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Machine learning models that predict which small molecule lig-
ands bind a single protein target report high levels of accuracy
for held-out test data. An important challenge is to extrap-
olate and make accurate predictions for new protein targets.
Improvements in drug-target interaction (DTI) models that ad-
dress this challenge would have significant impact on drug dis-
covery by eliminating the need for high-throughput screening
experiments against new protein targets. Here we propose a
data augmentation strategy that addresses this challenge to en-
able accurate prediction in cases where no experimental data is
available. To proceed, we first build single protein-ligand bind-
ing models and use these models to predict whether additional
ligands bind to each protein. We then use these predictions
to augment the experimental data, train standard DTI models,
and predict interactions between unseen test proteins and lig-
ands. This approach achieves Area Under the Receiver Opera-
tor Characteristic (AUC) > 0.9 consistently on test sets consist-
ing exclusively of proteins and ligands for which the model is
given no experimental data. We verify that performance im-
provements extend to held-out test proteins distant from the
training set. Our data augmentation framework can be applied
to any DTI model, and enhances performance on a range of sim-
ple models.
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Introduction

Identifying ligands that interact with a given protein target,
and predicting additional protein targets that a candidate drug
binds to are crucial requirements in drug discovery. Ex-
perimental methods such as high-throughput screening are
time-consuming and costly, while physics-based methods are
computationally expensive and can be inaccurate (1–4). The
emergence of large datasets describing experimentally mea-
sured interactions between protein targets and small molecule
ligands enables data-driven approaches to be applied to this
problem (5). In recent years, a variety of machine learning
approaches have been developed to identify active ligands
for single protein targets using training data from screening
experiments (6, 7). These approaches report outstanding in
silico success on benchmark datasets (8–15). However, they
rely on the existence of experimental screening data that iden-
tifies active and ideally also inactive ligands for each protein
target, which is costly and time-consuming to obtain.
Models that predict global drug-target interactions (DTI) re-
move this bottleneck by exploiting the physio-chemical infor-
mation shared across different protein-ligand binding interac-
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Fig. 1. (a) The hardest DTI challenge involves building models that predict inter-
actions between proteins and ligands for which no experimental data is available,
which requires generalization in both protein and ligand space. (b) We first use the
available data to build a single-target binding model for each training protein, and
then use the resulting model to predict interactions between that protein and all lig-
ands in the dataset, augmenting the experimental data (yellow fill). Standard DTI
models then generalise from the augmented data and predict interactions between
the test proteins and ligands (dark blue).

tions, to simultaneously predict interactions between multi-
ple protein targets and multiple candidate ligands or drugs
(16–20). DTI models use the experimental data available
for some subset of interactions (Fig. 1A), together with
information-rich featurizations of the proteins and ligands,
to predict interactions between test proteins and ligands. The
ultimate goal is to build models that accurately predict in-
teractions where no experimental data is available, enabling,
for example, prediction of active ligands for protein targets
with no prior screening data (16, 19). If successful, these
models would be particularly useful in the prediction of off-
target effects, and would enable better understanding of drug
polypharmacology.
However, performance analyses on standard benchmark
datasets show that DTI methods can struggle to make accu-
rate prediction for interactions between protein targets and
unseen ligands (19). This is particularly surprising, since
single protein models successfully solve this problem with-
out including data for other protein targets (5). Many deep-
learning-based DTI models have been proposed, but they typ-
ically rely on large numbers of experimentally determined
active ligands for each protein. Performance of these ap-
proaches at generalizing to proteins or ligands without ex-
perimental data is poor (21–32). Moreover, methods for
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DTI prediction have largely been tested using a pair split-
ting methodology, where the dataset of (protein, ligand) pairs
is split into train, validation, and test sets (16, 19, 24–26, 32–
42). This approach does not determine whether models can
generalize to unseen protein targets, since the test set con-
tains protein targets for which many active ligands are seen
during training.
The most difficult and most interesting test case of generalis-
ing in both protein and ligand space simultaneously (Fig. 1,
dark blue) has rarely been tried in the literature (19); when
it is tested, models often perform poorly (19, 21, 29, 31, 43)
though in some cases this is partially accounted for by the
difficulty of the dataset (29). A small number of papers have
used deep learning to explicitly tackle the problem of making
predictions for targets with no training data, reporting lower
performance than models tested via pair splitting (21, 23, 31).
In this paper, we develop a data augmentation framework
to tackle this most challenging case and accurately predict
interactions in cases where neither the ligands nor the pro-
tein targets were seen during training. Specifically, we first
use highly accurate single protein/ligand binding models to
generalise and make predictions for unseen ligands for each
protein, then use these predicted interactions to augment the
training data for DTI models that generalise to unseen pro-
teins. Using simple DTI models, we demonstrate that the en-
suing performance is comparable or better than that of state-
of-the-art deep learning-based DTI models (31). Most impor-
tantly, our method makes it possible to tackle the most chal-
lenging case involving simultaneous generalisation to both
unseen drugs and unseen targets with remarkable accuracy.

