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Abstract: 

Resistance to ionizing radiation, a first-line therapy for many cancers, is a major 

clinical challenge. Personalized prediction of tumor radiosensitivity is not currently 

implemented clinically due to insufficient accuracy of existing machine learning 

classifiers. Despite the acknowledged role of tumor metabolism in radiation 

response, metabolomics data is rarely collected in large multi-omics initiatives such 

as The Cancer Genome Atlas (TCGA) and consequently omitted from algorithm 

development. In this study, we circumvent the paucity of personalized metabolomics 

information by characterizing 915 TCGA patient tumors with genome-scale metabolic 

Flux Balance Analysis models generated from transcriptomic and genomic datasets. 

Novel metabolic biomarkers differentiating radiation-sensitive and -resistant tumors 

were predicted and experimentally validated, enabling integration of metabolic 

features with other multi-omics datasets into ensemble-based machine learning 

classifiers for radiation response. These multi-omics classifiers showed improved 

classification accuracy, identified novel clinical patient subgroups, and demonstrated 

the utility of personalized blood-based metabolic biomarkers for radiation sensitivity. 

The integration of machine learning with genome-scale metabolic modeling 
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represents a significant methodological advancement for identifying prognostic 

metabolite biomarkers and predicting radiosensitivity for individual patients. 

 

Introduction: 

Despite being one of the oldest forms of cancer therapy and still a primary 

treatment modality, radiation therapy is not effective for over one-fifth of cancer 

patients distributed across almost all cancer types1,2. While biological understanding 

of radiation resistance has been advanced, use of a priori prediction of radiation 

response for individual cancer patients is not yet implemented clinically3. Early 

studies that identified biomarkers for radiation response focused on tumor histology, 

clinical factors including staging and Karnofsky performance score, and physiological 

parameters such as tumor oxygenation status4-6. As methods for transcriptomic 

analysis have improved, gene expression-based classifiers for radiation response 

have proliferated (recently curated in the RadiationGeneSigDB database)7. To date, 

however, these radiation response classifiers do not integrate multiple -omics 

modalities, owing in part to a lack of available -omics datasets for individual patient 

tumors. Specifically, while genomic and transcriptomic data is becoming more widely 

available for large numbers of patient tumors through initiatives such as The Cancer 

Genome Atlas (TCGA), metabolomic data associated with tumor biobanks is rarely 

captured, limiting inclusion of tumor metabolic features in predictive models for 

radiation therapy response2. 

Given the lack of available tumor metabolomic data, genome-scale metabolic 

modeling approaches such as flux balance analysis (FBA) are becoming increasingly 

popular for predicting metabolic phenotypes8,9. By combining a curated 

reconstruction of the human metabolic network with constraints on metabolic 
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reaction activities and an objective function to maximize a particular metabolic 

phenotype, predictions of steady-state reaction fluxes or metabolite production rates 

under physiological constraints can be obtained at a genome scale10. We previously 

developed a novel bioinformatics pipeline for integrating genomic, transcriptomic, 

kinetic, and thermodynamic parameters into personalized FBA models of 716 

radiation-sensitive and 199 radiation-resistant patient tumors from TCGA across 

multiple cancer types11. Using these metabolic models, we identified novel 

differences in redox metabolism between radiation-sensitive and -resistant tumors, 

as well as personalized gene targets for inhibiting antioxidant production and 

clearance of reactive oxygen species. By validating model predictions using a panel 

of matched radiation-sensitive and -resistant cancer cell lines, we demonstrated that 

genome-scale metabolic models provide accurate predictions of tumor metabolism 

and can identify diagnostic and therapeutic biomarkers for radiation response. 

While machine learning methods have been previously combined with 

genome-scale metabolic models to improve prediction of metabolic phenotypes, 

most studies combining these two methodologies have focused on microbiological 

applications rather than applications to cancer metabolism or predicting treatment 

outcomes12. We hypothesize that predictions from genome-scale metabolic models 

of patient tumors would provide additional information for distinguishing 

pathophysiological differences between radiation-sensitive and -resistant tumors, as 

well as for prediction of radiation of radiation response. To this end, we utilized 

personalized FBA models of TCGA patient tumors to predict genome-scale 

metabolite production rates for incorporation into machine learning classifiers and 

identifying novel metabolite biomarkers associated with radiation resistance. 

Additionally, through integration with clinical, genomic, and transcriptomic datasets, 
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we developed gene expression, multi-omics, and non-invasive classifiers which 

outperform previous predictors of radiation response, as well as provide 

personalized diagnostic biomarker panels for individual patient tumors. 

 

Results: 

Gene expression classifier implicates cellular metabolism 

Because the majority of previously-developed classifiers for radiation 

response are based on gene expression data (curated in the RadiationGeneSigDB 

database), we first developed a machine learning classifier utilizing transcriptomic 

data from radiation-sensitive and -resistant TCGA tumors to compare predictive 

accuracy and identified gene sets7. A gradient boosting machine (GBM) algorithm 

was used with Bayesian optimization for determining optimal hyperparameter values, 

providing optimal performance accuracy on TCGA datasets (Supplementary Fig. 1). 

782 of the 22,819 genes in the dataset (3.43%) were identified as significant in the 

classification of radiation response, determined by a 95% cumulative sum threshold 

on feature importance scores (Fig. 1a). 10 of the 50 genes with largest feature 

importance scores were previously implicated in radiation therapy response13-22. To 

determine whether the identified set of 782 genes has more predictive value than 

previously-identified gene sets in RadiationGeneSigDB, machine learning classifiers 

were subsequently trained using only the genes from each respective gene set, and 

the predictive accuracy of each classifier was compared (Fig. 1b). Our set of 782 

genes had the best performance among all gene sets when trained on the TCGA 

dataset, and was among the best gene sets when trained on a separate dataset from 

the Cancer Cell Line Encyclopedia (CCLE)23. 
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Gene set enrichment analysis (GSEA) of these 782 genes among the 

Hallmarks of Cancer showed significantly increased enrichment of the “Deregulating 

cellular energetics” hallmark, with very low enrichment of the “Genome instability & 

mutation” hallmark (Fig. 1c)24,25. Hierarchical clustering of the hallmark enrichment 

ranks for each gene set in RadiationGeneSigDB revealed two major clusters: a 

larger cluster with very high rank of “Genome instability & mutation”, and a smaller 

cluster with much higher ranks for other hallmarks involved in cellular metabolism, 

angiogenesis, and metastasis (Fig. 1d). This dichotomy suggests that although the 

biological response to radiation therapy certainly involves genomic instability and 

DNA-damage repair, other biological processes such as cellular metabolism may 

play critical roles as well26,27. GSEA of cancer expression modules additionally 

showed increased enrichment of many modules involved in cellular metabolism, 

including amino acid and sulfur metabolism, redox metabolism, and lipid metabolism 

(Fig. 1e)28. Finally, GSEA of Recon3D metabolic subsystems demonstrated 

increased enrichment of pathways involved in central carbon metabolism and lipid 

metabolism, with the majority of genes being associated with increased probability of 

radiation resistance (Fig. 1f)10. Together, analysis of this gene expression classifier 

suggests that radiation-resistant tumors exemplify dysregulation in their cellular 

metabolic networks, and that additional features involving the metabolism of 

radiation-sensitive and -resistant tumors will provide significant benefit in developing 

machine learning classifiers for radiation response. 
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Fig. 1 | Gene expression classifier for radiation response. a, (Left, black) Feature 

importance scores for individual genes, signifying the absolute change in predicted 

probability of radiation resistance attributed to each feature averaged across all 

samples. Those features within the top 50 with previous literature suggesting a role 

in tumor radiation response are annotated. (Right, gray) Cumulative feature 

importance scores. b, Performance of the identified set of 782 significant gene 

expression features from this study (red) versus previously identified gene sets in 

RadiationGeneSigDB (black), on both the (left) TCGA dataset performing a 

classification task on patient tumor radiation response and (right) CCLE dataset 
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performing a regression task on cancer cell line radiation response. AUROC: area 

under the receiver operating characteristic curve; MAE: mean absolute error; MSE: 

mean squared error. c, Gene set enrichment analysis (GSEA) of significant features 

from our gene expression classifier among the Hallmarks of Cancer. d, Hierarchical 

clustering of Hallmarks of Cancer enrichment ranks from the gene set in this study 

and those in RadiationGeneSigDB, based on both (row) hallmark, and (column) 

gene set. e, GSEA of significant gene expression features among the cancer 

expression modules from Segal et al. Modules relevant to cellular metabolism are 

annotated with their number and descriptions. f, GSEA of significant gene 

expression features among Recon3D metabolic subsystems. Significant genes 

within each subsystem are annotated above or below p-value bars based on whether 

their expression is positively correlated with (above, green) radiation sensitivity, or 

(below, red) radiation resistance. ns: not significant, *: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 

0.001, ****: p ≤ 0.0001. 

