient boosting machine (GBM)
models as the base and meta-learners provides a significant amount of embedded

feature selection; this decrease in model complexity not only lowers the cost of
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measuring biological features needed for prediction, but also improves the

interpretability of models, increasing the likelihood of adoption by clinicians®,

In addition to demonstrating the utility of multi-omics data for the classification
of radiation response, we found that a classifier utilizing non-invasive clinical
information and blood-based metabolic biomarkers can predict radiation sensitivity
with comparable accuracy (Fig. 6). Blood-based diagnostic tools are garnering
attention for their use in early detection, monitoring, and optimal treatment
identification for cancer patients®. Identification of novel circulating biomarkers
through the integration of machine learning and genome-scale metabolic modeling
could provide significant utility in adaptive radiotherapy to modify patient treatment
with radiation or radiation-sensitizing chemotherapies in response to the observed

efficacy of previous treatments®,

Although our novel approach towards integrating machine learning and
genome-scale metabolic modeling for the prediction of radiation response provides
many enhancements in performance accuracy and biomarker identification
compared to previous studies, further improvements could yield additional benefits.
Our multi-omics classifier showed that tumor histology has major impacts on both the
prediction of radiation response and the clustering of “Low/High Clinical” patients,
suggesting that additional features from tumor histological images could further
improve classifier performance. A convolutional neural network could be added as
an additional base learner with tumor H&E images from TCGA as input, providing
additional histological features and identifying novel associations with radiation

response® .

Additionally, changes in both DNA methylation and microRNA
expression have been implicated in the tumor response to radiation therapy;

inclusion of these features into the multi-omics classifier may yield additional
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biomarkers for improved radiation response prediction®”®®,

Metabolomic profiling is powerful for understanding cancer pathophysiology,
identifying and monitoring clinical biomarkers, and predicting patient outcomes, but
challenging to retrospectively analyze in specimen biobanks for inclusion in multi-
omics data mining®. In this study, we demonstrate that integration of machine
learning and genome-scale metabolic modeling methodologies allows for improved
biomarker identification and prediction of radiation response in individual patient
tumors without direct metabolomics measurements. This approach is generalizable
towards other applications in guiding patient treatment, such as the prediction of
chemotherapeutic response as well as identification of novel metabolic targets for
pharmacological inhibition and treatment sensitization. The synergistic integration of
machine learning and genome-scale metabolic modeling will inevitably yield
additional insights for improving precision medicine and long-term care of cancer

patients.

Methods:

TCGA Data Retrieval and Processing

Clinical data from TCGA patients was obtained from the GDC data portal
(clinical drug, clinical patient, and clinical radiation files) and the Synapse
TCGA_Pancancer project (biological sample files)?. Drug names were standardized
according to the standard available from the Gene-Drug Interactions for Survival in
Cancer (GDISC) database. Categorical clinical features were one-hot encoded
before inputting into machine learning classifiers. RNA-Seq gene expression data
was obtained from Rahman et al.’’s alternative preprocessing method (GEO:

GSE62944)™!. Data from this preprocessing method showed fewer missing values,
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more consistent expression between replicates, and improved prediction of biological
pathway activity compared to the original TCGA pipeline. Mutation data using the
MuTect variant caller was obtained from the GDC data portal®’%. For all data types,

only features with at least two unique non-missing values were included.

Radiation Sensitivity

TCGA samples were classified into radiation-sensitive and radiation-resistant
classes according to their reported sensitivity to radiation therapy based upon the
RECIST classification method. Patients with a complete or partial response to
radiation (greater than 30% decrease in tumor size) were classified as radiation-
sensitive, and patients with stable or progressive disease (either less than 30%
decrease in tumor size, or increase in tumor size) were classified as radiation-
resistant. If a patient received multiple courses of radiation therapy, they were

classified based on the response to their first course.