Results
To motivate our approach, we first consider the simpler
problem of predicting whether unseen small molecule lig-
ands bind to protein targets with some experimental binding
data, for which single protein-ligand binding models have
achieved outstanding reported success. We reasoned that
these models should provide a baseline for the performance
of DTI models at this problem, since the DTI models capture
target similarity and so can transfer information between pro-
tein targets. However, Figure S1 shows that single protein-
ligand binding models outperform DTI models despite hav-
ing access to less information. It is certainly true that the high
performance of single protein/ligand binding models may re-
flect similarities between train and test ligands, or other forms
of dataset bias (44–46). Regardless, we find that DTI models
are unable to replicate this performance.
This observation suggests that the accurate single protein
models could be leveraged for data augmentation, to provide
additional information that helps a DTI model generalise to
unseen protein targets. To test this hypothesis, we construct
an updated version of the benchmark dataset from (36) that
contains a hundredfold more ligands for each protein class.
We build single protein/ligand binding models for each pro-
tein target in the train set, and use these models to predict
interactions between the corresponding protein and all other
ligands in the dataset (see Figure 1b). We next train a DTI
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Fig. 2. Effect of Data Augmentation on Unseen Target and Drug AUCs for the
DTI Models: (a) Random Forest trained using counts of amino acids in the tar-
get sequence (RF One-Hot) (b) Collaborative Matrix Factorization (CMF) (38), and
(c) Weighted Graph-Regularized Matrix Factorization (WGRMF, see SI Methods for
details) (39). We see consistent improvement in all models due to data augmen-
tation using simple single protein/ligand binding models, regardless of dataset size
or sparsity and the specific DTI model used. In particular, after augmentation RF
one-hot consistently attains AUCs above 0.9, suggesting that it can simultaneously
generalise in protein and ligand space. We typically see greater improvement us-
ing logistic regression models for data augmentation rather than random forest, but
both methods are effective.
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model using the experimentally validated data augmented by
the predicted interactions, and test whether it can generalise
to make accurate predictions for unseen proteins. Since we
have already made predictions for all ligands in the dataset,
we use the DTI method exclusively to generalise in protein
space to interactions involving unseen protein targets, avoid-
ing the expensive ligand similarity matrix calculation. We
compare performance to that of the DTI model trained using
only the experimentally validated interactions. To explicitly
test whether data augmentation enables DTI models to gen-
eralise in both protein and ligand space simultaneously, we
hold out sets of protein targets and small molecule ligands
from training, and measure DTI model performance for in-
teractions with no experimental data for either the protein or
the ligand (dark blue, Figure 1).

Similar approaches have been applied to related problems;
specifically, previous work has found that single protein-
ligand binding models like random forest can improve ac-
curacy of protein family regression models (47). This work
did not incorporate information about the protein targets and
therefore required data for every target; in contrast, our work
with data augmentation on DTI models can be used even
for proteins with no prior experimental data (47). Weighted
nearest neighbor was previously used as a data augmentation
method in combination with a new DTI model, though its
contribution to performance was not evaluated (40).

Figure 2 reports the Area under the Receiver Operator Char-
acteristic (AUC) for three DTI models both before and after
data augmentation, across held-out test proteins and held-out
test ligands from five data sets (updated from (36), see meth-
ods). Results for additional DTI models are shown in Figure
S2. All results show that augmenting the training data leads
to statistically significant improvements (p < 0.01 level). In
general, Figure 2 shows greater improvement when predic-
tions from logistic regression models are used for data aug-
mentation. Figures S2-S10 have further analysis of these
results, indicating that they hold for other similarity-based
DTI methods, for easier prediction tasks involving interac-
tions between unseen ligands and known targets and between
unseen targets and known ligands, and also on a trial-by-
trial basis. When the augmented training data is used, even
baseline models like weighted nearest neighbours (weighted-
NN) can achieve high accuracy, with AUCs exceeding 0.85
as shown in Figure S2. This suggests that data augmenta-
tion allows even simple DTI models to generalise simultane-
ously in both protein and ligand space. Many of the more
complex similarity-based DTI models demonstrate very sim-
ilar levels of improved performance following data augmen-
tation. Moreover, while we did not record exact runtimes, our
observations indicate that data augmentation significantly re-
duces both runtime and memory costs since the ligand simi-
larity matrix does not need to be computed and stored, which
can take hundreds of gigabytes and several hours of computer
time on a single core. Figure S11 demonstrates that incorpo-
rating the ligand similarity matrix into the DTI model post-
augmentation is detrimental to model performance. Overall,
our results suggest that using single protein/ligand binding