 

FBA models accurately predict relative metabolite production 

Personalized genome-scale FBA models of radiation-sensitive and -resistant 

TCGA tumors were generated to obtain metabolic features which could be used in 

machine learning classifiers for radiation response. These FBA models were 

developed through integration of gene expression and mutation information from 

individual patient tumors, as well as kinetic and thermodynamic parameters from 

publicly-available repositories11. By systematically creating artificial metabolite sinks 

in the Recon3D metabolic network and evaluating fluxes to these sinks, the 

production rates of different metabolites were predicted and compared between 
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radiation-sensitive and -resistant tumors (Fig. 2a). Fig. 2b shows that many of the 

metabolite classes implicated from the gene expression classifier showed 

significantly increased production in radiation-resistant tumors. These included 

antioxidant and cysteine-containing metabolites (including precursors of glutathione, 

an antioxidant with previously-implicated roles in radiation response)29, lipid and fatty 

acid metabolites (including those previously implicated in lipid peroxidation in 

response to ionizing radiation)30,31, and immune system mediators. While fewer 

metabolites were predicted to be significantly downregulated in radiation-resistant 

tumors, many metabolites involved in nucleotide metabolism were among this group. 

Regression of experimental metabolite concentrations among the NCI-60 

cancer cell line panel with cell line surviving fraction at 2 Gy radiation (SF2) showed 

up- and down-regulation of the same metabolite classes predicted from FBA models 

(Fig. 2c)32. Many lipid and fatty acid metabolites positively correlate with radiation 

resistance (including cholesterol, which had the most positive correlation among all 

metabolites tested); antioxidant metabolites including glutathione positively correlate 

as well. On the other hand, many nucleotide metabolites are anti-correlated with 

radiation resistance (including UDP-MurNAc, which had the most negative 

correlation among all metabolites tested). 

To experimentally validate FBA model predictions of individual metabolite 

levels, we analyzed matched pairs of radiation-sensitive and -resistant cell lines from 

four different cancer types via untargeted metabolomics (Fig. 2d-e, Supplementary 

Fig. 2-5, Supplementary Table 1). The pan-cancer FBA models accurately 

predicted that most nucleotide metabolites, including derivatives of adenine, 

guanine, thymine, and inosine, are downregulated in radiation-resistant cancers, 

while, in contrast, cytidine derivatives are upregulated. Predictions of lipid production 
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accurately captured the observed heterogeneity in lipid levels between cell lines. 

Although model-predictions of absolute oxidized (GSSG) and reduced (GSH) 

glutathione production did not match with experimentally-measured values, previous 

model predictions of increased reduction potential of GSSG to GSH in radiation-

resistant tumors agreed with experimental findings of greater GSH/GSSG ratios in 

radiation-resistant cell lines11. Finally, model-predicted production of the antioxidant 

lipoamide as well as immune mediators anandamide and 2-arachidonylglycerol 

corresponded very well with experimental measurements, which were upregulated in 

nearly all radiation-resistant cell lines. Overall, these findings demonstrate that 

genome-scale metabolic models derived from transcriptomic and genomic data 

provide surprisingly accurate predictions of relative metabolite production between 

radiation-sensitive and -resistant cancers, allowing for their use in machine learning 

classifiers for radiation response. 

 

Fig. 2 | FBA model predictions of relative metabolite production and 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2020. ; https://doi.org/10.1101/2020.08.02.233098doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.02.233098
http://creativecommons.org/licenses/by/4.0/


 10

experimental validation between radiation-sensitive and radiation-resistant 

cancers. a, Multi-omics data from TCGA tumors and publicly-available repositories 

is integrated to develop personalized FBA models and predict differences in 

metabolite production rates between radiation-sensitive and -resistant tumors. b, 

Model-predicted metabolite production rates, expressed as the log2 ratio of average 

production between radiation-resistant versus -sensitive tumors. Metabolites within 

major classes with significant upregulation or downregulation in radiation-resistant 

tumors are color-coded and annotated. c, (Left) Correlation between metabolite 

concentration and surviving fraction at 2 Gy radiation (SF2) among 139 

experimentally-measured metabolites in the NCI-60 panel of cancer cell lines. 

Metabolite classes are colored as in (b). (Right) Example regression between 

metabolite concentration and cell line SF2 for cholesterol. d, (Top) Schematic 

showing the comparison of model-predicted metabolite production in radiation-

sensitive and -resistant TCGA tumors, with experimentally-measured metabolite 

concentrations in matched radiation-sensitive and -resistant cell lines. (Bottom) 

Radiation-sensitive and -resistant cell line pairs across four different cancer types 

used in the experimental metabolomics study (Supplementary Table 1). e, 

Comparison of model-predicted and experimentally-measured levels of individual 

putative metabolites within the four major classes identified in (b). BRCA, COAD, 

GBM, HNSC: log2 ratio of putative metabolite levels in radiation-resistant versus -

sensitive cell lines. Statistically-significant differences within each cell line pair are 

represented by box outlines. MEAN EXP: average experimental log2 ratio across all 

four cell line pairs. FBA: log2 ratio of model-predicted metabolite production rates in 

radiation-resistant versus -sensitive TCGA tumors. 
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Machine learning architecture for radiation response 

To integrate FBA model predictions of metabolite production rates with other 

TCGA datasets into multi-omics machine learning classifiers, a dataset-independent 

ensemble architecture was developed (Fig. 3a). Multiple independent “base learner” 

classifiers are trained on an individual -omics dataset (either clinical, genomics, 

transcriptomics, or metabolomics data), as described in Supplementary Fig. 1. 

Subsequently, by comparing predicted class probabilities from each individual base 

learner to known radiation responses, a “meta-learner” classifier is trained to 

determine which base learner provides the most accurate prediction of radiation 

response based on the multi-omics features of individual samples (Fig. 3b)33. For an 

individual testing sample, each base learner outputs the predicted probability of 

radiation resistance (pi), and the meta-learner outputs the predicted probability that 

each base learner will provide the most accurate prediction (wi); the final probability 

of radiation resistance is the weighted average of each pi, with weights being each wi 

(Fig. 3c). This dataset-independent ensemble architecture performs better across 

multiple performance metrics compared to the common practice of initially combining 

all -omics datasets and training on a single classifier (Fig. 3d, Supplementary Fig. 