Data Splitting

Supplementary Fig. 11 provides an overview of data splitting for machine
learning classifier training and testing. The collection of 716 radiation-sensitive and
199 radiation-resistant samples was randomly split into training+validation (80% of
all samples) and testing (20% of all samples) groups. Within the training+validation
group, 5-fold cross validation was performed to optimize hyperparameter values. The
training (80% of training+validation samples) group was used for training the model
with a given set of hyperparameters; within this training group, 87.5% was directly

used for training, and 12.5% was used to identify the iteration at which to perform
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early stopping during training. The validation (20% of training+validation samples)
group was used to assess model performance with the given set of
hyperparameters. The average validation performance across all 5 folds was used to
determine the optimized set of hyperparameters; once this set was determined, the
model was retrained on the entire training+validation group, and the testing group
(20% of all samples) was used to assess overall model performance. 20 iterations of
randomized training+validation/testing splitting were performed to analyze model
predictions and performance metrics over multiple instances. All data splits were
performed using stratified shuffle splitting, where the proportion of radiation-sensitive

and -resistant samples was kept the same (refer to Supplementary Fig. 11).

Base Learners

Ng base learners were trained using an individual -omics dataset (either
clinical, gene expression, mutation, or metabolic datasets), where Nqy is the number
of individual datasets being used for the classifier. Each base learner is composed of
a gradient boosting machine (GBM) model that performs two-class classification
(predicting either radiation sensitivity or resistance for each patient) using features
from an individual dataset, such as clinical, genomics, transcriptomics. GBM models
using decision tree ensembles have many useful characteristics compared to other
machine learning algorithms, including embedded feature selection, capability of
handling missing values (which is common in clinical datasets), and efficient
management of high-dimensional datasets (where the number of features greatly
exceeds the number of samples)™’*. XGBoost (v0.90) was used to develop GBM

base learners and meta-learners’™.
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Bayesian optimization was performed to optimize hyperparameter values for
each GBM model. At each iteration of Bayesian optimization, 5-fold cross validation
was used to calculate the performance of a particular set of hyperparameters.
Weighted log loss was used as the performance metric for both GBM model training

and evaluating model performance on validation sets:

N,

1 S
Weighted Log Loss = FZ[_(WRyilog(pi) + (1 = y;)log(1 —p))] (1)
$i=1

where y; is the true class label of sample i (yi=0 if sensitive, y;=1 if resistant), p; is the
predicted probability of sample i being radiation-resistant (belonging to class 1), wg is
the weight given to radiation-resistant samples (wg = # sensitive samples / #
resistant samples), and Ns is the total number of samples. The weight given to
radiation-resistant samples accommodates for the fact that there are more radiation-
sensitive samples than radiation-resistant samples, and prevents classifiers from
focusing on optimizing performance exclusively on radiation-sensitive samples. The
mean weighted log loss plus one standard error over all 5 folds of cross-validation is
used to choose the hyperparameter set with best performance. During model

training, early stopping is employed to prevent overfitting.

For individual samples, each of the Ng base learners outputs the predicted
probability of radiation resistance (pi1, p2, ..., Pna) USing features from the individual
data type. Each base classifier receives the same training/validation/testing split of

samples.
Meta-learner
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For every sample within the 5 validation sets used for the base learners, each
base learner's output prediction of radiation resistance (pj) is compared to the
sample’s true radiation response class (yi). The meta-learner is trained to predict the
optimal base learner which provides the most accurate prediction of radiation
response for each sample, based on the sample’s multi-omics features. This meta-
learner performs an Ng-class classification, where Nq is the number of independent
base learners. The features this meta-learner is trained on include all features from
the Nqy datasets which have non-zero feature importance scores from their respective
base learners; features which do not impact base learner predictions are not
included, which increases the training speed while maintaining meta-learner
accuracy. Because validation samples from the 5-fold cross validation were not
directly used in base learner training, they can be used to train this meta-learner

without overfitting or inflation of model performance metrics.