models to label additional training data points has the poten-
tial to relieve a crucial bottleneck in the ability of DTI models
to generalise to new protein targets.

Performance Analysis. For the proposed data augmenta-
tion approach to be generally useful it is important to under-
stand how model performance depends on the amount and di-
versity of available training data. First, we examine how per-
formance depends on the distance of a test protein target from
the proteins contained in the training data. For each held-out
test protein, we measure the similarity to each training pro-
tein using pHMMer (48), and report the normalized bit score
of the most similar match (see methods). Figure 3a-c reports
the improvement in the DTI model AUC for each test target
obtained through data augmentation, as a function of its sim-
ilarity to the training set. The raw AUC values are reported in
Figure 3d-f; Figure S15 depicts the distribution of test target
similarities to the training set. We note that as a result of data
augmentation, the simple random forest DTI model (RF One-
Hot), where target similarity is computed using amino acids
counts (see methods) performs highly on protein targets that
are highly dissimilar to the training set across the GPCR, Ki-
nase and Other Enzyme datasets. Furthermore, Figure S14
shows that the performance improvement does not depend
strongly on the number of known active ligands per protein
target.
We can similarly examine how performance depends on the
distance of a test ligand to the nearest ligand in the training
data, where distance is measured using Tanimoto similarity.
Figure 4a-c reports the improvement in the DTI model AUC
obtained through data augmentation, as a function of test lig-
and similarity to the training set. The raw AUC values are
reported in Figure 4; Figure S16 depicts the distribution of
test ligand similarities to the training set. All models show
a decrease in performance as distance from the training set
increases, but our data augmentation method is generally ef-
fective across a wide range of distances.
Next, we examine performance as a function of the diversity
of protein targets included in the training set. We first fix a
held-out test set of target proteins for the GPCR, kinase and
ion channel datasets, using the other proteins in each set as
training data. For each dataset, we then remove all data in-
volving the 5% of train protein targets that are on average
most dissimilar from the other train proteins, making each
training set less diverse in the most rapid order. We repeat
for 10 steps to yield 10 train sets of varying diversity for each
dataset. We measure the diversity of each training set us-
ing the average nearest-neighbor similarity across the protein
targets it contains. In general, a less diverse training set has
less information, which makes it potentially more difficult
to generalise in protein space. However, Figure 5 suggests
that the improvement obtained by our data augmentation ap-
proach decreases only slightly as the training set becomes
less diverse. The data augmented DTI models are consis-
tently effective across a wide range of training set diversities.
For comparison, Figure S13 shows similar results where we
reduce the size of the training set randomly instead of in the
order that decreases diversity most quickly.
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Fig. 3. (A-C) Change in Target AUC and (D-F) Target AUC as a Function of Similarity to Training Set on Datasets with More than 50 Protein Targets. (A, D) are the GPCR
dataset, (B, E) the Kinase dataset, and (C, F) the Other Enzyme dataset. Our method is effective across test proteins regardless of their similarity to the initial training set.
The error bars for this graph were generated by a bootstrap estimate after binning the test target distances into bins of width 0.05.
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Fig. 4. (A-C) Change in AUC and (D-F) Average AUC in Ligand Bin as a Function of Ligand Similarity to Training Set on Datasets with More than 50 Protein Targets. (A, D)
are the GPCR dataset, (B, E) the Kinase dataset, and (C, F) the Other Enzyme dataset. Ligands are binned based on distance from the training set in bins of width 0.05.
Our method is effective across test ligands regardless of their similarity to the initial training set. The error bars for this graph were generated by a bootstrap estimate.