6-7). Overall, this machine learning architecture is a robust platform for integrating 

multi-omics data and providing accurate predictions of radiation response in 

individual patient tumors. 
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Fig. 3 | Machine learning architecture for improved prediction of radiation 

therapy response. a, Dataset-independent ensemble architecture, with independent 

base learners for each dataset and one meta-learner for integration of base learner 

outputs. b, Meta-learner performing Nd-class classification of the most accurate base 

learner/dataset for each sample, where Nd is the number of independent base 

learners/datasets. c, Prediction of radiation response for each testing set sample 

using predicted probabilities from each base learner and weights from the meta-

learner. d, Performance of multi-omics classifier trained on clinical, gene expression, 

mutation, and FBA-predicted metabolite data from TCGA tumors, comparing the 

dataset-independent ensemble architecture versus combining datasets together 

before training on a single classifier. Weighted log loss and AUROC performance 

metrics are shown here, with other metrics shown in Supplementary Fig. 6. ns: not 

significant, *: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001, ****: p ≤ 0.0001. 
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Multi-omics classifier identifies clinical patient subgroups 

Using the dataset-independent ensemble architecture described above, a 

multi-omics machine learning classifier integrating clinical, gene expression, 

mutation, and FBA-predicted metabolite production rates from TCGA tumors was 

developed. With an AUROC of 0.906 ± 0.004, this classifier has significantly greater 

performance compared to previously-developed machine learning classifiers for 

radiation response (Fig. 4a, 1b)7,34. Additionally, the threshold for separating 

radiation-sensitive and -resistant classes can be altered to optimize sensitivity, 

specificity, or a balance of both. 725 of the 52,223 features from the four datasets 

(1.39%) were identified as significant in the classification of radiation response (Fig. 

4b). While the majority of these 725 features were gene expression (48.3%) and 

metabolite (32.6%) features, clinical features including tumor histology, 

chemotherapeutic response, and cancer type contributed more than half of the total 

feature importance scores (60.1%; Fig. 4c). Mutations with significant feature 

importance scores included those directly involved in redox metabolism (IDH1 

R132H) and lipid metabolism (BRAF V600E)35,36. 

Individual samples varied significantly in the contribution of different datasets 

towards radiation response classification (Fig. 4d). Using unsupervised clustering, 

three clusters of patients with varying contributions of clinical features were identified 

(Fig. 4e, Supplementary Fig. 8a). While “High Clinical” patients were categorized 

by large clinical feature contributions and small contributions from multi-omics 

datasets, multi-omics features provided the majority of cumulative feature 

importance scores for “Low Clinical” patients, with metabolic features alone providing 

nearly as much utility as clinical features (Fig. 4f). For this “Low Clinical” cluster, 

certain clinical features including chemotherapeutic response have diminutive utility, 
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whereas novel multi-omics features including IDH1 SNP and lipid metabolite levels 

have much higher importance scores compared to the overall patient cohort. 

Significant heterogeneity in clinical clusters was observed based on patient clinical 

factors, especially cancer type and tumor histology (Fig. 4g-i). Output weights from 

the meta-learner provide an accurate prediction of clinical cluster, effectively 

differentiating between “Low Clinical” and “Medium/High Clinical” patients; this 

provides a valuable strategy for determining whether clinical information from 

electronic medical records is sufficient to accurately predict radiation response in an 

individual patient, or whether multi-omics features from tumor biopsy samples are 

needed (Fig. 4j). 

 

Fig. 4 | Multi-omics classifier integrating clinical, gene expression, mutation, 

and FBA-predicted metabolite features for prediction of radiation response. a, 
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Receiver operating characteristic (ROC) curve for the multi-omics classifier. The 

point representing a 50% predicted probability threshold for separating radiation-

sensitive and -resistant classes, as well as the optimal point for maximizing Youden’s 

J statistic (J = sensitivity + specificity - 1) are shown. Blue line: mean across 20 

training+validation/testing splits. Light blue error band: ± 1 standard deviation. b, 

(Left, black) Feature importance scores for individual features. (Right, gray) 

Cumulative feature importance scores. c, List of top 50 features with largest feature 

importance scores, colored based on their original dataset. (Inset, Left) Number of 

significant features from each dataset. (Inset, Right) Relative contribution of features 

from each dataset to the sum of total feature importance scores, averaged across all 

samples. d, Relative contribution of features from each dataset to the sum of total 

feature importance scores, for each individual sample. e, Clustering of samples into 

“Low”, “Medium”, and “High” clinical groups based on the relative contribution of the 

clinical dataset. The optimal number of clusters was calculated based on maximizing 

the gap statistic from k-means clustering (Supplementary Fig. 8a). f, Top 50 

features with largest feature importance scores among samples within the “Low 

Clinical” cluster. (Inset) Relative contribution of features from each dataset to the 

sum of total feature importance scores, averaged across all samples within the “Low 

Clinical” cluster. g, Statistical significance of patient clustering into 

“Low/Medium/High” clinical groups based on different clinical factors, as calculated 

by the chi-squared test with Yates’ correction. Only statistically significant (p ≤ 0.05) 

clinical factors are shown. h, Clinical cluster and dataset contribution of samples 

within different cancer types. i, Clinical cluster and dataset contribution of breast 

cancer (BRCA) samples with different histological subtypes. j, Prediction of clinical 

cluster based on meta-learner weight for the clinical dataset. Dotted line: threshold 
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which maximizes the accuracy in separating “Low Clinical” from “Medium/High 

Clinical” clusters. 

 

Novel metabolic biomarkers identified for radiation response 

Metabolite set enrichment analysis (MSEA) of the 236 significant metabolite 

features from the multi-omics classifier indicated significant enrichment of several 

metabolic pathways involved in central carbon metabolism, lipid metabolism, and 

nucleotide metabolism (Fig. 5a). To identify individual metabolites with the largest 

impact on radiation response prediction, the Spearman correlation between feature 

importance score and predicted metabolite production rate across all patients was 

calculated for each metabolite (Supplementary Fig. 9). Fig. 5b highlights many of 

the significant metabolic features, as well as metabolism-related gene expression 

and mutation features. Significant glycolytic and TCA cycle metabolites (fructose 1,6-

bisphosphate, 3-phosphoglyceric acid, succinyl-CoA, and succinate) were all 

positively correlated with radiation resistance, while genes promoting 

gluconeogenesis (PCK2 and LDHC) were associated with radiation sensitivity. 

Fructose 2,6-bisphosphate, an allosteric regulator of PFK-1 that activates glucose 

breakdown, had one of the most positive correlation values. Additionally, many 

metabolites in early mannose metabolism had positive correlation values, in 

accordance with previously observed radiation-induced upregulation of mannose-6-

phosphate receptors and high-mannose type N-glycan production37,38. 

Greater glycolytic fluxes in radiation-resistant tumor models resulted in 

increased production of the majority of significant lipid and fatty acid metabolites, 

including many with previously-identified roles in antioxidation such as capric acid, 
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butyric acid, eicosatrienoic acid, and γ-linolenic acid (Fig. 5c)39-42. On the other 

hand, significant nucleotide metabolites were highly correlated with radiation 

sensitivity, in agreement with the observed downregulation in radiation-resistant 

cancer cell lines (Fig. 5d). While production of energy metabolites including ATP 

was correlated with radiation sensitivity, FBA models predict significantly greater 

conversion of ADP to ATP in radiation-resistant tumors, in agreement with previous 

experimental findings (Fig. 5e, Supplementary Fig. 10)43,44. Finally, increased 

production of membrane phospholipids and arachidonic acid precursors resulted in 

significant correlations between inflammation-mediating eicosanoids and radiation 

resistance, corroborating previous evidence of radiation-sensitizing effects of 

cyclooxygenase inhibitors including aspirin (Fig. 5f)45. Together, these findings 

suggest that metabolic features from multiple interconnected pathways including 

central carbon, lipid, and nucleotide metabolism are viable diagnostic biomarkers for 

prediction of radiation sensitivity. 
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Fig. 5 | Analysis of metabolic biomarkers from the multi-omics classifier for 

radiation response. a, Metabolite-set enrichment analysis (MSEA) of significant 

metabolic features among Recon3D metabolic subsystems. The number of 

significant metabolites in each subsystem are shown. Only statistically significant (p 

≤ 0.05) subsystems are shown. b, Overview of significant metabolic features, as well 

as metabolism-related gene expression and mutation features. Different metabolic 

pathways are shown with colored backgrounds. Significant metabolic features are 

denoted by colored boxes, where the color indicates the Spearman correlation 

coefficient between feature importance score and predicted metabolite production 

rate across all patients (Supplementary Fig. 9). Significant gene expression and 

mutation features are denoted by colored reaction arrows, either in green 

(associated with radiation sensitivity) or in red (associated with radiation resistance). 