Implementation of the meta-learner is analogous to that of each base learner,
using a GBM model, Bayesian optimization, early stopping, and 5-fold cross
validation. Multiclass log loss was used as the performance metric for both GBM

model training and evaluating model performance ";

Ng Ng

1
Multiclass Log Loss = — ﬁz Z yi,klog(Pi,k) )
59=1 k=0

where yi is 1 if dataset k is the true optimal dataset of sample i and O otherwise, pix
is the predicted probability of dataset k being the optimal dataset of sample i, Ns is
the total number of samples, and N is the total number of datasets. The mean
multiclass log loss plus one standard error over all 5 folds of cross-validation is used

to choose the optimal hyperparameter set with best performance.
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For individual samples, the meta-learner outputs Ny probabilities (wq, wo, ...,
Wnq) that each base learner is optimal for that sample (all Ny probabilities sum to 1).
Note that, once the meta-learner is trained using the predicted probabilities from the
base learners, the base learners and meta-learner act independently of each other

when used on new testing samples.

Radiation Response Prediction

Each testing sample is run through 1) all Ny base learners to obtain the
predicted probabilities of radiation resistance using each of the Ny individual datasets
(p1, P2, ---» Pnd), and 2) the meta-learner to obtain the predicted probabilities that
each of the Ny base learners/datasets is optimal for that sample (w1, Wa, ..., Wng). TO
obtain the final predicted probability of radiation resistance for the testing sample, the
weighted average of the base learner probabilities is taken, with the meta-learner

probabilities as weights:

P = WPy + WePp + -+ Wy Dn, (3)
Samples with p < 0.5 are classified as radiation-sensitive, while samples with p > 0.5

are classified as radiation-resistant.

Bayesian Optimization

Bayesian optimization was used to optimize GBM hyperparameters for both
the base learner and meta-learner classifiers. This iterative approach automates the
search for hyperparameter values by calculating an acquisition function which

provides the expected benefit of sampling a particular point in hyperparameter space
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on the overall search for hyperparameters with minimal cross-validation error. At
each iteration, the point in hyperparameter space with the largest acquisition function
value is chosen, 5-fold cross validation is used to determine the performance of
those particular hyperparameters, and the acquisition function is updated to then
determine which next point in hyperparameter space will be sampled. Hyperopt
(v0.1.2) was used to perform Bayesian optimization’’. Supplementary Table 2
provides the 8 GBM hyperparameters chosen for optimization of both base learner
and meta-learner classifiers, with the ranges of values in the hyperparameter search

space. 28=256 iterations of Bayesian optimization were performed for each classifier.

Classifier Performance Metrics

Final classifier performance was assessed on testing samples across the 20
iterations of randomized training+validation/testing splitting. The following

performance metrics were used:

1. Weighted log loss: equation (1)
2. Area under the receiver operating characteristic curve (AUROC)
3. Balanced accuracy, an accuracy metric that corrects for unequal numbers of

radiation-sensitive and -resistant patients:

Bal dA = 1( i + N )
dancedAccurasy = o\TP + FN " TN + FP 4)
4. Sensitivity:
Sensitivity = rp
ensitivity = TP+ FN (5)
5. Specificity:
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Specificity = l
pecificity = TN + FP (6)
6. Positive predictive value:
Positive Predictive Value = i
ositive rredictive value = TP + FP (7)
7. Negative predictive value:
Negative Predictive Value = d
egauve rredictive value = TN + FN (8)

Feature Importance Scores

The importance of individual features towards the prediction of radiation
response, both averaged across all samples as well as for individual samples, was
determined by calculating Shapley Additive Explanations (SHAP) values for each
classifier. Each SHAP value represents the change in predicted probability of
radiation resistance for patient i attributed to feature j®. Features with positive SHAP
values for patient i signify those where the particular value of feature j attributed to
patient i is such that it increases patient i's predicted probability of radiation
resistance. Larger absolute SHAP values indicate features with larger overall
contributions (either negatively or positively). Mean absolute SHAP values across all
samples provide an indication of the overall importance of a particular feature in the
classifier's prediction of radiation response. SHAP values were averaged across 20
training+validation/testing splits by a weighted average "°, with weights proportional
to the inverse of the weighted log loss performance metric on the testing set for that
split. This weighted average allows model analysis to be more reflective of the more

accurate predictions, so that identified biomarkers are more likely to be true
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biomarkers rather than artifacts of poorly-performing predictions. Values were
normalized by the difference between prior and posterior probabilities of radiation

resistance for each sample. SHAP v0.29.1 was used to calculate SHAP values®.