Discussion
In this work, we demonstrate that augmenting the training
data for DTI models using predictions made by robust sin-
gle protein/ligand binding models allows generalisation si-
multaneously in protein and ligand space so that models can
accurately predict interactions between unseen drugs and un-
seen targets. We observe this effect consistently regardless
of dataset size across multiple DTI algorithms. Our best-

performing DTI method was a random forest model that uses
ECFP6 ligand fingerprints and simple amino acid counts to
capture similarity between protein targets. We find that the
additional high-quality predictions provided by the single
protein binding models significantly improve the accuracy of
DTI model predictions. Since this is a very simple model,
more complicated models such as deep neural networks will
likely also benefit from augmented training data and improve
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Fig. 5. Performance as a Function of Diversity of Training Set, measured by (A) Change in Unseen Drug and Target AUC and (B) Unseen Drug and Target AUC. We measure
the diversity of the training set by the average nearest-neighbor similarity between protein targets. Data is shown from 3 datasets: the points are from GPCR, the pluses are
from the Kinase dataset, and the dots are from the Ion Channel dataset. As this similarity increases and diversity decreases, our method slightly decreases in effectiveness
but continues to improve the unseen target and drug AUC.

in performance.
Our results suggest that simple feature-based methods such
as RF One-Hot perform better than DTI methods that explic-
itly model the similarities among ligands and protein targets
such as CMF. We note that these similarity-based methods
implicitly use Tanimoto similarity as the only ligand feature.
Analysis of single protein/ligand binding models has indi-
cated that Tanimoto similarity is not a particularly robust met-
ric and options such as logistic regression and random forest
learn more (12). Beyond this, the key advantage provided
by the data augmentation is simply additional training data.
While most interactions are predicted to be inactive, a small
but significant proportion of the interactions are predicted to
be active (see Figure S12); in contrast, standard approaches
either ignore this data or assume that any unknown interac-
tions are inactive (19). We also find that logistic regression
consistently performs better for data augmentation than ran-
dom forest. Figure S12 suggests that this is at least partly
a calibration issue; logistic regression outputs probabilities
whereas random forests are not generally calibrated (49).
This work raises a number of questions. The DTI models we
have used in this paper accept probabilistic training data, but
none of them interpret classification probabilities in the most
natural way. Cross-entropy loss assumes the output variable
is Bernoulli distributed, as appropriate for a classification
problem, but all the DTI models use regression approaches
and least-squared loss, which assumes the output variable is
normally distributed. It is possible that changing the loss
function will improve overall performance. Similarly, it is

possible that calibrating the single protein/ligand RF mod-
els will improve their performance for data augmentation.
Furthermore, we note that many of the target similarity-
based methods report very similar performance to the base-
line methods on the unseen target and drug problem once the
single protein/ligand binding models are added. This sug-
gests that the key to improving performance is to develop a
better similarity matrix or use explicit features instead, rather
than developing more complicated similarity-based models.
Finally, an important issue concerns the generalisation abil-
ity of both the single target models used to generalise in lig-
and space and augment the training data, and the DTI models
used to generalise in protein space. It is known that single
protein/ligand binding models that perform well on bench-
mark datasets can fail to generalise due to clustering in chem-
ical space and other dataset biases (44–46, 50–53). Similarly,
clustering in protein space due to phylogenetic relationships
results in similar dataset biases (54) that could result in overly
optimistic predictions of generalisability. The high variance
in performance between different train/test splits of datasets
shown in Figures 2 and 3 suggests that these biases are non-
trivial. To drive future improvements, we release the bench-
mark datasets built for this work. This resource can be lever-
aged for more careful design of both datasets and data splits
to account for these biases, which is an important direction
for future work that could yield a better evaluation of these
and other models.
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Methods and Data Availability
Dataset Construction and Problem Set-up. The datasets presented in this manuscript are built using the same design and
methodology as the gold-standard datasets developed by Yamanishi et al. (36). This updated version reflects the vast quantity of
protein/ligand binding data that is now available. For these protein targets we found active ligands from ChEMBL 24.1 (55, 56)
by filtering for compounds with an IC50, Ki, Kd, or EC50 of less than 1µM. To prevent duplication we only used proteins from
Homo sapiens. Targets with fewer than 20 active ligands reported in ChEMBL were eliminated. This resulted in data for 327
protein targets, which we divided into five sub-classes: nuclear receptors, GPCRs, kinases, other enzymes, and ion channels.
Table 1. Statistics of Datasets Used. This table reports the number of proteins, ligands, and the mean, standard deviation, maximum, and minimum number of actives per
protein. Further information about the datasets can be found in the SI.