13BPG: 1,3-bisphosphoglycerate; 2HG: 2-hydroxyglutarate; 2PG: 2-

phosphoglycerate; 3HB: 3-hydroxybutyrate; 3HBCoA: 3-hydroxybutyrl-CoA; 3PG: 3-
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phosphoglycerate; αKG: Alpha-ketoglutarate; AA: Acetoacetate; AACoA: 

Acetoacetyl-CoA; ACoA: Acetyl-CoA; CDP-DAG: CDP-diacylglycerol; Cit: Citrate; 

CL: Cardiolipin; DG: Diacylglycerol; DHAP: Dihydroxyacetone phosphate; F16BP: 

Fructose 1,6-bisphosphate; F1P: Fructose 1-phosphate; F26BP: Fructose 2,6-

bisphosphate; F6P: Fructose 6-phosphate; FA-CoA: Fatty acyl-CoA; FFA: Free fatty 

acid; Fru: Fructose; Fuc: Fucose; Fum: Fumarate; G3P: Glyceraldehyde 3-

phosphate; G6P: Glucose 6-phosphate; GDP-ddM: GDP-4-keto-6-deoxymannose; 

GDP-Fuc: GDP-fucose; GDP-M: GDP-mannose; Glc: Glucose; Glyald: 

Glyceraldehyde; Glyc3P: Glycerol 3-phosphate; Gylc: Glycerol; HMGCoA: 3-

hydroxy-3-methylglutaryl-CoA; ICit: Isocitrate; Lac: Lactate; LPA: Lysophosphatidic 

acid; M16BP: Mannose 1,6-bisphosphate; M1P: Mannose 1-phosphate; M6P: 

Mannose 6-phosphate; MAG: Monoacylglycerol; Mal: Malate; MCoA: Malonyl-CoA; 

OAA: Oxaloacetate; PA: Phosphatidic acid; PC: Phosphatidylcholine; PCoA: 

Palmitoyl-CoA; PE: Phosphatidylethanolamine; PEP: Phosphoenolpyruvate; PG: 

Phosphatidylglycerol; PGP: Phosphatidylglycerol-phosphate; PI: 

Phosphatidylinositol; PS: Phosphatidylserine; Pyr: Pyruvate; Suc: Succinate; 

SucCoA: Succinyl-CoA; TG: Triglyceride. c-e, Spearman correlation coefficients of 

significant metabolic features involved in (c) fatty acid and cholesterol metabolism, 

(d) nucleotide metabolism, and (e) energy metabolism. f, Metabolic pathway of 

eicosanoid production, highlighting significant metabolite and gene expression 

features. 12HpETE: 12-hydroxyperoxyeicosatetraenoic acid; AA: Arachidonic acid; 

DGLA: Dihomo-γ-linolenic acid; GLA: γ-linolenic acid; LA: linoleic acid. 

 

Non-invasive classifier implicates blood metabolic features 
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Because non-invasive metabolic predictors of radiation response could be 

rapidly applied for informing patient-specific treatment, we refined machine learning 

classification to only integrate clinical data derived from non-invasive means 

(excluding any pathologic staging or histological information from tumor biopsies) 

with FBA-predicted production rates of metabolites known to be quantifiable in 

human blood samples (Fig. 6a)46. This non-invasive classifier performed similarly 

overall to the multi-omics classifier, with increased sensitivity and decreased 

specificity; this suggests that the non-invasive classifier may be optimal as a first-line 

screening test, followed by the multi-omics classifier as a second-line diagnostic test 

(Fig. 6b)47. 97 of the 363 features from the two datasets (26.7%) were identified as 

significant in the classification of radiation response (Fig. 6c). Similar to the multi-

omics classifier (Fig. 4e), individual patient contributions of clinical features formed a 

bimodal distribution of “Low Clinical” and “High Clinical” groups (Fig. 6d, 

Supplementary Fig. 8b). Blood metabolite features - including many lipid, 

nucleotide, and inflammation-mediating metabolites previously identified from the 

multi-omics classifier - provided almost one-half of the cumulative feature importance 

scores for “Low Clinical” patients (Fig. 6e). Dataset contributions and feature 

importance scores for individual cancer patients can identify personalized 

biomarkers with maximal diagnostic utility (Fig. 6f-h). Overall, these findings 

demonstrate the value of blood-based biomarkers as a non-invasive approach 

towards personalized prediction of radiation response. 
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Fig. 6 | Non-invasive classifier integrating non-invasive clinical and blood-

based metabolite features for prediction of radiation response. a, Schematic 

showing inclusion and exclusion criteria for features in the non-invasive classifier. b, 

Comparison of model performance between multi-omics and non-invasive classifiers. 

c, (Left, black) Feature importance scores for individual features. (Right, gray) 

Cumulative feature importance scores. d, k-means clustering of samples into “Low” 

and “High” clinical groups based on the relative contribution of the clinical dataset 

(Supplementary Fig. 8b). e, Clinical and metabolic dataset contributions among the 

“Low Clinical” group. Individual features with feature importance scores above 1% 

are shown. f, Breakdown of individual feature contributions towards prediction of 

radiation response in a representative radiation-resistant TCGA patient (TCGA-S9-

A7IY). (Upper) Contribution of each dataset towards the progression from prior to 
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posterior probability of radiation resistance. (Lower) Feature importance scores for 

this individual patient. g-h, Plots of feature importance score versus predicted 

metabolite production rate for two metabolic features, illustrating (g) a feature with 

large individual importance score relative to other patients (significant utility as a 

personalized blood-based biomarker), and (h) a feature with small individual 

importance score relative to other patients (little utility as a personalized blood-based 

biomarker). ns: not significant, *: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001, ****: p ≤ 

0.0001. 

 

Discussion: 

Despite significant interest in methodologies for the a priori prediction of 

radiation response in cancer patients, machine learning algorithms have yet to be 

used in the clinical setting for informing radiation treatment36. Recently-developed 

classifiers for predicting tumor radiation response have focused mainly on gene 

expression data, rather than the integration of multiple -omics datasets7,48. This may 

be in part due to a lack of metabolomics datasets from tumor biobanks including 

TCGA, limiting inclusion of metabolic features in machine learning classifiers for 

radiation response. Here, we propose a novel strategy of utilizing personalized 

genome-scale FBA models of radiation-sensitive and -resistant patient tumors to 

predict the production rates of metabolites across the Recon3D metabolic network, 

leveraging the accessibility of genomic and transcriptomic tumor datasets to 

generate metabolic insight. These metabolic features are subsequently integrated 

with clinical, genomic, and gene expression data from TCGA tumors to generate 

gene expression, multi-omics, and non-invasive classifiers for radiation response. 

These classifiers provide more accurate predictions of tumor radiation response 
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compared to previously-developed classifiers, as well as novel multi-omics 

biomarkers associated with radiation sensitivity. 

FBA model predictions of tumor metabolism and experimental validation with 

matched radiation-sensitive and -resistant cancer cell lines demonstrated significant 

re-routing of metabolic fluxes in radiation-resistant cancers, as observed by the up- 

and down-regulation of metabolites across multiple interconnected metabolic 

pathways. (Fig. 2,5). This flux re-routing was observed previously in the context of 

redox metabolism in radiation-resistant cell lines and tumors, but findings from this 

study suggest more widespread metabolic alterations throughout central carbon, 

lipid, and nucleotide metabolism11,49. Our approach of systematically introducing 

metabolite sinks into the Recon 3D network provides a novel way of relating 

production fluxes to relative changes in experimentally measured metabolite levels. 