Comparison of Machine Learning Algorithms

scikit-learn v0.21.2 functions sklearn.ensemble.RandomForestClassifier() and
sklearn.linear_model.LogisticRegression() were used to implement random forest
and logistic regression with L1 regularization classifiers, respectively®!. Keras v2.3.1
was used to implement the neural network with L1 regularization classifier
(https://github.com/keras-team/keras). Weighted log loss (equation (1)) was used as
the loss function for the neural network classifier, and early stopping was performed.
Missing values were imputed and scaled using sklearn.impute.Simplelmputer() and
sklearn.preprocessing.StandardScaler() functions, respectively, before training with
the random forest, logistic regression, and neural network classifiers.
Supplementary Tables 3-5 provide the hyperparameters and value ranges used for
Bayesian optimization with each algorithm; 256 iterations of Bayesian optimization
were performed for each classifier. Each classifier, including the GBM classifier, was
run using the same training, validation, and testing samples at each of 20

training+validation/testing splits so that performance can be accurately compared.

Comparison of Gene Expression Datasets

11 gene expression sets for oxic radiation response gene expression sets in
the RadiationGeneSigDB database were compared to the set of 782 significant

genes from the gene expression classifier’. Gene names from RadiationGeneSigDB
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gene sets were converted to Entrez gene ID’s and gene symbols. Those genes
where a matching Entrez gene ID or gene symbol could not be found were removed.
Additionally, those genes that were not in both TCGA and CCLE gene expression

datasets were removed.

To compare performance of gene expression sets on TCGA data,
classification models were trained to predict radiation-sensitive or -resistant classes
of TCGA tumor samples using gene expression data from only the subset of genes
for an individual set. Model performance was assessed using weighted log loss
(equation (1)) and AUROC metrics. To compare performance of gene expression
sets on CCLE data, regression models were trained to predicted radiation response
(reported as area under the curve of survival vs. radiation dose) of CCLE cell lines
using gene expression data from only the subset of genes for an individual set®.
Model performance was assessed using mean absolute error (MAE) and mean

squared error (MSE) metrics.

Flux Balance Analysis (FBA)

Generation of personalized FBA models of individual TCGA tumor samples

Ill

was performed as described in Lewis et al*". To predict the maximum production of a

particular metabolite in FBA models, the following objective function was used:
1 metf[all] = @ (9)

where “met” is the metabolite to be maximized, and “[all]” represents the
maximization of this objective function across all cellular compartments where the
metabolite is located. This creates an artificial sink for a particular metabolite in the

Recon3D metabolic network, resulting in the maximization of reaction fluxes

35


https://doi.org/10.1101/2020.08.02.233098
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.02.233098; this version posted August 2, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

generating this metabolite. We hypothesized that this objective function would be
valid and thus yield accurate predictions for metabolites with large differences in
production between radiation-sensitive and -resistant tumors, as these would be
particularly beneficial to either tumor class and thus the metabolic network of these
tumors would be optimized to maximize levels of the metabolite.

The modeled external compartment contained all metabolites found in
DMEM/F-12 cell culture media (Thermo Fisher Scientific, Cat#11320) as well as fetal
bovine serum (FBS) to match the cell culture media used for experimental
validation®. All 871 metabolites in the Recon3D human metabolic reconstruction that
(1) had KEGG database ID’s, (2) were not present in the extracellular media, and (3)
were capable of being produced by all FBA tumor models, were included in the FBA

metabolite production screen.