Dataset Nuclear Receptor Ion Channel GPCR Kinase Other Enzyme
Proteins 21 40 91 62 113
Ligands 19197 17536 75380 66120 69923

Mean Actives per Protein 618 493 1058 1059 619
Std Dev Actives per Protein 642 853 1006 1144 812

Max Actives per Protein 1901 3375 4559 5552 4142
Min Actives per Protein 26 20 22 50 44

Inactive ligands were acquired from two sources: inactive ligands labeled on PubChem indexed by UniProt Protein ID (57, 58)
and for targets with a DUD-E decoy set, some inactives from the DUD-E set were included (59). To ensure a reasonable
balance of actives to inactives, we also added a randomly selected set of 500 decoys per run; these decoy ligands were selected
to not be in any previous set of ligands, either active or inactive. We assumed that these decoys did not interact with any of the
given targets. Unlike previous work (19), we did not assume in either training or testing our models that any other unknown
interactions between proteins and non-decoy ligands were inactive, since actives for a given protein target may be active for
related proteins. Some basic statistics about the size of the datasets may be found in Table 1 and Table S1-3.
We next split each of our five datasets into training and test sets. To explicitly test for generalisation in both protein and ligand
space, we used the incomplete training submatrix of protein/ligand interactions as illustrated in Figure 1a. Specifically, we
first split the protein targets randomly into an 80% training and 20% test set. For each known target, we randomly selected
20% of the active and known inactive ligands to be in the test set. We further selected 20% of the decoys to be in the test set.
All remaining ligands were placed in the training set. The models were not provided with any information about interactions
involving any of the test ligands or proteins. Our methodology ensures that all protein targets in the training set have some
active and inactive ligands in the training set. Further, the training submatrix is potentially incomplete, since there may be
interactions between known proteins and known ligands about which we have no experimental data. A number of statistics
about our train/test splits are reported in Table S3.
Our set-up allows us to explicitly test for generalisation in both protein and ligand space by looking at performance on the unseen
target and drug subproblem, which tests interactions between test ligands and test proteins. There are 2 other subproblems we
may look at: the unseen target subproblem, which looks at interactions between train ligands and test proteins, and the unseen
drug subproblem, which looks at interactions between test ligands and train proteins. Our data from Table S1 indicate that
despite large variance, on average all 3 subproblems are roughly balanced in terms of the number of actives and inactives due to
our setup. This allows us to use the Area Under the Receiver Operating Characteristic Curve (AUC) as our metric for measuring
model accuracy.
Some models required hyperparameter tuning, so we created a validation submatrix with the training submatrix using the same
methodology as for the train/test split. Hyperparameters were tuned separately for every repetition using the overall AUC on
the validation set; model performance was then evaluated on the test set. We performed 20 repetitions to test all models; error
bars reported below are to 1 SEM.

Models. We use logistic regression and random forest with 2048 bit ECFP6 fingerprints generated by rdkit (60) implemented
using scikit-learn to build the initial target-specific single protein/ligand binding models. (61, 62) We use regularization constant
C = 1 for logistic regression and 100 trees with a maximum depth of 25 for random forest; both are known to perform well on
the single protein/ligand binding problem.
There are two important modifications that must be made to all DTI models used. First, the DTI model must accept probabilities
in its training set. Second, the DTI model must not incorporate any additional information about ligand similarity, since we do
not need to generalise to any further ligands. SI Methods Section 2C and Figure S10 show that failing to make this modification
results in poorer performance. We made these modifications on a case-by-case basis to all of the models.
We tested weighted nearest neighbor (w-NN) as a baseline DTI model, and four high-performing DTI models from the liter-
ature, namely random forest with one-hot features (RF one-hot), regularized least squares (RLS-WNN), collaborative matrix
factorization (CMF), and weighted graph-regularized matrix factorization (WGRMF). (19) In all cases, we used pairwise se-
quence bit scores from pHMMER to describe similarity between protein targets (48), normalized to the length of the amino
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acid sequence to ensure that each protein’s similarity with itself was 1, and Tanimoto similarities calculated using ECFP6 fin-
gerprints for the ligands. The definitions and properties of the DTI models, and the hyperparameters used for training may be
found in SI Methods Sections 1B - 1C.

Data Availability. Data and code required to reproduce the results of this paper are available in the Supporting Information.
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