We observe association between increased levels of fatty acid and cholesterol 

metabolites with tumor radiation resistance in agreement with previous experimental 

evidence. Radiation-resistant head and neck cancer cells have enhanced fatty acid 

production from increased expression of fatty acid synthase50. Additionally, ionizing 

radiation was shown to cause increased cholesterol production in lung cancer cells51. 

Plasma levels of total and HDL cholesterol were found to be elevated in radiation-

resistant SPRET/EiJ mice compared to radiation-sensitive BALB/cByJ mice, 

implicating cholesterol as a potential non-invasive metabolic biomarker52,53. 

Treatment with HMG-CoA reductase inhibitors including simvastatin was reported to 

sensitize prostate cancer cells to radiation therapy, potentially by compromising DNA 

damage repair54,55. Other agreements between model predictions and experimental 

studies include implication of inflammation-mediating eicosanoids in radiation 

resistance. Many prostaglandin metabolites identified in this study have previous 
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associations with radiation resistance, and cyclooxygenase inhibitors such as aspirin 

may act as radiation sensitizers and improve outcomes in cervical, prostate, and 

rectal cancers45,56-58. These findings suggest that lipid and eicosanoid metabolites 

may have utility as both diagnostic biomarkers as well as therapeutic targets for 

improving radiation response. 

Integration of FBA model predictions into multi-omics machine learning 

classifiers for radiation response was performed by employing a dataset-

independent ensemble architecture (Fig. 3). This approach was based on the 

concept of stacked generalization (having multiple “base learners” make predictions 

that are used as input for a separate “meta-learner”), which was shown to improve 

predictive accuracy in this study as well as multiple previous medical applications59-

61. However, while in previous studies there is only one input dataset being supplied 

to the multiple base learners, we instead input different -omics datasets to separate 

base learners. The benefit of this dataset-independent approach is that the meta-

learner can subsequently be used to predict which individual datasets will provide 

the most utility for determining radiation response in individual patients. For example, 

the meta-learner can accurately differentiate between “Low Clinical” patients (with 

large contributions of gene expression, mutation, and metabolic datasets from 

patient biopsy samples and genome-scale metabolic modeling) and “High Clinical” 

patients (with greater contribution of clinical data from electronic medical records) 

(Fig. 4). This stratification of patient populations allows for optimal resource 

allocation for collecting biological measurements with maximal diagnostic utility for 

individual cancer patients. Moreover, the use of gradient boosting machine (GBM) 

models as the base and meta-learners provides a significant amount of embedded 

feature selection; this decrease in model complexity not only lowers the cost of 
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measuring biological features needed for prediction, but also improves the 

interpretability of models, increasing the likelihood of adoption by clinicians62. 

In addition to demonstrating the utility of multi-omics data for the classification 

of radiation response, we found that a classifier utilizing non-invasive clinical 

information and blood-based metabolic biomarkers can predict radiation sensitivity 

with comparable accuracy (Fig. 6). Blood-based diagnostic tools are garnering 

attention for their use in early detection, monitoring, and optimal treatment 

identification for cancer patients63. Identification of novel circulating biomarkers 

through the integration of machine learning and genome-scale metabolic modeling 

could provide significant utility in adaptive radiotherapy to modify patient treatment 

with radiation or radiation-sensitizing chemotherapies in response to the observed 

efficacy of previous treatments64. 

Although our novel approach towards integrating machine learning and 

genome-scale metabolic modeling for the prediction of radiation response provides 

many enhancements in performance accuracy and biomarker identification 

compared to previous studies, further improvements could yield additional benefits. 

Our multi-omics classifier showed that tumor histology has major impacts on both the 

prediction of radiation response and the clustering of “Low/High Clinical” patients, 

suggesting that additional features from tumor histological images could further 

improve classifier performance. A convolutional neural network could be added as 

an additional base learner with tumor H&E images from TCGA as input, providing 

additional histological features and identifying novel associations with radiation 

response65,66. Additionally, changes in both DNA methylation and microRNA 

expression have been implicated in the tumor response to radiation therapy; 

inclusion of these features into the multi-omics classifier may yield additional 
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biomarkers for improved radiation response prediction67,68. 

Metabolomic profiling is powerful for understanding cancer pathophysiology, 

identifying and monitoring clinical biomarkers, and predicting patient outcomes, but 

challenging to retrospectively analyze in specimen biobanks for inclusion in multi-

omics data mining69. In this study, we demonstrate that integration of machine 

learning and genome-scale metabolic modeling methodologies allows for improved 

biomarker identification and prediction of radiation response in individual patient 

tumors without direct metabolomics measurements. This approach is generalizable 

towards other applications in guiding patient treatment, such as the prediction of 

chemotherapeutic response as well as identification of novel metabolic targets for 

pharmacological inhibition and treatment sensitization. The synergistic integration of 

machine learning and genome-scale metabolic modeling will inevitably yield 

additional insights for improving precision medicine and long-term care of cancer 

patients. 

 

Methods: 

TCGA Data Retrieval and Processing 

Clinical data from TCGA patients was obtained from the GDC data portal 

(clinical drug, clinical patient, and clinical radiation files) and the Synapse 

TCGA_Pancancer project (biological sample files)2. Drug names were standardized 

according to the standard available from the Gene-Drug Interactions for Survival in 

Cancer (GDISC) database70. Categorical clinical features were one-hot encoded 

before inputting into machine learning classifiers. RNA-Seq gene expression data 

was obtained from Rahman et al.’s alternative preprocessing method (GEO: 

GSE62944)71. Data from this preprocessing method showed fewer missing values, 
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more consistent expression between replicates, and improved prediction of biological 

pathway activity compared to the original TCGA pipeline. Mutation data using the 

MuTect variant caller was obtained from the GDC data portal2,72. For all data types, 

only features with at least two unique non-missing values were included. 

 

Radiation Sensitivity 

TCGA samples were classified into radiation-sensitive and radiation-resistant 

classes according to their reported sensitivity to radiation therapy based upon the 

RECIST classification method. Patients with a complete or partial response to 

radiation (greater than 30% decrease in tumor size) were classified as radiation-

sensitive, and patients with stable or progressive disease (either less than 30% 

decrease in tumor size, or increase in tumor size) were classified as radiation-

resistant. If a patient received multiple courses of radiation therapy, they were 

classified based on the response to their first course. 

 

Data Splitting 

Supplementary Fig. 11 provides an overview of data splitting for machine 

learning classifier training and testing. The collection of 716 radiation-sensitive and 

199 radiation-resistant samples was randomly split into training+validation (80% of 

all samples) and testing (20% of all samples) groups. Within the training+validation 

group, 5-fold cross validation was performed to optimize hyperparameter values. The 

training (80% of training+validation samples) group was used for training the model 

with a given set of hyperparameters; within this training group, 87.5% was directly 

used for training, and 12.5% was used to identify the iteration at which to perform 
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early stopping during training. The validation (20% of training+validation samples) 

group was used to assess model performance with the given set of 

hyperparameters. The average validation performance across all 5 folds was used to 

determine the optimized set of hyperparameters; once this set was determined, the 

model was retrained on the entire training+validation group, and the testing group 

(20% of all samples) was used to assess overall model performance. 20 iterations of 

randomized training+validation/testing splitting were performed to analyze model 

predictions and performance metrics over multiple instances. All data splits were 

performed using stratified shuffle splitting, where the proportion of radiation-sensitive 

and -resistant samples was kept the same (refer to Supplementary Fig. 11). 