NCI-60 Data Retrieval and Processing

Experimental metabolomics data from NCI-60 cancer cell lines was obtained
from the Developmental Therapeutics Program (DTP) of the National Cancer
Institute (NCI) (https://wiki.nci.nih.gov/display/NCIDTPdata/Molecular+Target+Data).
Normalized concentration entries without metabolite names or for isobars were
excluded. Cell line surviving fraction at 2 Gy radiation (SF2) values were obtained

from Amundson et al *2.

Cell Culture

Supplementary Table 1 provides the matched radiation-sensitive and

radiation-resistant cell lines used for experimental validation of metabolite levels
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predicted from FBA models. All cell lines were maintained in DMEM/F-12 cell culture
media (Thermo Fisher Scientific, Cat#11320) with 10% FBS (Sigma-Aldrich,

Cat#F4135) at 37°C and 5% CO,, and were free of Mycoplasma.

Metabolomics

Three biological replicates of each cell line were grown in separate T-25
flasks with the cell culture conditions described above. Cell pellets with
approximately 1 million cells were obtained from trypsinization, centrifugation, and
removal of supernatant. Samples were reconstituted in 90% MeOH, 10% H,O at a
ratio of 200 pL/1 million cells. Aliquots of the supernatant were combined to create a
pooled sample used for quality control. Aliquots of the samples were transferred to

LC vials and stored at 4°C.

Hydrophilic interaction chromatography-tandem mass spectrometry (HILIC-
MS/MS) untargeted metabolomics was performed. Chromatography parameters
were as follows: BEH HILIC Column, 150 mm X 2.1 mm, 1.7 ym; mobile phase A:
80% H,0 / 20% ACN, 10mM ammonium formate, 0.1% FA; mobile phase B: 100%
ACN, 0.1% FA; column temperature: 40°C; 2 yL sample injection. MS parameters
were as follows: resolution: 240,000; scan range: 70-1050 m/z; polarity:
positive/negative; AGC target: 1e5. MS? parameters were as follows: isolation
window: 0.8 m/z; detector: Orbitrap; polarity: positive/negative; fragmentation

method: HCD; collision energy: 15, 30, 45; resolution: 30,000.

Compound Discoverer 3.1 was used to perform quality control, putative
metabolite identification, and quantification of metabolite levels. Results for positive

and negative ion modes were combined. Metabolites with no identified name were
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removed from the analysis. If duplicate metabolites with the same identification were
obtained, then the entry with the largest maximum area was used. KEGG ID’s for
each metabolite were manually identified based on metabolite hame, molar mass,
and chemical formula. Metabolites from experimental metabolomics were matched to

those from FBA analysis by matching KEGG ID’s.

For the comparison of model-predicted and experimentally-measured metabolite
levels, all metabolites within the following Recon3D subsystems that were matched

with experimental metabolites were included in the analysis:

e Nucleotide Metabolism: “Nucleotide interconversion”, “Nucleotide salvage
pathway”, “Pentose phosphate pathway”, “Purine catabolism”, “Purine
synthesis”, “Pyrimidine catabolism”, “Pyrimidine synthesis”

e Lipid Metabolism: “Cholesterol metabolism”, “Fatty acid oxidation”, “Fatty acid
synthesis”, “Glycosphingolipid metabolism”, “Phosphatidylinositol phosphate
metabolism”, “Sphingolipid metabolism”, “Steroid metabolism”

e Cysteine/Antioxidant  Metabolism:  “Glutathione  metabolism”, “ROS
detoxification”, plus metabolite “Lipoamide”

e Immune System Mediators: “Arachidonic acid metabolism”, “Eicosanoid

metabolism”