 

Base Learners 

Nd base learners were trained using an individual -omics dataset (either 

clinical, gene expression, mutation, or metabolic datasets), where Nd is the number 

of individual datasets being used for the classifier. Each base learner is composed of 

a gradient boosting machine (GBM) model that performs two-class classification 

(predicting either radiation sensitivity or resistance for each patient) using features 

from an individual dataset, such as clinical, genomics, transcriptomics. GBM models 

using decision tree ensembles have many useful characteristics compared to other 

machine learning algorithms, including embedded feature selection, capability of 

handling missing values (which is common in clinical datasets), and efficient 

management of high-dimensional datasets (where the number of features greatly 

exceeds the number of samples)73,74. XGBoost (v0.90) was used to develop GBM 

base learners and meta-learners75. 
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Bayesian optimization was performed to optimize hyperparameter values for 

each GBM model. At each iteration of Bayesian optimization, 5-fold cross validation 

was used to calculate the performance of a particular set of hyperparameters. 

Weighted log loss was used as the performance metric for both GBM model training 

and evaluating model performance on validation sets: 

 Weighted Log Loss � 1
��

��������log���� � �1 � ���log�1 � �����
��

���

 (1) 

where yi is the true class label of sample i (yi=0 if sensitive, yi=1 if resistant), pi is the 

predicted probability of sample i being radiation-resistant (belonging to class 1), wR is 

the weight given to radiation-resistant samples (wR = # sensitive samples / # 

resistant samples), and NS is the total number of samples. The weight given to 

radiation-resistant samples accommodates for the fact that there are more radiation-

sensitive samples than radiation-resistant samples, and prevents classifiers from 

focusing on optimizing performance exclusively on radiation-sensitive samples. The 

mean weighted log loss plus one standard error over all 5 folds of cross-validation is 

used to choose the hyperparameter set with best performance. During model 

training, early stopping is employed to prevent overfitting. 

For individual samples, each of the Nd base learners outputs the predicted 

probability of radiation resistance (p1, p2, …, pNd) using features from the individual 

data type. Each base classifier receives the same training/validation/testing split of 

samples. 

 

Meta-learner 
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For every sample within the 5 validation sets used for the base learners, each 

base learner’s output prediction of radiation resistance (pi) is compared to the 

sample’s true radiation response class (yi). The meta-learner is trained to predict the 

optimal base learner which provides the most accurate prediction of radiation 

response for each sample, based on the sample’s multi-omics features. This meta-

learner performs an Nd-class classification, where Nd is the number of independent 

base learners. The features this meta-learner is trained on include all features from 

the Nd datasets which have non-zero feature importance scores from their respective 

base learners; features which do not impact base learner predictions are not 

included, which increases the training speed while maintaining meta-learner 

accuracy. Because validation samples from the 5-fold cross validation were not 

directly used in base learner training, they can be used to train this meta-learner 

without overfitting or inflation of model performance metrics. 

Implementation of the meta-learner is analogous to that of each base learner, 

using a GBM model, Bayesian optimization, early stopping, and 5-fold cross 

validation. Multiclass log loss was used as the performance metric for both GBM 

model training and evaluating model performance 76: 

 Multiclass Log Loss � � 1
��

� � ��,�log���,��
��

��	

��

���

 

(2) 

where yi,k is 1 if dataset k is the true optimal dataset of sample i and 0 otherwise, pi,k 

is the predicted probability of dataset k being the optimal dataset of sample i, NS is 

the total number of samples, and Nk is the total number of datasets. The mean 

multiclass log loss plus one standard error over all 5 folds of cross-validation is used 

to choose the optimal hyperparameter set with best performance. 
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For individual samples, the meta-learner outputs Nd probabilities (w1, w2, …, 

wNd) that each base learner is optimal for that sample (all Nd probabilities sum to 1). 

Note that, once the meta-learner is trained using the predicted probabilities from the 

base learners, the base learners and meta-learner act independently of each other 

when used on new testing samples. 

 

Radiation Response Prediction 

Each testing sample is run through 1) all Nd base learners to obtain the 

predicted probabilities of radiation resistance using each of the Nd individual datasets 

(p1, p2, …, pNd), and 2) the meta-learner to obtain the predicted probabilities that 

each of the Nd base learners/datasets is optimal for that sample (w1, w2, …, wNd). To 

obtain the final predicted probability of radiation resistance for the testing sample, the 

weighted average of the base learner probabilities is taken, with the meta-learner 

probabilities as weights:  

 � � ���� � �
�
 �  � ���
��� 

(3) 

Samples with p < 0.5 are classified as radiation-sensitive, while samples with p > 0.5 

are classified as radiation-resistant. 

 

Bayesian Optimization 

Bayesian optimization was used to optimize GBM hyperparameters for both 

the base learner and meta-learner classifiers. This iterative approach automates the 

search for hyperparameter values by calculating an acquisition function which 

provides the expected benefit of sampling a particular point in hyperparameter space 
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on the overall search for hyperparameters with minimal cross-validation error. At 

each iteration, the point in hyperparameter space with the largest acquisition function 

value is chosen, 5-fold cross validation is used to determine the performance of 

those particular hyperparameters, and the acquisition function is updated to then 

determine which next point in hyperparameter space will be sampled. Hyperopt 

(v0.1.2) was used to perform Bayesian optimization77. Supplementary Table 2 

provides the 8 GBM hyperparameters chosen for optimization of both base learner 

and meta-learner classifiers, with the ranges of values in the hyperparameter search 

space. 28=256 iterations of Bayesian optimization were performed for each classifier. 

 

Classifier Performance Metrics 

Final classifier performance was assessed on testing samples across the 20 

iterations of randomized training+validation/testing splitting. The following 

performance metrics were used: 

1. Weighted log loss: equation (1) 

2. Area under the receiver operating characteristic curve (AUROC) 

3. Balanced accuracy, an accuracy metric that corrects for unequal numbers of 

radiation-sensitive and -resistant patients: 

 Balanced Accuracy � 1
2 ' ()

() � *� � (�
(� � *)+ (4) 

4. Sensitivity: 

 Sensitivity � ()
() � *� (5) 

5. Specificity: 
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 Speci/icity � (�
(� � *) (6) 

6. Positive predictive value: 

 Positive Predictive Value � ()
() � *) (7) 

7. Negative predictive value: 

 Negative Predictive Value � (�
(� � *� (8) 

 

Feature Importance Scores 

The importance of individual features towards the prediction of radiation 

response, both averaged across all samples as well as for individual samples, was 

determined by calculating Shapley Additive Explanations (SHAP) values for each 

classifier. Each SHAP value represents the change in predicted probability of 

radiation resistance for patient i attributed to feature j78. Features with positive SHAP 

values for patient i signify those where the particular value of feature j attributed to 

patient i is such that it increases patient i’s predicted probability of radiation 

resistance. Larger absolute SHAP values indicate features with larger overall 

contributions (either negatively or positively). Mean absolute SHAP values across all 

samples provide an indication of the overall importance of a particular feature in the 

classifier’s prediction of radiation response. SHAP values were averaged across 20 

training+validation/testing splits by a weighted average 79, with weights proportional 

to the inverse of the weighted log loss performance metric on the testing set for that 

split. This weighted average allows model analysis to be more reflective of the more 

accurate predictions, so that identified biomarkers are more likely to be true 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2020. ; https://doi.org/10.1101/2020.08.02.233098doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.02.233098
http://creativecommons.org/licenses/by/4.0/


 34

biomarkers rather than artifacts of poorly-performing predictions. Values were 

normalized by the difference between prior and posterior probabilities of radiation 

resistance for each sample. SHAP v0.29.1 was used to calculate SHAP values80. 

 

Comparison of Machine Learning Algorithms 

scikit-learn v0.21.2 functions sklearn.ensemble.RandomForestClassifier() and 

sklearn.linear_model.LogisticRegression() were used to implement random forest 

and logistic regression with L1 regularization classifiers, respectively81. Keras v2.3.1 

was used to implement the neural network with L1 regularization classifier 

(https://github.com/keras-team/keras). Weighted log loss (equation (1)) was used as 

the loss function for the neural network classifier, and early stopping was performed. 

Missing values were imputed and scaled using sklearn.impute.SimpleImputer() and 

sklearn.preprocessing.StandardScaler() functions, respectively, before training with 

the random forest, logistic regression, and neural network classifiers. 

Supplementary Tables 3-5 provide the hyperparameters and value ranges used for 

Bayesian optimization with each algorithm; 256 iterations of Bayesian optimization 

were performed for each classifier. Each classifier, including the GBM classifier, was 

run using the same training, validation, and testing samples at each of 20 

training+validation/testing splits so that performance can be accurately compared. 

 

Comparison of Gene Expression Datasets 

11 gene expression sets for oxic radiation response gene expression sets in 

the RadiationGeneSigDB database were compared to the set of 782 significant 

genes from the gene expression classifier7. Gene names from RadiationGeneSigDB 
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gene sets were converted to Entrez gene ID’s and gene symbols. Those genes 

where a matching Entrez gene ID or gene symbol could not be found were removed. 

Additionally, those genes that were not in both TCGA and CCLE gene expression 

datasets were removed. 

To compare performance of gene expression sets on TCGA data, 

classification models were trained to predict radiation-sensitive or -resistant classes 

of TCGA tumor samples using gene expression data from only the subset of genes 

for an individual set. Model performance was assessed using weighted log loss 

(equation (1)) and AUROC metrics. To compare performance of gene expression 

sets on CCLE data, regression models were trained to predicted radiation response 

(reported as area under the curve of survival vs. radiation dose) of CCLE cell lines 

using gene expression data from only the subset of genes for an individual set82. 

Model performance was assessed using mean absolute error (MAE) and mean 

squared error (MSE) metrics. 

 

Flux Balance Analysis (FBA) 

Generation of personalized FBA models of individual TCGA tumor samples 

was performed as described in Lewis et al11. To predict the maximum production of a 

particular metabolite in FBA models, the following objective function was used: 

 1 met�all� 4 5 (9) 

where “met” is the metabolite to be maximized, and “[all]” represents the 

maximization of this objective function across all cellular compartments where the 

metabolite is located. This creates an artificial sink for a particular metabolite in the 

Recon3D metabolic network, resulting in the maximization of reaction fluxes 
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generating this metabolite. We hypothesized that this objective function would be 

valid and thus yield accurate predictions for metabolites with large differences in 

production between radiation-sensitive and -resistant tumors, as these would be 

particularly beneficial to either tumor class and thus the metabolic network of these 

tumors would be optimized to maximize levels of the metabolite. 

The modeled external compartment contained all metabolites found in 

DMEM/F-12 cell culture media (Thermo Fisher Scientific, Cat#11320) as well as fetal 

bovine serum (FBS) to match the cell culture media used for experimental 

validation83. All 871 metabolites in the Recon3D human metabolic reconstruction that 

(1) had KEGG database ID’s, (2) were not present in the extracellular media, and (3) 

were capable of being produced by all FBA tumor models, were included in the FBA 

metabolite production screen. 

 

NCI-60 Data Retrieval and Processing 

 Experimental metabolomics data from NCI-60 cancer cell lines was obtained 

from the Developmental Therapeutics Program (DTP) of the National Cancer 

Institute (NCI) (https://wiki.nci.nih.gov/display/NCIDTPdata/Molecular+Target+Data). 

Normalized concentration entries without metabolite names or for isobars were 

excluded. Cell line surviving fraction at 2 Gy radiation (SF2) values were obtained 

from Amundson et al 32. 

 

Cell Culture 

Supplementary Table 1 provides the matched radiation-sensitive and 

radiation-resistant cell lines used for experimental validation of metabolite levels 
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predicted from FBA models. All cell lines were maintained in DMEM/F-12 cell culture 

media (Thermo Fisher Scientific, Cat#11320) with 10% FBS (Sigma-Aldrich, 

Cat#F4135) at 37°C and 5% CO2, and were free of Mycoplasma. 

 

Metabolomics 

Three biological replicates of each cell line were grown in separate T-25 

flasks with the cell culture conditions described above. Cell pellets with 

approximately 1 million cells were obtained from trypsinization, centrifugation, and 

removal of supernatant. Samples were reconstituted in 90% MeOH, 10% H2O at a 

ratio of 200 μL/1 million cells. Aliquots of the supernatant were combined to create a 

pooled sample used for quality control. Aliquots of the samples were transferred to 

LC vials and stored at 4°C. 

Hydrophilic interaction chromatography-tandem mass spectrometry (HILIC-

MS/MS) untargeted metabolomics was performed. Chromatography parameters 

were as follows: BEH HILIC Column, 150 mm X 2.1 mm, 1.7 μm; mobile phase A: 

80% H2O / 20% ACN, 10mM ammonium formate, 0.1% FA; mobile phase B: 100% 

ACN, 0.1% FA; column temperature: 40°C; 2 μL sample injection. MS parameters 

were as follows: resolution: 240,000; scan range: 70-1050 m/z; polarity: 

positive/negative; AGC target: 1e5. MS2 parameters were as follows: isolation 

window: 0.8 m/z; detector: Orbitrap; polarity: positive/negative; fragmentation 

method: HCD; collision energy: 15, 30, 45; resolution: 30,000. 

Compound Discoverer 3.1 was used to perform quality control, putative 

metabolite identification, and quantification of metabolite levels. Results for positive 

and negative ion modes were combined. Metabolites with no identified name were 
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removed from the analysis. If duplicate metabolites with the same identification were 

obtained, then the entry with the largest maximum area was used. KEGG ID’s for 

each metabolite were manually identified based on metabolite name, molar mass, 

and chemical formula. Metabolites from experimental metabolomics were matched to 

those from FBA analysis by matching KEGG ID’s. 

For the comparison of model-predicted and experimentally-measured metabolite 

levels, all metabolites within the following Recon3D subsystems that were matched 

with experimental metabolites were included in the analysis: 

● Nucleotide Metabolism: “Nucleotide interconversion”, “Nucleotide salvage 

pathway”, “Pentose phosphate pathway”, “Purine catabolism”, “Purine 

synthesis”, “Pyrimidine catabolism”, “Pyrimidine synthesis” 

● Lipid Metabolism: “Cholesterol metabolism”, “Fatty acid oxidation”, “Fatty acid 

synthesis”, “Glycosphingolipid metabolism”, “Phosphatidylinositol phosphate 

metabolism”, “Sphingolipid metabolism”, “Steroid metabolism” 

● Cysteine/Antioxidant Metabolism: “Glutathione metabolism”, “ROS 

detoxification”, plus metabolite “Lipoamide” 

● Immune System Mediators: “Arachidonic acid metabolism”, “Eicosanoid 

metabolism” 

 

Code and Data Availability 

Jupyter notebooks containing Python code for running and analyzing the gene 

expression, multi-omics, and non-invasive classifiers for radiation response are 

available at https://github.com/kemplab/ML-radiation. Additionally, the gene sets and 

code used to compare the significant gene list from our gene expression classifier to 

those from the RadiationGeneSigDB database are available. 
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The following datasets are available at https://github.com/kemplab/ML-radiation: 

• Dataset 1. Feature importance scores (ΔP) from the gene expression 

classifier, for individual TCGA patients 

• Dataset 2. FBA model-predicted metabolite production rates in TCGA tumors 

• Dataset 3. Experimental metabolomics data from radiation-sensitive and -

resistant cancer cell lines 

• Dataset 4. Comparison of model-predicted and experimentally-validated 

metabolite levels in radiation-sensitive and -resistant cancers 

• Dataset 5. Feature importance scores (ΔP) from the multi-omics classifier, for 

individual TCGA patients 

• Dataset 6. Feature importance scores (ΔP) from the non-invasive classifier, 

for individual TCGA patients 
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Supplementary Figures: 

 

 

Supplementary Fig. 1 | Base learner used in the gene expression, multi-omics, 

and non-invasive classifiers for radiation response. a, Base learner performing 

two-class classification of radiation response, utilizing a gradient boosting machine 