Code and Data Availability

Jupyter notebooks containing Python code for running and analyzing the gene
expression, multi-omics, and non-invasive classifiers for radiation response are
available at https://github.com/kemplab/ML-radiation. Additionally, the gene sets and
code used to compare the significant gene list from our gene expression classifier to

those from the RadiationGeneSigDB database are available.
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The following datasets are available at https://github.com/kemplab/ML-radiation:

e Dataset 1. Feature importance scores (AP) from the gene expression
classifier, for individual TCGA patients

e Dataset 2. FBA model-predicted metabolite production rates in TCGA tumors

e Dataset 3. Experimental metabolomics data from radiation-sensitive and -
resistant cancer cell lines

e Dataset 4. Comparison of model-predicted and experimentally-validated
metabolite levels in radiation-sensitive and -resistant cancers

e Dataset 5. Feature importance scores (AP) from the multi-omics classifier, for
individual TCGA patients

e Dataset 6. Feature importance scores (AP) from the non-invasive classifier,

for individual TCGA patients
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Supplementary Fig. 1 | Base learner used in the gene expression, multi-omics,
and non-invasive classifiers for radiation response. a, Base learner performing
two-class classification of radiation response, utilizing a gradient boosting machine
(GBM) algorithm with Bayesian optimization, early stopping, and 5-fold cross
validation to determine optimal hyperparameter values. Note that for the gene
expression classifier, this base learner is not integrated with other base learners or a
meta-learner as only one dataset is utilized. b-c, Performance of classifier trained on
gene expression data from TCGA tumors, comparing (b) use of Bayesian
optimization compared to no Bayesian optimization, and (c) GBM-based classifiers
versus other machine learning algorithms. ns: not significant, *: p < 0.05, **: p <0.01,

*** p <0.001, ***; p < 0.0001.
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Supplementary Fig. 2 | Experimentally-measured concentrations of nucleotide
metabolites in matched radiation-sensitive and -resistant cell lines. (Left)
Replicate metabolite concentrations from all four cell line pairs, with values
expressed as the log;o normalized area from LC-MS/MS. ns: not significant, *: p <
0.05, **: p £ 0.01, ***: p < 0.001, ****: p < 0.0001. (Right) Bars: Ratio value for each
cell line pair, expressed as the log; ratio of mean radiation-resistant concentration
versus mean radiation-sensitive concentration. Colored line: mean experimental log;
Resistant/Sensitive across all four cell line pairs. Black line: FBA model-predicted
log, ratio of average metabolite production in radiation-resistant versus -sensitive

TCGA tumors.
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Supplementary Fig. 3 | Experimentally-measured concentrations of lipid
metabolites in matched radiation-sensitive and -resistant cell lines. (Left)
Replicate metabolite concentrations from all four cell line pairs, with values
expressed as the logio normalized area from LC-MS/MS. ns: not significant, *: p <
0.05, **: p £ 0.01, ***: p < 0.001, ****: p < 0.0001. (Right) Bars: Ratio value for each
cell line pair, expressed as the log, ratio of mean radiation-resistant concentration
versus mean radiation-sensitive concentration. Colored line: mean experimental log,
Resistant/Sensitive across all four cell line pairs. Black line: FBA model-predicted
log, ratio of average metabolite production in radiation-resistant versus -sensitive

TCGA tumors.
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Supplementary Fig. 4 | Experimentally-measured concentrations of

cysteine/antioxidant metabolites in matched radiation-sensitive and -resistant
cell lines. (Left) Replicate metabolite concentrations from all four cell line pairs, with
values expressed as the logio normalized area from LC-MS/MS. ns: not significant, *:
p <0.05, **: p <0.01, **: p <0.001, ***: p < 0.0001. (Right) Bars: Ratio value for
each cell line pair, expressed as the log, ratio of mean radiation-resistant
concentration versus mean radiation-sensitive concentration. Colored line: mean
experimental log, Resistant/Sensitive across all four cell line pairs. Black line: FBA
model-predicted log, ratio of average metabolite production in radiation-resistant

versus -sensitive TCGA tumors.
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Supplementary Fig. 5 | Experimentally-measured concentrations of immune
system mediating metabolites in matched radiation-sensitive and -resistant
cell lines. (Left) Replicate metabolite concentrations from all four cell line pairs, with
values expressed as the logip normalized area from LC-MS/MS. ns: not significant, *:
p < 0.05, *: p <£0.01, **: p <0.001, ***: p < 0.0001. (Right) Bars: Ratio value for
each cell line pair, expressed as the log, ratio of mean radiation-resistant
concentration versus mean radiation-sensitive concentration. Colored line: mean
experimental log, Resistant/Sensitive across all four cell line pairs. Black line: FBA
model-predicted log, ratio of average metabolite production in radiation-resistant

versus -sensitive TCGA tumors.
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Supplementary Fig. 6 | Performance of the multi-omics classifier, comparing

the dataset-independent ensemble architecture versus combining datasets

together before training on a single classifier. Multiple alternative classifier

performance metrics are provided.
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Supplementary Fig. 7 | Comparison of multi-omics classifier performance on

samples from different cancer types. a, Correlation between sample log loss and

number of samples within each cancer type. b, Correlation between sample log loss

and proportion of radiation-resistant samples within each cancer type.
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Supplementary Fig. 8 | k-Means clustering of clinical dataset contributions for
individual samples. Gap statistic values for each value of k are shown for the (a)

multi-omics classifier, and (b) non-invasive classifier.

3% Butyric acid
. Spearman
Correlation
207 =0.722
% 1%
0% 1
1% 4 - —
10° 107° 107" 10'

Metabolite Production [mmol gDW ™1 hr™1]

Supplementary Fig. 9 | Regression between feature importance score and
predicted metabolite production rate for a representative metabolite. Values are

shown for each individual patient tumor.
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Supplementary Fig. 11 | Data splitting for classifier training and testing.
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Supplementary Table 1 | Matched radiation-sensitive and radiation-resistant

cancer cell lines

Cancer Type | Radiation- Radiation- Notes Source
Sensitive Resistant
; Dr. David
Breast | MDA-MB-231 | MDA-MB-231 | ;é?ggeiﬁﬁgéfg’rf;fs'otg e | Boothman,
(BRCA) NQOL1 () NQOL1 (+) Indiana
NQO1L(+) cells. . . 84
University
Col Primary tumor (SW480) and lymph
( C((;Aolg) SW620 SW480 node metastasis (SW620) from the ATCC
same patient, with different radiation
sensitivities.
Glioblast Both isolated from same tumor
'OGgiﬂoma MO059J MO59K specimen. M059J cells lack DNA- ATCC
( ) PK activity, rendering them more
radiation-sensitive.
Head and rSCC-61 cells were derived from Dr. Cristina
Neck SCC-61 1SCC-61 SCC-61 cells after repeated Furdui, Wake
(HNSC) radiation exposure and selection of Forest

surviving colonies.

University®>®°
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Supplementary Table 2 | Hyperparameter ranges for Bayesian optimization

with gradient boosting machine classifiers.

Parameter Name Distribution Lower Bound Upper Bound

eta log-uniform 0.01 0.5
gamma log-uniform 0 5
max_depth uniform 1 11
subsample uniform 0.5 1
colsample_bytree uniform 0.5 1
colsample_bylevel uniform 0.5 1
reg_lambda log-uniform 1 4
reg_alpha log-uniform 0 1

Supplementary Table 3 | Hyperparameter ranges for Bayesian optimization

with the random forest classifier.

Parameter Name Distribution Lower Bound Upper Bound
n_estimators log-uniform 1 1000
criterion choice entropy, gini
max_depth uniform 1 11
min_samples_split uniform 0 1
min_samples_leaf uniform 0 0.5
max_features choice log2, sqrt
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Supplementary Table 4 | Hyperparameter ranges for Bayesian optimization

with the logistic regression classifier with L1 regularization.

Parameter Name

Distribution

Lower Bound

Upper Bound

c

log-uniform

0.001 1000

Supplementary Table 5 | Hyperparameter ranges for Bayesian optimization

with the neural network classifier with L1 regularization.

Lower Bound

Upper Bound
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Parameter Name Distribution
Number of layers uniform 1 5
Neurons per layer choice 8, 16, 32, 64, 128, 256, 512, 1024
activation_function choice elu, relu, sigmoid
optimizer choice adam, rmsprop, sgd
11 log-uniform 0.000001 0.1
dropout uniform 0 0.5
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