(GBM) algorithm with Bayesian optimization, early stopping, and 5-fold cross 

validation to determine optimal hyperparameter values. Note that for the gene 

expression classifier, this base learner is not integrated with other base learners or a 

meta-learner as only one dataset is utilized. b-c, Performance of classifier trained on 

gene expression data from TCGA tumors, comparing (b) use of Bayesian 

optimization compared to no Bayesian optimization, and (c) GBM-based classifiers 

versus other machine learning algorithms. ns: not significant, *: p ≤ 0.05, **: p ≤ 0.01, 

***: p ≤ 0.001, ****: p ≤ 0.0001. 
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Supplementary Fig. 2 | Experimentally-measured concentrations of nucleotide 

metabolites in matched radiation-sensitive and -resistant cell lines. (Left) 

Replicate metabolite concentrations from all four cell line pairs, with values 

expressed as the log10 normalized area from LC-MS/MS. ns: not significant, *: p ≤ 

0.05, **: p ≤ 0.01, ***: p ≤ 0.001, ****: p ≤ 0.0001. (Right) Bars: Ratio value for each 

cell line pair, expressed as the log2 ratio of mean radiation-resistant concentration 

versus mean radiation-sensitive concentration. Colored line: mean experimental log2 

Resistant/Sensitive across all four cell line pairs. Black line: FBA model-predicted 

log2 ratio of average metabolite production in radiation-resistant versus -sensitive 

TCGA tumors. 
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Supplementary Fig. 3 | Experimentally-measured concentrations of lipid 

metabolites in matched radiation-sensitive and -resistant cell lines. (Left) 

Replicate metabolite concentrations from all four cell line pairs, with values 

expressed as the log10 normalized area from LC-MS/MS. ns: not significant, *: p ≤ 

0.05, **: p ≤ 0.01, ***: p ≤ 0.001, ****: p ≤ 0.0001. (Right) Bars: Ratio value for each 

cell line pair, expressed as the log2 ratio of mean radiation-resistant concentration 

versus mean radiation-sensitive concentration. Colored line: mean experimental log2 

Resistant/Sensitive across all four cell line pairs. Black line: FBA model-predicted 

log2 ratio of average metabolite production in radiation-resistant versus -sensitive 

TCGA tumors. 
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Supplementary Fig. 4 | Experimentally-measured concentrations of 

cysteine/antioxidant metabolites in matched radiation-sensitive and -resistant 

cell lines. (Left) Replicate metabolite concentrations from all four cell line pairs, with 

values expressed as the log10 normalized area from LC-MS/MS. ns: not significant, *: 

p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001, ****: p ≤ 0.0001. (Right) Bars: Ratio value for 

each cell line pair, expressed as the log2 ratio of mean radiation-resistant 

concentration versus mean radiation-sensitive concentration. Colored line: mean 

experimental log2 Resistant/Sensitive across all four cell line pairs. Black line: FBA 

model-predicted log2 ratio of average metabolite production in radiation-resistant 

versus -sensitive TCGA tumors. 
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Supplementary Fig. 5 | Experimentally-measured concentrations of immune 

system mediating metabolites in matched radiation-sensitive and -resistant 

cell lines. (Left) Replicate metabolite concentrations from all four cell line pairs, with 

values expressed as the log10 normalized area from LC-MS/MS. ns: not significant, *: 

p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001, ****: p ≤ 0.0001. (Right) Bars: Ratio value for 

each cell line pair, expressed as the log2 ratio of mean radiation-resistant 

concentration versus mean radiation-sensitive concentration. Colored line: mean 

experimental log2 Resistant/Sensitive across all four cell line pairs. Black line: FBA 

model-predicted log2 ratio of average metabolite production in radiation-resistant 

versus -sensitive TCGA tumors. 

 

 

 

 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2020. ; https://doi.org/10.1101/2020.08.02.233098doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.02.233098
http://creativecommons.org/licenses/by/4.0/


 

Supplementary Fig. 6 | Performance of the multi-omics classifier, comparing 

the dataset-independent ensemble architecture versus combining datasets 

together before training on a single classifier. Multiple alternative classifier 

performance metrics are provided. 

 

Supplementary Fig. 7 | Comparison of multi-omics classifier performance on 

samples from different cancer types. a, Correlation between sample log loss and 

number of samples within each cancer type. b, Correlation between sample log loss 

and proportion of radiation-resistant samples within each cancer type. 
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Supplementary Fig. 8 | k-Means clustering of clinical dataset contributions for 

individual samples. Gap statistic values for each value of k are shown for the (a) 

multi-omics classifier, and (b) non-invasive classifier. 

 

 

Supplementary Fig. 9 | Regression between feature importance score and 

predicted metabolite production rate for a representative metabolite. Values are 

shown for each individual patient tumor. 
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Supplementary Fig. 10 | Comparison of FBA model-predicted maximal 

conversion of ADP to ATP between radiation-sensitive and -resistant TCGA 

tumors. ****: p ≤ 0.0001. 

 

 
Supplementary Fig. 11 | Data splitting for classifier training and testing.  
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Supplementary Tables: 

Supplementary Table 1 | Matched radiation-sensitive and radiation-resistant 

cancer cell lines 

Cancer Type Radiation-
Sensitive 

Radiation-
Resistant 

Notes Source 

Breast 
(BRCA) 

MDA-MB-231 
NQO1 (-) 

MDA-MB-231 
NQO1 (+) 

Stable NQO1 expression was 
restored in NQO1(-) cells to create 

NQO1(+) cells. 

Dr. David 
Boothman, 

Indiana 
University84 

Colon 
(COAD) SW620 SW480 

Primary tumor (SW480) and lymph 
node metastasis (SW620) from the 

same patient, with different radiation 
sensitivities. 

ATCC 

Glioblastoma 
(GBM) 

M059J M059K 
Both isolated from same tumor 

specimen. M059J cells lack DNA-
PK activity, rendering them more 

radiation-sensitive. 

ATCC 

Head and 
Neck  

(HNSC) 
SCC-61 rSCC-61 

rSCC-61 cells were derived from 
SCC-61 cells after repeated 

radiation exposure and selection of 
surviving colonies. 

Dr. Cristina 
Furdui, Wake 

Forest 
University85,86 
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Supplementary Table 2 | Hyperparameter ranges for Bayesian optimization 

with gradient boosting machine classifiers. 

Parameter Name Distribution Lower Bound Upper Bound 

eta log-uniform 0.01 0.5 

gamma log-uniform 0 5 

max_depth uniform 1 11 

subsample uniform 0.5 1 

colsample_bytree uniform 0.5 1 

colsample_bylevel uniform 0.5 1 

reg_lambda log-uniform 1 4 

reg_alpha log-uniform 0 1 

 

 

Supplementary Table 3 | Hyperparameter ranges for Bayesian optimization 

with the random forest classifier. 

Parameter Name Distribution Lower Bound Upper Bound 

n_estimators log-uniform 1 1000 

criterion choice entropy, gini 

max_depth uniform 1 11 

min_samples_split uniform 0 1 

min_samples_leaf uniform 0 0.5 

max_features choice log2, sqrt 
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Supplementary Table 4 | Hyperparameter ranges for Bayesian optimization 

with the logistic regression classifier with L1 regularization. 

Parameter Name Distribution Lower Bound Upper Bound 

C log-uniform 0.001 1000 

 

 

Supplementary Table 5 | Hyperparameter ranges for Bayesian optimization 

with the neural network classifier with L1 regularization. 

Parameter Name Distribution Lower Bound Upper Bound 

Number of layers uniform 1 5 

Neurons per layer choice 8, 16, 32, 64, 128, 256, 512, 1024 

activation_function choice elu, relu, sigmoid 

optimizer choice adam, rmsprop, sgd 

l1 log-uniform 0.000001 0.1 

dropout uniform 0 0.5 
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